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Abstract: We introduce a couple of families of codi�able languages and investigate
properties of these families as well as interrelationships between di�erent families.
We also develop an algorithm based on the Earley algorithm to compute the values
of the inverse of the Parikh matrix mapping over a codi�able context-free language.
Finally, an attributed grammar that computes the values of the Parikh matrix mapping
is de�ned.
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1 Introduction

In this paper we continue the investigation started in [1] on the injectivity of the
restriction of the Parikh matrix mapping to languages.

The Parikh mapping or the Parikh vector was introduced in [3]. The main
result concerning this mapping is that the image by the Parikh mapping of a
context-free language is always a semilinear set.

The Parikh matrix mapping is an extension of the Parikh mapping introduced
in [2]. This extension is based on a special type of matrices. The classical Parikh
vector appears in such a matrix as the second diagonal. All other entries above
the main diagonal contain information about the order of letters in the original
word. All matrices are upper triangular, with 1's on the main diagonal.

Two words with the same Parikh matrix always have the same Parikh vector,
but the converse is not true. Hence, the Parikh matrix mapping gives more
information about a word than the Parikh vector.

We start with some notations and de�nitions from the theory of formal lan-
guages. The set of all positive integers is denoted by N . Let � be an alphabet.
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The set of all words over � is �� and the empty word is �. If w 2 ��, then
jwj denotes the length of w. It should cause no confusion that sometimes we use
also the customary notation, where vertical bars denote the absolute value of an
integer.

In this paper we very often use \ordered" alphabets. An ordered alphabet
is an alphabet � = fa1; a2; : : : ; akg with a relation of order (\<") on it. If for
instance a1 < a2 < : : : < ak, then we use the notation:

� = fa1 < a2 < : : : < akg:

Let a 2 � be a letter. The number of occurrences of a in a word w 2 �� is
denoted by jwja.

The shu�e operation, denoted by , it is de�ned recursively by :

(au bv) = a(u bv) [ b(au v);

and
(u �) = (� u) = fug;

where u ,v 2 �� and a ,b 2 � .
Let u; v be words over �. The word u is a scattered subword of v if there

exists a word t such that v 2 u t. If u; v 2 ��, then the number of occurrences
of u in v as a scattered subword is denoted by jvjscatt�u.

Partially overlapping occurrences of a word as a scattered subword are counted
as distinct occurrences. For instance, jacbbjscatt�ab = 2 and
jbacbjscatt�ab = 1.

Let � = fa1 < a2 < : : : < akg be an ordered alphabet. The Parikh mapping
is a mapping:

	 : �� ! Nk;

de�ned as:
	(w) = (jwja1 ; jwja2 ; : : : ; jwjak ):

The Parikh vector of w is (jwja1 ; jwja2 ; : : : ; jwjak ). Note that the Parikh mapping
	 is a morphism from the monoid (��; �; �) to the monoid (Nk;+; (0; 0; : : : ; 0)).
The mirror of a word w 2 ��, denoted mi(w), is de�ned as: mi(�) = � and
mi(b1b2 : : : bn) = bn : : : b2b1, where bi 2 �, 1 � i � n.

A word w is a palindrome i� w = mi(w).
Let � and � be two alphabets such that � � �. A weak identity is a

morphism f from �� to ��, such that f(a) = a for all a 2 � and f(b) = � for
all b 2 ���.

For more results and notions of formal languages, see [4].
Now we recall the notion of the Parikh matrix mapping.
Consider a special type of matrices, called triangle matrices. A triangle matrix

is a square matrix m = (mi;j)1�i;j�k , such that mi;j 2 N , for all 1 � i; j � k,
mi;j = 0, for all 1 � j < i � k, and, moreover, mi;i = 1, for all 1 � i � k.

The set of all these matrices is denoted by M.
Comment. The set of all triangle matrices of dimension k � 1 is denoted by

Mk. The setMk is a monoid with respect to multiplication of matrices and has
a unit which is the unit matrix of dimension k.

The notion of the Parikh matrix mapping was introduced in [2].
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De�nition 1.1 Let � = fa1 < a2 < : : : < akg be an ordered alphabet, where
k � 1. The Parikh matrix mapping, denoted 	Mk

, is the morphism:

	Mk
: �� !Mk+1;

de�ned as follows:
If 	Mk

(aq) = (mi;j)1�i;j�(k+1), then for each 1 � i � (k + 1), mi;i = 1,
mq;q+1 = 1 and all other elements of the matrix 	Mk

(aq) are zero.

2

Example 1.1 Let � be the ordered alphabet fa < bg and assume that w =
abbab. Note that 	M2

(w) is a 3 � 3 triangle matrix that can be computed as
follows:

	M2
(abbab) = 	M2

(a)	M2
(b)	M2

(b)	M2
(a)	M2

(b) =

 
1 1 0
0 1 0
0 0 1

! 
1 0 0
0 1 1
0 0 1

! 
1 0 0
0 1 1
0 0 1

! 
1 1 0
0 1 0
0 0 1

! 
1 0 0
0 1 1
0 0 1

!
=

=

 
1 2 4
0 1 3
0 0 1

!

However, if � is the ordered alphabet fa < b < cg and w0 = babbc, then one
can easily verify that:

	M3
(w0) = 	M3

(babbc) = 	M3
(b)	M3

(a)	M3
(b)	M3

(b)	M3
(c) =

=

0
B@
1 1 2 2
0 1 3 3
0 0 1 1
0 0 0 1

1
CA

2

The next theorem shows the basic property of the Parikh matrix mapping,
see [2].
Notation Consider the ordered alphabet � = fa1 < a2 < : : : < akg, where
k � 1. We denote by ai;j the word aiai+1 : : : aj , where 1 � i � j � k. 2

Theorem 1.1 Let � = fa1 < a2 < : : : < akg be an ordered alphabet, where
k � 1 and assume that w 2 ��. The matrix 	Mk

(w) = (mi;j)1�i;j�(k+1) has the
following properties:

(i) mi;j = 0, for all 1 � j < i � (k + 1),
(ii) mi;i = 1, for all 1 � i � (k + 1),
(iii) mi;j+1 = jwjscatt�ai;j , for all 1 � i � j � k.

2
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2 Codi�able and partially codi�able languages

In this section we introduce the notion of codi�able and partially codi�able
language.

De�nition 2.1 Let � be an alphabet with card(�) = k. A language L � �� is:

(i) codi�able if for each order on � the Parikh matrix mapping 	M : L �!
Mk+1 is injective,

(ii) partially codi�able if there is at least one order on � such that the corre-
sponding Parikh matrix mapping is injective in L.

Comment. Obviously, if a language L is codi�able, then L is also partially
codi�able. A language that is not partially codi�able is referred to as a non-
codi�able language.

Proposition 2.1 If � = fa; bg, then a language L � �� is codi�able if and
only if L is partially codi�able.

Proof: For a binary alphabet, only two orders are possible. Assume that � =
fa < bg and 	M : L �!M3 is not injective. Let �; � 2 L be two words such that
	M (�) = 	M (�). Note that j�ja = j�ja; j�jb = j�jb and j�jscatt�ab = j�jscatt�ab.

Since, for each binary word x, jxjscatt�ba = jxjajxjb � jxjscatt�ab, see also [1],
it follows that j�jscatt�ba = j�jscatt�ba. Hence, 	M;Æ(�) = 	M;Æ(�) and therefore
L is not codi�able on the ordered alphabet � = fb < ag, too. 2

The Proposition 2.1 is trivial for the one-letter alphabet, but it is not true if
card(�) � 3. This follows from the next example.

Example 2.1 Consider the language:

L = f(ab)nc(ba)njn � 0g [ f(ba)nc(ab)njn � 0g:

The basic alphabet is � = fa; b; cg. Now consider the order a < c < b. The
Parikh matrix mapping 	M is not injective. For instance:

	M ((ab)nc(ba)n) = 	M ((ba)nc(ab)n) =

0
B@
1 2n n n2

0 1 1 n
0 0 1 2n
0 0 0 1

1
CA :

Now consider the order a < b < c and note that the Parikh matrix mapping
is injective:

	M ((ab)nc(ba)n) =

0
B@
1 2n 2n2 n(n+1)

2
0 1 2n n
0 0 1 1
0 0 0 1

1
CA :

Note that the only word from L with the same Parikh vector is (ba)nc(ab)n,
but this word has another Parikh matrix mapping:

	M ((ba)nc(ab)n) =

0
B@
1 2n 2n2 n(n�1)

2
0 1 2n n
0 0 1 1
0 0 0 1

1
CA :

786 Atanasiu A., Martin-Vide C., Mateescu A.: Codifiable Languages ...



The next remark is a representation result. It shows that every language is
the image by a weak identity of a partially codi�able language.

Remark 2.1 Let � = fa1 < a2 < : : : < ang be an ordered alphabet and let
L � �� be an arbitrary language. Let �0 = � [ f]g, where ] is a new letter.

Then there exists a language L0 � �0� and an order on �0 such that:

(i) L0 is partially codi�able on �0, and
(ii) h(L0) = L, where h is the weak identity de�ned by h(a) = a, for all a 2 �,

and h(]) = �.

To show the above properties, consider that the order on �0 is �0 = fa1 <
a2 < : : : < an < ]g.

Now consider an enumeration of the language L:

L = fwi j i � 0g; where wi 2 �� for all i � 0:

De�ne the language L0 as:

L0 = fwi]
i j i � 0g:

Note that if x; y 2 L0 such that x 6= y, then jxj] 6= jyj] and hence L0 is a partially
codi�able language.

Also, it is easy to see that h(L0) = L.

2

Notations. We denote by CO the class of all codi�able languages by NCO
the class of non-codi�able languages.

Proposition 2.2 NCO is closed under: union, catenation, Kleene star, �-free
morphisms.

NCO is not closed under general morphisms.

Proof. The positive assertions are easy to be veri�ed. To show that NCO is
not closed under general morphisms, consider the languageL = f� 2 fa; bgj j�ja =
j�jbg and the morphism h(a) = a; h(b) = �. Then h(L) = a�, which obviously
is a codi�able language.

2

Proposition 2.3 CO is not closed under union and general morphisms.

Proof. Consider the languagesL1 = f(ab)n(ba)njn � 0g; L2 = f(ba)n(ab)njn �
0g. The alphabet is � = fa; bg. The Parikh matrix mapping 	M is injective for
both languages, since for the order a < b we obtain:

	M ((ab)n(ba)n) = 	M ((ba)n(ab)n) =

0
@1 2n 2n2

0 1 2n
0 0 1

1
A

(for the reverse order the Parikh matrix mapping remains injective, see Propo-
sition 2.1).

But L1 [ L2 62 CO (see also Example 2.1).
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Now consider the language L = f(acb)n(bca)njn � 0g[f(bca)n(acb)njn � 0g
over the alphabet � = fa; b; cg. It is easy to see that L 2 CO. Let h be the
morphism de�ned by h(a) = a; h(b) = b; h(c) = �. Then h(L) = L1 [L2 62 CO.

2

Comment. The family CO is closed under intersection with arbitrary lan-
guages and the family NCO is closed under union with arbitrary languages.

From the above results it follows that:

Proposition 2.4 Let L1 2 CO; L2 2 NCO be two languages. Then:

L1L2 2 NCO; L1 � L2 2 CO; L2 � L1 2 NCO:

2

De�nition 2.2 Let � be a binary ordered alphabet. Two words �; � 2 �� are
called palindromicly amicable if the next two assertions hold:

(i) � = mi(�); � = mi(�), i.e., � and � are palindromes,
(ii) � and � have the same Parikh vector, i.e., 	(�) = 	(b).

For two words x; y 2 ��, we de�ne the relation �pa as follows:
x �pa y i� there are �; � 2 �+ palindromicly amicable such that x =

u�v; y = u�v, where u and v are words.
The reexive and transitive closure of �pa is denoted by ��

pa.
Note that the relation ��

pa is a congruence.
In [1], the following theorem is proved

Theorem 2.1 If x; y 2 ��, where � = fa < bg, then:

	M (x) = 	M (y) if and only if x ��
pa y:

2

If � is a word, then the equivalence class of � is denoted by �̂, i.e., �̂ =
f�j� ��

pa �g.
The class CO of codi�able languages can be divided into two subclasses:

(i) The class SCO of strong codi�able languages. A language L is in SCO i� for
any w 2 L; card(ŵ) = 1.

(ii) The classWCO of weak codi�able languages. A language L is in WCO i� for
all w 2 L with card(ŵ) > 1, it follows that ŵ \ L = fwg.

Example 2.2 The language L = fanbnjn � 0g is a strong codi�able language.
A word anbn has no other words palindromicly amicable to it. Thus, a matrix0
@1 n n2

0 1 n
0 0 1

1
A de�nes only one word in fa < bg�, namely anbn 2 L.

Also, all thin languages are strong codi�able.

2
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Example 2.3 The language L = faib2aj j0 � i � jg is weak codi�able. For
instance, if w = ab2a3, then ŵ = fab2a3; ba2ba2g, and thus:

	M (ab2a3) = 	M (ba2ba2) =

 
1 4 2
0 1 2
0 0 1

!
.

Note that ŵ \ L = fwg = fab2a3g.

2

Obviously, CO = SCO [WCO.

Conjecture: The family SCO contains only languages where the Parikh
vector mapping is injective.

It is not known yet whether there are languages over � that are strong
codi�able for a peculiar order on � and weak codi�able for another order.

2

3 Context-free languages and the Parikh matrix mapping

In this section we present some problems concerning context-free languages and
the Parikh matrix mapping.

Let � be an ordered alphabet with k letters and L � �� be a codi�able
context-free language. Thus:

(i) for each matrixX 2 Mk+1 there is at most one word w 2 L with 	M (w) = X
and

(ii) there is a context-free grammar G = (VN ; �; S; P ) with L(G) = L.

The following problem, (P1), is important: having a matrix X 2 Mk+1, Is
there a word w 2 L such that 	M (w) = X?

Note that the above problem (P1) is obviously decidable. For a given matrix
X 2 Mk+1, the set FX = 	�1

M (X) is a �nite set. Note that (P1) has a solution
if and only if L \ FX 6= ;. Since L is a context-free language, the last condition
is decidable.

In the sequel we present a di�erent method of a smaller complexity. The
method is based on the Earley algorithm.

We present the method only for the binary alphabet � = fa < bg. It is easy
to extend this method to the general case.

Note that each matrix X 2 M3, X =

 
1 i k
0 1 j
0 0 1

!
, is completely determined by

the vector (i; j; k). If X = 	M (�), where � 2 ��, then i = j�ja; j = j�jb; k =
j�jscatt�ab.

A generalised Earley con�guration is a quadruple:

[A �! �:�; n; (i; j; k); ]

where:
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{ A �! �� 2 P ;
{ 1 � n � i+ j;
{ (i; j; k) corresponds to a matrix from M3;
{  2 �� is a possible pre�x of w.

The algorithm enumerates the sets of all con�gurations Im (0 � m � i+j+1).
Its formal de�nition is:

Input:

A context-free grammar G = (VN ; fa; bg; S; P ) and a matrix:

X =

 
1 x z
0 1 y
0 0 1

!
2 M3:

The initial step (the construction of I0):

The set I0 contains the con�guration [S0 �! :$S; 1; (0; 0; 0); �], where S0; $ 62
VN .

The iterative step (the construction of Im+1; 0 � m � x+ y):

{ If [S0 �! :$S; 1; (i; j; k); ] 2 Im, then [S0 �! $:S; 1; (i; j; k); ] 2 Im, and
all its closures are introduced in Im+1.

{ For each con�guration [A �! �:a�; n; (i; j; k); ] 2 Im with i < x, the
new con�guration [A �! �a:�; n; (i + 1; j; k); a] and all its closures are
introduced in Im+1.

{ For each con�guration [A �! �:b�; n; (i; j; k); ] 2 Im with j < y and k+i �
z, the new con�guration [A �! �b:�; n; (i; j+1; k+i); a] and all its closures
are introduced in Im+1.

Note that there are two possible closures of a con�guration:

(i) If [A �! �:B�; n; (i; j; k); ] 2 Im+1, then [B �! :u;m + 1; (i; j; k); ] and
its closures will be added to Im+1, for all productions B �! u 2 P .

(ii) If [A �! �:; n; (i; j; k); ] 2 Im+1, then we enumerate all con�gurations
[B �! u:Av; p; (i1; j1; k1); 1] 2 In. For each such con�guration, we add to
Im+1 the con�guration [B �! uA:v; p; (i; j; k); ] and its closures.

The �nal step:

If [S0 �! $S:; 1; (x; y; z); w] 2 Ix+y+1, then w is the word from L with
	M (w) = X ; otherwise, for X there is no � 2 L such that 	M (�) = X .

Theorem 3.1 Assume that X =

 
1 x z
0 1 y
0 0 1

!
2M3. If there is a word w 2 L with

	M (w) = X, then [S0 �! $S:; 1; (x; y; z); w] 2 Ix+y+1; otherwise, Im+1 contains
no such con�guration.
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Proof. If one ignores the last two components of a con�guration in the con-
struction we made above, the original Earley algorithm is obtained. In this case
w 2 fa; bg�; jwj = n, is a word from L i� [S0 �! $S:; 1] 2 In+1.

The fourth component builds the new Parikh matrix after a new letter is
encountered. Namely, if the m-th letter is a, then: 

1 i k
0 1 j
0 0 1

! 
1 1 0
0 1 0
0 0 1

!
=

 
1 i+ 1 k
0 1 j
0 0 1

!
.

This means that (i; j; k) is transformed in (i + 1; j; k). If the integer i +
1 is greater than the number x of a from the �nal expected word, then this
con�guration fails.

In a similar way, if the m-th letter is b, then: 
1 i k
0 1 j
0 0 1

! 
1 0 0
0 1 1
0 0 1

!
=

 
1 i k + i
0 1 j + 1
0 0 1

!
.

This means that (i; j; k) is transformed in (i; j + 1; k + i). The condition
j + 1 � y is necessary to bound the number of b to a maximum y.

The last component of a con�guration keeps the last letter encountered (a or
b). If the algorithm succeeds, then the word w is found and its length is x+ y.

2

Corollary 3.1 If [A �! �:�; n; (i; j; k); ] 2 Im+1, then 	M () =

 
1 i k
0 1 j
0 0 1

!
.

2

Comment. Note that the above algorithm has the same complexity as the
Earley algorithm. Hence it is a deterministic polynomial time algorithm.

Example 3.1 Let us suppose that L = faibbaj j0 � i � jg 2 WCO is a context-
free language generated by the grammar with the rules:

S �! aSa; S �! Sa; S �! bb:

We solve the problem (P1) for the matrix X =

 
1 4 2
0 1 2
0 0 1

!
.

Thus, the sets of con�gurations I0; : : : ; I7, iteratively generated, are depicted
in Figure 1.

2
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I0 [S0 �! :$S; 1; (0; 0; 0); �]

I1

[S0 �! $:S; 1; (0; 0; 0); �]
[S �! :aSa; 1; (0; 0; 0); �]
[S �! :Sa; 1; (0; 0; 0); �]
[S �! :bb; 1; (0; 0; 0); �]

I2

[S �! a:Sa; 1; (1; 0; 0); a]
[S �! :aSa; 2; (1; 0; 0); a]
[S �! :Sa; 2; (1; 0; 0); a]
[S �! :bb; 2; (1; 0; 0); a]
[S �! b:b; 1; (0; 1; 0); b]

I3

[S �! a:Sa; 2; (2; 0; 0); aa]
[S �! :aSa; 3; (2; 0; 0); aa]
[S �! :Sa; 3; (2; 0; 0); aa]
[S �! :bb; 3; (2; 0; 0); aa]
[S �! b:b; 2; (1; 1; 1); ab]
[S �! bb:; 1; (0; 2; 0); bb]
[S0 �! :$S; 1; (0; 2; 0); bb]
[S �! S:a; 1; (0; 2; 0); bb]

I4

[S �! a:Sa; 3; (3; 0; 0); a3]
[S �! :aSa; 4; (3; 0; 0); a3]
[S �! :Sa; 4; (3; 0; 0); a3]
[S �! :bb; 4; (3; 0; 0); a3]
[S �! b:b; 3; (2; 1; 2); a2b]
[S �! bb:; 2; (1; 2; 2); ab2]
[S �! aS:a; 1; (1; 2; 2); ab2]
[S �! S:a; 2; (1; 2; 2); ab2]
[S �! Sa:; 1; (1; 2; 0); b2a]
[S0 �! $S:; 1; (1; 2; 0); b2a]
[S �! S:a; 1; (1; 2; 0); b2a]

I5

[S �! a:Sa; 4; (4; 0; 0); a4]
[S �! :aSa; 5; (4; 0; 0); a4]
[S �! :Sa; 5; (4; 0; 0); a4]
[S �! :bb; 5; (4; 0; 0); a4]
[S �! aSa:; 1; (2; 2; 2); ab2a]
[S �! Sa:; 2; (2; 2; 2); ab2a]
[S �! Sa:; 1; (2; 2; 0); b2a2]
[S �! aS:a; 1; (2; 2; 0); b2a2]
[S �! S:a; 1; (2; 2; 0); b2a2]
[S0 �! $S:; 1; (2; 2; 0); b2a2]
[S0 �! $S:; 1; (2; 2; 2); ab2a]
[S �! aS:a; 1; (2; 2; 2); ab2a]
[S �! S:a; 1; (2; 2; 2); ab2a]

I6

[S �! Sa:; 1; (3; 2; 2); ab2a2]
[S �! aSa:; 1; (3; 2; 0); b2a3]
[S �! Sa:; 1; (3; 2; 0); b2a3]
[S �! aSa:; 1; (3; 2; 2); ab2a2]
[S �! S:a; 1; (3; 2; 0); b2a3]
[S �! S:a; 1; (3; 2; 2); ab2a2]
[S0 �! $S:; 1; (3; 2; 2); ab2a2]
[S0 �! $S:; 1; (3; 2; 0); b2a3]
[S0 �! $S:; 1; (3; 2; 2); ab2a2]

I7

[S �! Sa:; 1; (4; 2; 2); ab2a3]
[S0 �! $S:; 1; (4; 2; 2); ab2a3]
[S �! S:a; 2; (4; 2; 2); ab2a3]
[S �! S:a; 1; (4; 2; 0); b2a4]
[S �! Sa:; 1; (4; 2; 0); b2a4]
[S0 �! $S:; 1; (4; 2; 0); b2a4]

Figure 1

Theorem 3.2 Let � = fa < bg be an ordered binary alphabet and consider
L � �� a context-free language. There exists a context-free attributed grammar
G such that, for each w 2 L, G computes the Parikh matrix 	M (w).

Proof. Let G0 = (VN ; �; S; P ) be a context-free grammar in the Greibach
normal form such that L(G0) = L. Since � is a binary alphabet, the rules from
P are of the form: A �! a�; A �! b�; A �! �, where �; � 2 ��.

Consider a new starting symbol S0 and the attributes na; nb; nab.
The rules from P are extended with the attributes as follows:
A �! a� na := na + 1;
A �! b� nb := nb + 1; nab := nab + na.
A �! � no attributes.
The �rst rule is:
S0 �! S na := 0; nb := 0; nab := 0.
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It is easy to see that after a leftmost derivation the result is:
S0 =)� w with jwja = na; jwjb = nb; jwjscatt�ab = nab.

2

Example 3.2 Consider the language L = fanbnjn � 0g that is generated by the
following context-free grammar in the Greibach normal form:

S �! aSBj�; B �! b
The attributed grammar is:
S0 �! S na := 0; nb := 0; nab := 0.
S �! aSB na := na + 1;
B �! b nb := nb + 1; nab := nab + na;
S �! �.
Consider the word aabb with the leftmost derivation:
S0 =) S(0;0;0) =) aSB(1;0;0) =) aaSBB(2;0;0) =) aaBB(2;0;0) =)
=) aabB(2;1;2) =) aabb(2;2;4).

Hence 	M (aabb) =

 
1 na nab
0 1 nb
0 0 1

!
=

 
1 2 4
0 1 2
0 0 1

!
:

2

Remark 3.1 Note that the grammar G is not necessarily an unambiguous gram-
mar.

Also, note that G is not an attributed grammar in the classical sense. How-
ever, one can de�ne an attributed grammar in the classical sense having the same
property.

4 Conclusion

We found new properties related to the injectivity of the Parikh matrix mapping.
However, most of these properties are proved for binary alphabets. It remains
to investigate which of these properties can be extended to alphabets with more
than two letters.
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