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��� A simultaneous multithreaded (SMT) processor is able to issue and execute 
instructions from several threads simultaneously. A SMT processor reaches its highest 
performance, when all issue slots are utilized by non-speculative instructions provided that the 
workload is sufficient. SMT processors are able to utilize their resources by executing 
instructions of multiple threads simultaneously, whereas single-threaded processors fill their 
resources with highly speculative instructions that must frequently be discarded due to 
misspeculations. Consequently, we explore speculation control in SMT processor models with 
the target to increase performance by restricting the number of in-flight speculative 
instructions. We vary the sizes of internal buffers, the instruction fetch bandwidth, the 
instruction selection strategies and branch prediction models with the target to increase 
performance of the simulated SMT processor models. 
Our results show (1) that retirement buffer sizes of 16 or 32 entries increase performance 
compared to smaller and to larger buffer sizes, (2) that the instruction fetch bandwidth can be 
decreased to two times four instructions per cycle without performance loss even for eight 
threaded eight issue processor models, (3) that an instruction selection strategy that 
discriminates speculative instructions in the fetch, decode, issue, and dispatch stages may 
increase overall performance, and (4) that a highly multithreaded processor with a sufficient 
workload may do without a branch prediction. 
 
���� ����� Simultaneous multithreading, SMT, multimedia extension, MPEG-2 video 
decompression, speculation control 
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Today’s superscalar processors are able to issue up to six instructions per cycle from a 
single sequential instruction stream [Silc et al. (99)]. VLSI technology will soon allow 
future microprocessors to issue eight or more instructions per cycle. However, ILP 
(instruction level parallelism) found in a conventional instruction stream is limited. 
Studies ([Bhandarkar and Ding 97], [Keeton et al. 98], [Barroso et al. 98]) show the 
limits of processor utilization even of today's superscalar microprocessors reporting 
IPC (instructions per cycle) values between 0.14 and 1.9. One solution to increase 
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performance is an additional utilization of more coarse-grained parallelism either by 
integrating two or more complete processors on a single chip or by using a 
multithreaded approach. A multithreaded processor is able to pursue multiple threads 
of control in parallel within the processor pipeline. The functional units are 
multiplexed between the thread contexts. Most approaches store the thread contexts in 
different register sets on the processor chip.  Switching to another thread masks 
latencies. A simultaneous multithreaded (SMT) processor, in particular, issues 
instructions from several threads simultaneously. It combines a wide-issue superscalar 
processor with multithreading. SMT approaches (see e.g. [Tullsen et al. 95, 96], 
[Sigmund and Ungerer 96], [Gulati, Bagherzadeh 96], or [Lo et al. 98]) are simulated 
and evaluated with multi-program workloads consisting of distinct programs 
(typically up to eight different SPEC benchmark programs executed together). Most 
of the simulations showed that an 8-threaded SMT is able to reach a two- to threefold 
IPC increase over single-threaded superscalar processors due to SMT’s latency 
tolerance. In consequence, recent announcements by industry concern a 4-threaded 
SMT Alpha processor of DEC/Compaq [Emer (99)] and the MAJC-5200 processor of 
Sun, which features two 4-threaded processors on a single die [Gwennap 99]. 

While SMT is well known for boosting performance of a multi-programming 
workload, much fewer investigations cover multithreaded workloads with threads that 
are created from single programs. Such investigations concern either automatically 
parallelizing a single-threaded program by the processor hardware (see e.g. [Dubey 
95], [Akkary 98], or [Tubella 98]) or hand parallelizing a single program into threads 
before executing it on an SMT processor simulator (see e.g. [Ortega 99] for 
SPECint95 benchmarks and [Pontius 99] for multimedia and signal processing 
applications). 

Our approach falls in the second category. Our goal is to evaluate SMT processor 
performance for a single program that has been made multithreaded for the SMT 
processor. We choose the MPEG-2 video decompression as example for multimedia 
workloads. We reported on optimizations for a maximum processor model with an 
abundance of resources in [Oehring et al. 99a] and on a more realistic processor 
model in [Oehring et al. 99b]. Other approaches ([Pontius 99], [Wittenburg et al. 99]) 
looked at the application of the SMT technique for signal processors, however 
without applying multimedia instructions. Still compilers do not handle multimedia 
instructions efficiently. Hand coding is the state-of-the-art of commercially successful 
video processing algorithms. Our group did such a hand coding when transferring a 
commercial MPEG-2 video decompression algorithm to our SMT multimedia 
processor model and programming the algorithm in multithreaded fashion. 

 In the following we present a study of speculation control for the SMT processor 
models with a multithreaded MPEG-2 decompression algorithm as workload. Studies 
on instruction fetch and issue strategies and on branch prediction impact (see [Tullsen 
et al. 96], [Hily and Seznec 96a, 96b, 99]) on SMT processors have been previously 
performed for a workload of unrelated programs of the SPEC92 or SPEC95 
benchmark suites assigning a distinct program to each thread slot in the SMT 
processor.  Impact of different branch prediction methods has also been investigated 
in [Hily and Seznec 96a, 96b] for parallel programs of the SPLASH-2 benchmark 
suite. Several branch predictors were compared with the result that a gshare predictor 
[McFarling 93] performs best for the single- as well as for the multithreaded 
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processor models. All studies show that less speculative instructions are in-flight in a 
SMT pipeline than in a comparable single-threaded processor pipeline. SMT is more 
tolerant to branch mispredictions than single-threaded processor models due to its 
ability to exploit inter-thread parallelism [Tullsen et al. 96]. Our study performs a 
deeper investigation of the potential techniques to increase performance by 
speculation control. We study in particular the impact of buffer sizes, instruction fetch 
bandwidth, instruction selection strategies from the various buffers, and branch 
prediction.  

In our processor model, speculation is only introduced by branch instructions, 
which are processed assuming static or dynamic branch prediction techniques. We do 
not elaborate our investigations to the use of value speculation. 

Section 2 introduces our workload, a MPEG-2 video decompression algorithm 
made multithreaded, and section 3 the basic processor model and simulator. Section 4 
explains the simulation results varying the retirement buffer and reservation station 
sizes (section 4.1), the impact of the fetch bandwidth (section 4.2), the instruction 
selection strategies for the fetch, decode, issue units, the dispatch from reservation 
stations, and the retirement units (section 4.3), and the branch prediction method 
(section 4.4). 

$���������	������
������%&'$�(����)������������	�������

The MPEG-2 video decompression can be partitioned into the following six steps: 
header decode, Huffman and run-length decode, inverse quantization, IDCT (inverse 
discrete cosine transform), motion compensation, and display. The steps 1 and 2 must 
execute sequentially. The steps 3 to 6 can be executed in parallel for all macro blocks 
(or even blocks in the case of quantization and IDCT) of a single image. The MPEG-2 
decompression is made multithreaded by splitting the task into a single parser thread, 
eight threads for macro block decoding, and an additional display thread. The parser 
thread executes the first two steps of the decompression and activates up to eight 
macro block decoding threads that perform steps three to five. The display thread 
transfers the decompressed images for display into the frame buffer (step 6). The 
average usage of the instructions assuming a local RAM storage for table look-up is 
given in Figure 1. 

The parallelization overhead consists of about 1% thread control instructions. The 
maximum performance of the decompression is bound by the sequential parser thread. 
Our studies show that the sequential part covers approximately 14% of the executed 
instructions (depending on the bit rate and size of the encoded material). This results 
in a theoretical speedup of at most seven compared to the sequential algorithm. This 
speedup is further restricted by the roughly 20% local load-/store instructions to 
approximately five, if a single local load-/store unit is assumed. 
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In our approach to combine simultaneous multithreading and multimedia processing 
we start with a wide-issue superscalar general-purpose processor model based on the 
6-stage pipeline of the PowerPC 604 [Song et al. 94], enhance it by simultaneous 
multithreading, further enhance it by combined integer/multimedia units and by on-
chip RAM memory. 
The SMT multimedia processor model (see Figure 2) features single or multiple 
instruction fetch (IF) and instruction decode (ID) units (one per thread), a single 
rename/issue (RI) unit, multiple, decoupled reservation stations, up to 10 execution 
units (four integer/multimedia units, a complex integer/multimedia unit, a branch unit, 
a thread unit, a global and one or  two local load/store units), a single retirement (RT) 
and write back (WB) unit, rename registers, a branch target address cache (BTAC), 
separate I- and D-caches that are shared by all active threads. Type and number of 
execution units are carefully chosen based on further simulations reported in 
[Sigmund 00]. 

The D-cache is a non-blocking 4-way set-associative write-back cache with write-
allocation. Loads and stores of the same thread are performed out of order unless an 
address conflict arises. The four integer/multimedia units share a single reservation 
station, which is able to dispatch four instructions per cycle; all other reservation 
stations are separate per execution unit. We employ thread-specific instruction buffers 
(between IF and ID), issue buffers (between ID and RI), and retirement buffers (in 
front of RT). Each thread executes in a separate architectural register set. However, 
there is no fixed allocation between threads and (execution) units. The pipeline 
performs an in-order instruction fetch, decode, rename/issue to reservation stations, 
out-of-order dispatch from the reservation stations to the execution units, out-of-order 
execution, and an in-order retirement and write-back. 
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The rename/issue stage simultaneously selects instructions from all issue buffers 

up to its maximum issue bandwidth (SMT feature). The integer units are enhanced by 
MMX-style multimedia processing capabilities (multimedia unit feature). We employ 
a thread control unit for thread start, stop, synchronization, and for I/O operations. We 
also employ a 32 KB local on-chip RAM memory (enough for constants and variables 
of the simulation workload) accessed by one or two local load/store units. Simulations 
without the on-chip RAM showed an IPC decrease of about 0.6 for all configurations 
(see [Sigmund 00]). 

We use the DLX instruction set enhanced by thread control and by multimedia 
instructions. In contrast to the simulations in [Oehring et al. 99a, 99b] which are based 
on static branch prediction, the simulations described below apply a dynamic branch 
predictor, in fact a two-level adaptive prediction with 2048 two-bit up-down counters 
and an 8 bit history using the gshare scheme [McFarling 93]. The misprediction 
penalty is 5 cycles. Up to 64 branch speculations per thread are possible 
simultaneously. 
Moreover we choose to fix the following parameters for all simulations:  

• 32-bit general-purpose registers (per thread),  
• a 1024-entry branch target address cache (BTAC),  
• 1024 rename registers,  
• a common reservation station for the integer units, 
• a 32-entry issue buffer per thread,  
• 4 MB main memory (enough to store the whole simulation workload), and 
• a 64-bit system bus.  
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The Karlsruhe SMT simulator KSMS [Sigmund 00] is an execution-based 
simulator that models all internal structures of the microprocessor model. Two 
different videos are used as data stream workload for the MPEG-2 algorithm. The 
simulator decompresses one to two seconds of video per simulator run. The produced 
picture frames can be visually and digitally analyzed to evaluate the correct working 
of the workload routine and the simulator. Recently the KSMS has been extended by 
a complexity estimation tool that allows to estimate the transistor count and chip-
space of simulated microprocessors based on the simulator’s configuration file 
[Steinhaus et al. 01a and 01b]. 

+������!��
��������	���

Our evaluations proceeded in two steps. First, we developed and optimized  
maximum processor models that included as many resources as a potential processor 
in years 2006 to 2009 on the basis of the SIA National Roadmap for Semiconductors 
prognosis [sematech 00]. Our transistor count of these models is a maximum of nearly 
300 M transistors per processor chip for the eight threaded eight issue model 
including the large I- and D-caches. Second, we optimized the configurations towards 
more realistic processor models with a resource capacity of up to 12.5 M transistors, 
which is less than contemporary processors utilize. The full experimental results are 
reported in [Sigmund 00]. Memory hierarchy issues are described in [Sigmund and 
Ungerer 00], the chip space and transistor count estimations in [Sigmund et al. 00].   

In this paper we focus on speculation control issues applying different 
“maximum” and “realistic” processor models. In the following sections our 
investigations vary: 

 
• the retirement buffer and reservation station sizes to control the number of 

speculative in-flight instructions (see section 4.1), 
• the impact of the fetch bandwidth (see section 4.2),  
• the instruction selection strategies for the fetch, decode, issue units, the 

dispatch from reservation stations, and the retirement units (see section 4.3), 
• the branch prediction method (see section 4.4). 
 
Each simulation setup consists of simulating one to eight threads and an issue 

bandwidth of one to eight (1, 2, 4, 6, and 8 in the figures). A x-threaded y-issue model 
is dubbed as (x, y)-model. 

+,"��#��
���!�-�!!�����.���

Our initial maximum processor configuration features an abundance of resources, in 
detail,  
 

• 4 MB I-cache,  
• 4 MB D-cache,  
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• a single local load/store unit, 
• 256-entry reservation stations,  
• an own result bus per execution unit,  
• 256-entry retirement buffers, 
• The instruction fetch unit is assumed as being able to fetch as many 

instructions as the configuration needed, e.g. up to eight by eight instructions 
per cycle in the 8-threaded 8-issue case. 

 
Figure 3 shows that a single-threaded processor reaches a maximum IPC of 1,76 

instructions per cycle (IPC) with nearly no IPC increase for the 6- and 8-issue models. 
We notice an IPC decrease for the 4-, 6- and 8-threaded models in the 6- and 8-issue 
cases. The (8, 8)-processor model reaches a disappointing IPC of 2.84 which is only 
78% of the IPC of the (8, 4)-model. One possible explanation for this IPC decrease of 
the high threaded high issue models is that single threads clog large parts of the 
common resources and prohibit the proceeding of instructions of other threads. 
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A look at the buffer fill levels for the configurations of Figure 3 showed an 
instruction overload of the processor by too many in-flight instruction in particular in 
the execution engine—the out-of-order sections of the pipeline. To restrict the number 
of in-flight instructions in the out-of order section of the pipelines we simulate models 
with retirement buffers of 32 entries (instead of 256) per thread next. 

Figure 4 shows that all multithreaded models profit from smaller retirement 
buffers (compared to Figure 3).  The performance gap of the 6- and 8-issue models to 
the 4-issue model is much smaller and disappears for the 4-threaded cases. 
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A further possibility to prevent single threads to occupy too many processor 
resources is to restrict the number of instructions with long latencies. A reason for a 
negative effect of large reservation stations for the load/store and thread control units 
may be the fact, that those instructions have a long latency, and typically two to three 
integer instructions as consumers. The effect is that the consuming integer 
instructions occupy space in the integer reservation station, thus blocking instructions 
from other threads from entering it.   
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This effect of buffer clogging is made even worse by store and thread control 
instructions that cannot be executed speculatively and remain in the respective 
reservation stations until branch resolution. We therefore restrict the reservation 
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stations of the global and local load-/store units and of the thread control unit to 32 
entries each. 

Figure 5 shows that our assumption is right. However, only a slight performance 
increase is reached, which is smaller than in the previous case.  

To find out how the combination of retirement buffer and load-/store reservation 
station sizes impact performance we simulated various combinations. 
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Figure 6 shows that a retirement buffer length of only 8 entries is too small, but 

16 to 32 entries per retirement buffer are enough to reach the maximum performance. 
The length of the load-/store reservation station is irrelevant for small retirement 
buffer sizes, but its importance grows when retirement buffer sizes are increased. 16 
to 32 entries for both buffer types yield the highest performance. The reason is again 
the reduced number of instructions that a single thread may send in the out-of-order 
parts of the pipelines. Thus non-speculative instructions are preferably executed. 

The following series of experiments focuses on processor models with more 
“realistic” memory hierarchy assumptions, in particular I- and D-caches of 64 KB 
each (instead of 4 MB) and a D-cache fill burst rate of more realistic 32:4:4:4 (instead 
of 6:2:2:2) processor cycles.   

The first experiment investigates again the impact of retirement buffer sizes and 
reservation station sizes (varying the sizes of the reservation stations in front of the 
integer and the local load/store units). 

Figure 7 shows (in accordance to Figure 6) that large retirement buffers decrease 
performance. Smaller buffer sizes are superior for the 8-threaded model which is in 
contrast to the single threaded case shown in Figure 8. 
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As expected the performance in the single-threaded model increases with the 
retirement buffer size because threads cannot block each other. A larger number of in-
flight instructions allows to fill more issue slots in the single-threaded model, in 
contrast to the multithreaded models, that find enough instructions to issue and where 
more in-flight instructions of each thread may lead to blocking of useful instructions. 
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For the following simulations we choose multithreading-friendly models with 32 
entry reservation stations and 16 entry retirement buffers, which slightly penalizes the 
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single-threaded case (for additional simulations of the single-threaded friendly models 
with 16 entry reservation stations and 32 entry retirement buffers see [Sigmund 00]).  
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Another attempt to lessen the overload of the processor is to restrict the instruction 
fetch bandwidth assuming that the overload is caused by the scaling of the fetch 
bandwidth with the issue and thread bandwidth (8*8=64 instructions are fetched in 
the (8, 8) model). In models with 2*8 or even 2*4 fetched instructions per cycle, less 
instructions are fetched in the buffers, which may lessen the blocking of instructions 
of single threads.  

The following experiments look at the realistic processor models assuming the 
multithreading friendly variant of 16 entry retirement buffers and 32 entry reservation 
stations is shown in Figure 9. 
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Figure 9 shows the number of fetch units in relation to the number of threads. It 

shows that two to eight fetch units with 4 instructions each yield roughly the same 
performance. The fetch bandwidth has only a negligible performance impact. This 
may be because the number of fetched instructions is still higher than the number of 
executed instructions, keeping the buffers always full. Only the model with a single 
fetch unit shows a performance decrease caused by an underutilization of the pipeline 
units (except for the single threaded case). 

Figure 10 shows the ratio of fetched to executed instructions (left) and the ratio of 
decoded to executed instruction (right). The figure shows that the number of 
unnecessarily fetched instructions increases with a higher number of fetch units, but 
this increase disappears already before the decode unit. That is why the number of 
fetch units has no impact on the IPC. 
 

858 Sigmund U., Ungerer T.: On Speculation Control ...



1

4

8

1
2

4
68

1,41

1,41

1,40

1,33

1,15

1,40

1,40

1,40

1,33

1,15

1,40

1,40

1,40

1,36

1,16

1,38

1,38

1,38

1,38

1,27

1,36

1,36

1,36

1,36

1,36

1,0

1,2

1,4

1,6

1,8

Instructions 
Fetched / 
Executed

Fetch Units

Threads

1

4

8

12468

1,14

1,14

1,14

1,12

1,04

1,14

1,14

1,14

1,12

1,04

1,14

1,14

1,14

1,13

1,05

1,13

1,13

1,13

1,13

1,09

1,11

1,11

1,11

1,11

1,11
1,0

1,2

1,4

1,6

1,8

Instructions 
Decoded / 
Executed

Fetch Units

Threads
 

�

��������0	�.��/��������������������������������������*$�������������!������������
����!������������������

 

Additional simulations based on the “initial maximum processor models” of 
Figure 3 with 2*8 fetched instructions per cycle lead to the same observation except 
for a slight performance increase of 0.1 IPC in the high threaded models and a 
performance decrease for the single-threaded models. The latter case is because of the 
overload of the single-threaded pipeline by more speculative instruction, which are 
fetched by the two-fold fetch bandwidth compared to the previous simulations. 
Additional simulations that compare 2*8 and 2*4 fetches show that the number of 
fetched instructions decreases with 2*4 fetches, but the number of decoded instruction 
remains nearly the same. The number of instructions fetched per cycle and per unit 
can be reduced to four without performance impact if the number of fetch units is at 
least two. 

+,*� ����!�-�!!�����	���������
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Our next investigations regard different thread selection strategies. [Tullsen et al. 96] 
examined instruction fetch policies that give highest fetch priority to the threads that 
are least likely to be on a wrong path (BRCOUNT), have the fewest outstanding data 
cache misses (MISSCOUNT), have the fewest instructions in the decode, rename and 
queue pipeline stages (ICOUNT), and a policy that penalizes threads that have the 
oldest instructions in integer and floating-point queues (IQPOSN). The combining 
strategies ICOUNT and IQPOSN perform better than the strategies that evaluate only 
a single cause (BRCOUNT and MISSCOUNT), and all are better than the basic 
round-robin policy. Issue selection policies like branch-first or speculative-
instructions-last showed no significant improvement over the basic oldest-instruction-
first policy. 

We modified Tullsen et al.’s experiments by additionally controlling the decode, 
the issue, the dispatch from reservation stations, and the retirement due to the three 
different parameters thread priority, speculation depth, and saturation of the (per 
thread) issue and retirement buffers. Up to now we applied a simple round robin 
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strategy, whereby instructions are selected in round robin fashion per thread. We 
devised three more strategies: highest-priority-thread-first, non-speculative-
instructions-first (similar to BRCOUNT), and non-saturated-first (similar to 
ICOUNT). Highest priority is given to the parser thread.1 All three strategies were 
subsequently applied to the fetch, the decode, the issue, the dispatch from reservation 
stations, and the retirement stages.  
 

0 Round Robin Instructions are selected for retirement in round robin 
fashion per thread. 

1 Priority Instructions of threads with high priority are preferably 
retired. In our workload we give highest priority to the 
single parser thread. 

2 Saturated Threads with a high number of instructions in their 
retirement buffers are preferred.  

�
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0 Round Robin Instructions are selected in round robin fashion per 
thread. 

1 Priority Instructions of threads with high priority are preferred. 
In our workload we give highest priority to the single 
parser thread. 

2 Speculative Non-speculative instructions are preferred. 

3 Saturated Threads with a high number of instructions in their 
retirement buffers are discriminated. 
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Figure 11 shows the (8, 8)-configuration with configuration parameters of a 

realistic processor, however assuming eight fetch units with a four instructions per 
cycle fetch each such that instruction fetch is not a bottleneck. Inspecting the selection 
strategies for this configuration shows a performance increase for the priority 
strategy, if applied to the fetch, decode and issue stages; however for retirement the 
simple round-robin strategy performs best.  
 

                                                           
1 Tulsen et al’s workload consisted of up to 8 different SPEC92 programs that are 
simultaneously active in 8 thread slots. The priority scheme makes only sense when the 
dependences between the threads can be taken into account which is only possible with threads 
that originate from a single program. 
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To validate this observation we investigate the impact on the realistic processor 
model with only two instruction fetch and decode units in Figure 12. 
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Because of the restricted fetch bandwidth the models show an increased 
performance of the speculation-restricted strategy for fetch, decode and issue. Further 
simulations (see [Sigmund 00]) justify the impression that for realistic processor 
models the speculation-restricting strategy (non-speculative-instructions-first) is the 
best choice, whatever combination of retirement buffer and reservation station sized 
are used. 
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In our MPEG-2 decompression algorithm we observed two main patterns of branch 
behavior: 

• loops with a fixed number of interactions, 
• branches with data dependent branch conditions which are hard to predict. 
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Our next set of experiments is based on processor configurations, which reached 

the highest throughput in our simulations. Figure 13 shows the performance of 
processor models with the two-level adaptive branch prediction and with a simple 
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static prediction (backward branches predict taken, forward branches predict not 
taken). Figure 14 shows the IPC ratio of static versus dynamic branch prediction in 
percentage and the simulation parameters. 

Multithreaded processors with low issue bandwidth suffer less or not at all, but 
the performance decreases get more dramatic with higher issue bandwidths. In 
particular the (6,8)- and (8,8)-models suffer most which demonstrates that 
multithreaded processors with a high number of resources may profit from a good 
branch prediction. More “realistic” models are investigated below. 

The following simulations are based on a realistic processor model with a long 
memory access bandwidth of 32:4:4:4:4:4:4:4, which has been shown to improve 
memory bandwidth and thus performance of a processor with a realistic memory 
hierarchy.  
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The IPC values in Figure 15 and the relative IPC decrease given in Figure 16 
show a performance decrease for all configurations with static branch prediction. 
Figure 16 shows—as seen before for the maximum models—that the multithreaded 
models suffer less by a worse branch prediction. However, the performance decrease 
is so significant that a renunciation of the dynamic branch prediction is not advisable. 
This complies with the observations of [Hily and Seznec 96a, 96b]. 
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An interesting remaining question is the potential performance impact by a total 
abandonment of branch prediction. If instruction fetching for a thread is blocked after 
decoding of a branch instruction until branch resolution, we yield the IPC and the 
relative IPC decrease given in Figure 17. 
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A significant performance decrease is observed for the single-threaded models. 
Comparing the relative IPC decreases shows that the single-threaded configurations 
suffer about 20% performance decrease. The multithreaded configurations gain up to 
6% by renouncement of a branch prediction. This is a significant clue that speculation 
may be harmful to the performance of a multithreaded processor, because resources 
which are occupied by speculative instructions cannot be utilized for non-speculative 
instructions of other threads. 
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This is also in particular interesting concerning not IPC but power consumption. 
Because executed instructions of a wrong branch path consume unnecessarily power, 
multithreading without speculative execution after branches could guarantee high 
performance with lower power consumption, thus reaching a better ratio of executed 
instructions to power consumption (see also [Seng et al. 00]). Such a 
microarchitecture technique is technology independent and can be combined with 
most other kinds of power reduction mechanisms. 

1� ���	������

We simulated various SMT multimedia processor models using a hand-coded 
multithreaded MPEG-2 video decompression algorithm as workload. We see that 
multithreading is very effective if the issue bandwidth is at least four. In particular the 
two and four-threaded models lead to a high performance increase in the multiple-
issue models. There is little improvement for the single-threaded (the contemporary 
superscalar case) and the two-threaded models when issue bandwidth is increased 
from 4 to 8. Our architectural optimizations targeted speculation control by fetch 
bandwidth and buffer size restrictions, by instruction selection strategies, and by 
renouncing branch speculation. The simulation results concerning speculation control 
are summarized as follows: 

• The retirement buffers of a SMT processor should be small—about 16 to 32 
entries per thread—to prevent single threads from blocking of resources. 
However, a larger retirement buffer improves performance of the single-
threaded processor models, and of the SMT processor if the workload is 
insufficient (e.g. only a single thread) to utilize all resources. The 
consequence could be a dynamic solution that restricts the number of 
retirement buffer entries if a SMT processor is fully loaded with threads and 
increases the number in case of a low workload in the SMT processor, 
yielding a higher performance in the “single-threaded” mode.  

• An instruction selection strategy that discriminates speculative instructions 
in the fetch, decode, issue, and dispatch from reservation station stages 
increases overall performance. 

• Dynamic branch prediction is effective also for SMT processors. The 
multithreaded processor is able to bridge latencies caused by branch 
mispredictions, however, the throughput of the whole workload decreases if 
wrong-path instructions are executed. A worse branch prediction increases 
the number of wrong-path instructions in all processor models. 

• On the other hand a highly multithreaded processor with a sufficient 
workload may do without a branch prediction at all. In few configurations 
this may even reach a better performance than with branch speculation. But 
if a branch speculation is used an excellent prediction method is preferable. 

• If low power consumption is the main target of a processor design, then 
multithreading in conjunction with speculation control or even total 
abandonment of branch prediction could be a design paradigm. Because 
executed instructions of a wrong branch path consume power, multithreading 
without speculative execution after branches may yield a better ratio of 
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executed instructions to power consumption. If the workload is sufficiently 
multithreaded and the overall performance is more important than single-
thread performance, then this combination will be cost-effective in relation 
to power-consumption and reach the same or an only slightly smaller 
performance than the more speculative version. 

Our investigations showed that aggressive speculation can harm the performance 
of an SMT processor. The reason is that resources that are filled by speculative 
instructions in a single-threaded processor are utilized more effectively by executing 
instructions of other threads in an SMT processor.  

Multithreaded processors will hit the market in a couple of years. It is therefore 
important to investigate how single applications can be made multithreaded to profit 
from the new microarchitectural feature. We showed that a MPEG-2 video 
decompression algorithm can be made multithreaded to provide an excellent 
workload for an up to 8-threaded 8-issue SMT processor that expensively uses up to 4 
multimedia units. Our processor models are specifically tailored to the characteristics 
of our multithreaded MPEG-2 algorithm. We assume that other multimedia 
applications feature similar characteristics. So further investigations could be done in 
the area of audio and video compression and decompression as well as 3D image 
processing. For our investigations about speculation control we would welcome more 
research with different workloads. Other workloads might favor a different 
configuration, in particular, if the workload consists of unrelated threads of control 
that do not share any data. 
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