
An Abstract State Machine Specification and Verification

of the Location Consistency Memory Model

and Cache Protocol

Charles Wallace
(Computer Science Dept.,

Michigan Technological University, Houghton, MI, USA
wallace@mtu.edu)

Guy Tremblay
(Dépt. d’informatique,

Université du Québec à Montréal, Montréal, QC, Canada
tremblay@info.uqam.ca)

José N. Amaral
(Computing Science Dept.,

University of Alberta, Edmonton, AB, Canada
amaral@cs.ualberta.ca)

Abstract: We use the Abstract State Machine methodology to give formal operational
semantics for the Location Consistency memory model and cache protocol. With these
formal models, we prove that the cache protocol satisfies the memory model, but in
a way that is strictly stronger than necessary, disallowing certain behavior allowed by
the memory model.
Key words: Requirements/Specifications, Multiprocessors, Shared Memory, Cache
Memories
Categories: B.3.2, C.1.2, D.2.1

1 Introduction

A shared memory multiprocessor machine is characterized by a collection of
processors that exchange information with one another through a global address
space [Adve and Gharachorloo 95, Culler et al. 99]. In such a machine, proces-
sors access memory locations concurrently through standard read and write in-
structions. Shared memory machines have various buffers where data written by
a processor can be stored before it is shared with other processors. Thus, mul-
tiple values written to a single memory location may coexist in the system. For
instance, the caches of various processors might contain different values written
to the same location.

The programs running on a shared memory machine are affected by the order
in which memory operations are made visible to processors (which previous write
operations are currently visible). A memory consistency model is a contract
between a program and the underlying machine architecture that constrains the
order in which memory operations appear to be performed with respect to one
another (i.e., become visible to processors) [Culler et al. 99]. By constraining the
order of operations, a memory consistency model determines which values can
legally be returned by each read operation. The implementation of a memory

Journal of Universal Computer Science, vol. 7, no. 11 (2001), 1088-1112
submitted: 7/6/01, accepted: 1/10/01, appeared: 28/11/01 Springer Pub. Co.

consistency model in a shared memory machine with caches requires a cache
protocol, that invalidates or updates cached values when they no longer represent
legal readable values.

The most common memory consistency model, sequential consistency (SC)
[Lamport 79], ensures that memory operations performed by the various proces-
sors are serialized (i.e., seen in the same order by all processors). This results in
a model similar to the familiar uniprocessor model. A simple way to implement
SC on a shared memory multiprocessor is to define a notion of ownership of a
memory location and to require a processor to become the owner of a location
before it can update its value. The serialization of memory operations is obtained
by restricting ownership of a location to one processor at a time.

Under the SC model, there is always a unique most recent write to a lo-
cation. All other values stored in the system for that location are not legally
readable and must be either invalidated or updated. Thus a major drawback
of SC is the high level of interprocessor communication required by the cache
protocol. Because of the requirement that all write memory operations be seri-
alized, the SC model is quite restrictive and is thus said to be a strong memory
model. Weaker memory models have been proposed to relax the requirements
imposed by SC. Examples include release consistency [Gharachorloo et al. 90],
lazy release consistency [Keleher et al. 92], entry consistency [Bershad et al. 93],
DAG consistency [Blumofe et al. 96], and commit, reconcile and fences (CRF)
[Shen et al. 99]. Relaxed memory models place fewer constraints on the memory
system than SC, which permits more parallelism and requires less interprocessor
communication but complicates reasoning about program behavior.

All these models have the coherence property. In a coherent memory model,
all writes become visible to other processors, and all the writes in the system
are seen in the same order by all processors. In 1994, Gao and Sarkar proposed
the Location Consistency (LC) memory model [Gao and Sarkar 94], one of the
weakest memory models proposed to date. LC is the only model that does not
ensure coherence. Under LC, memory operations performed by multiple proces-
sors need not be seen in the same order by all processors. Instead, the content
of a memory location is seen as a partially ordered set of values. Because LC
allows the coexistence of multiple legal values to the same location, there is no
need to invalidate or update remote cached values. Hence the LC model has the
potential to reduce the consistency-related traffic in the network.

In their more recent paper [Gao and Sarkar 00], Gao and Sarkar describe
both the LC memory model and a cache protocol, the LC cache protocol, that
implements the LC model. They describe the LC model in terms of an “abstract
interpreter” that maintains the state of each memory location as a partially
ordered set of values, thus defining the set of legal values for a read operation.
The LC cache protocol is designed for a machine in which each memory location
has a single value stored in main memory and each processor may cache values
for multiple locations.

An important requirement of a cache protocol is that the resulting ma-
chine behavior be allowed by the corresponding memory model. Gao and Sarkar
present a proof that the cache protocol satisfies the memory model. However,
their description of the memory model is based on an ad hoc operational seman-
tics notation that is not rigorously defined. The description of the cache protocol
is entirely informal and leaves some important assumptions unstated.

In this paper, we specify the LC memory model and the LC cache protocol

1089Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

using the ASM approach [Gurevich 95]. We use the original descriptions by Gao
and Sarkar as the basis for our models, making explicit some of the assumptions
present in the original descriptions. We then prove that the LC cache protocol
correctly implements the LC memory model, i.e., for a machine that implements
the cache protocol, every read operation returns a legal value according to the
memory model. In addition, we show that the LC cache protocol is strictly
stronger than the LC memory model, i.e., there are legal values according to the
memory model that cannot be returned under the cache protocol.

Our specifications of the LC memory model and of the LC cache protocol
are similar in that they refine a common (top-level) specification. In [Section 2]
we define the common portions of the two models, producing a model LC0. In
[Section 3] we refine this model to arrive at a model LCmm of the LC memory
model. In [Section 4] we make different refinements, resulting in a model LCcp of
the LC cache protocol. In [Section 5] we prove that LCcp is an implementation of
LCmm. In [Section 6], we prove that LCcp is in fact strictly stronger than LCmm.
Finally, in [Section 7], we present related work and we conclude in [Section 8]
with directions for future work.

2 Shared Memory System and Memory Operations

In a shared memory machine, processors can reference a shared set of memory
locations, organized in a global shared address space, using the same operations
they use to access their local memory. Although it may appear intuitive to think
that each shared memory location holds a single value at any given time, cache
memories provide multiple places to store values for a single location. Thus, at
any given time, multiple values may be simultaneously associated with the same
memory location.

A processor can perform four types of operation on a memory location:

– A read retrieves a value associated with a location, possibly storing it in
some area local to the processor.

– A write adds a value to the set of values associated with the location. In any
real system, the number of places available to store the values associated
with a location is finite. Therefore, a side effect of a read or write operation
is that a value previously associated with a given location may no longer be
available in the system.

– An acquire grants exclusive ownership of a location to a processor.1 The
exclusive ownership of a location imposes a sequential order on processor
operations. Hence when it is useful to have a unique global “most recent
write” to a location, such write can be defined as the most recent write by a
processor that owned the location at the time of the write. When acquiring
a location, a processor updates its own state by discarding any old value it
has stored for the location.

– A release operation takes exclusive ownership away from a processor. Any
processor attempting to acquire a location currently owned by another pro-
cessor must wait until the location is released by its current owner. If the

1 In SC, only a processor that owns a location may perform a read or write on it. On
the other hand, although LC has a notion of exclusive ownership, it allows processors
without ownership to perform reads and writes.

1090 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

releasing processor has written to the location, the release operation has
the additional effect of making the value of its most recent write available
to other processors. In this way, a processor that subsequently acquires the
location will have access to the value of the global “most recent write”.

Gao and Sarkar do not speak of acquire and release operations separately; rather,
they speak of acquire-release pairs of operations. Thus it is assumed that a
processor must gain ownership of a location through an acquire before releasing
that location.

The model of the LC memory model (LCmm) in [Section 3] and the model
of the LC cache protocol (LCcp) in [Section 4] both require formalizations of the
notions discussed above. In the rest of this section, we define a higher-level model
LC0 to represent these notions in a generic way. LC0 models only the general
control flow associated with the execution of the memory operations, including
the waiting associated with an acquire operation. In this initial model, the flow
of data is ignored. Later, we refine LC0 to the models LCmm and LCcp, adding
details appropriate to each of these models (partial order of operations vs. cache
information).

LC0: Universes and Agents

In this section, we present the universes used in all our ASM models. We assume
that the multiprocessor system has a fixed set of processors, a fixed set of memory
locations, and a fixed set of data values. These sets are represented in LC0 as the
Processor, Location and Value universes, respectively. We also define an OpType
universe, comprising the four types of operation: read, write, acquire, and release.

A distributed computation in ASM is modeled as a multi-agent computa-
tion in which agents execute concurrently and where each agent performs a
sequence of state transformations. In modern multiprocessors, a single processor
may perform operations on different locations concurrently. Multiple processors
may also perform concurrent memory operations, either on the same location
or on different locations. On the other hand, a given processor cannot perform
multiple concurrent memory operations on a given location. Therefore, in our
abstract model, for each processor P and for each location � there is a unique
agent whose task is to perform operations on � on behalf of P . We call such
agents processor agents and we define a universe ProcAgent accordingly. Later,
we complete the definition of LC0 by introducing two more universes of agents:
InitAgent (initializer agent) and OwnAgent (ownership agent).

LC0: Processor Agents

A processor agent is characterized by the attributes loc and proc: loc is the
location on which the agent performs actions, and proc is the processor on behalf
of which the agent acts. Both attributes have fixed values; thus they are modeled
as static functions.

Associated with each ProcAgent are some attributes whose values may change
during an execution, thus are modeled as dynamic functions. For instance, the
attribute opType indicates the type of operation that the agent is to perform
in the current step. Some operations may take multiple steps; for instance, a
processor agent performing an acquire operation on a location may need to

1091Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

Function Profile
p.loc ProcAgent → Location
p.proc ProcAgent → Processor
p.opType ProcAgent → OpType
p.nextOpType ProcAgent → OpType
p.waiting? ProcAgent → Boolean
p.writeVal ProcAgent → Value

Table 1: Attributes of ProcAgents.

wait for another processor agent to release ownership of that location. When the
current operation is completed, the processor agent updates its opType attribute.

The type of the next operation that the agent is to perform is given by the
attribute nextOpType, an external (a.k.a. monitored) function, whose interpre-
tation is determined by the environment. In contrast, the attribute opType is
updated by agents (and never by the environment), so it is called a dynamic
internal function (or controlled) function.

The attribute waiting? (a controlled function) determines whether a proces-
sor agent is waiting for ownership of its location (as the result of an acquire
operation). If a processor agent is unable to gain ownership immediately, it sets
its waiting? attribute to true. Finally, the monitored function writeVal, provides
the value written by a write operation. This function is not used in LC0 but is
used in both LCmm and LCcp.

In [Table 1], we present the attributes for the processor agents with their
profile (their signature)).

LC0: Initializer Agents

A question arises regarding the initial status of each location: If a processor
agent reads from a location that has never been written to, it is not clear what
the result should be. We avoid this complication by ensuring that each location
is properly initialized before the processor agents start to perform operations on
it. For each specific location, this task is handled by an InitAgent (“initializer
agent”). Since the details (attributes and transition rules) of these agents are
straightforward, we omit them. Note that we assume that each location has
an initialized? attribute that is set to true once the appropriate InitAgent has
completed.

LC0: Ownership Agents

A processor agent can gain ownership only if there are no other processor agent
that currently owns the location. If another agent does own the location, the
agent wishing to acquire must wait. There may be multiple processor agents wait-
ing for ownership of the same location. The decision as to which agent is granted
ownership is beyond the control of any processor agent and the arbitration policy
is not of interest to our specification. Therefore we define the OwnAgent universe
whose members have the responsibility of arbitrating ownership of locations and
we associate a unique OwnAgent with each memory location.

1092 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

Function Profile
o.loc OwnAgent → Location
�.owner Location → ProcAgent
�.nextOwner Location → ProcAgent

Table 2: Attributes of OwnAgents and Locations.

Since each ownership agent deals with a single location, each OwnAgent has
a (static) loc attribute. Each location also has an owner attribute, indicating
which processor agent (if any) currently owns the location. When a processor
agent releases a location, there may be other processor agents waiting to gain
ownership. The monitored (oracle) function nextOwner indicates the next proces-
sor agent selected to receive ownership of the location. This monitored function
is consulted by the OwnAgent. The profile for these attributes are presented in
[Table 2].

Terminology

We introduce the following terminology for agents and actions in runs of any of
the model.

Definition If a ProcAgent p makes a move Rd at which p.opType = read, we
say that p performs a read (or simply reads) at Rd. (Similarly for
write.)

Definition If a ProcAgent p makes a move A at which p.opType = acquire and
p.loc.owner = p, we say that p performs an acquire (or simply ac-
quires) at A. (Similarly for release.)

LC0: Conditions on Runs

Some aspects of our models LC0, LCmm and LCcp are outside the control of the
ASM transition rules. First, our static functions must have certain properties.
We restrict attention to runs in which the following conditions are true of the
static functions loc and proc:

Static condition 1 For every Processor P and for every Location �, there is a
unique ProcAgent p for which p.proc = P and p.loc = �.

Static condition 2 For every Location �, there is a unique InitAgent i for which
i.loc = �.

Static condition 3 For every Location �, there is a unique OwnAgent o for
which o.loc = �.

Second, certain conditions must be true in the initial state of any run. We restrict
our attention to runs in which the following conditions are true initially:

1093Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

Init condition 1 For every Location �, �.owner.undef? and not �.initialized?.

Init condition 2 For every ProcAgent p, not p.waiting?.

Also, the monitored function nextOwner must produce “reasonable” values at
every move of any run: Only a processor agent currently waiting to obtain own-
ership on the location should be granted ownership. Thus we restrict attention
to runs in which the following condition is met at every move:

Run condition 1 For every Location �, if �.nextOwner.def?, then
�.nextOwner.loc = � and �.nextOwner.waiting?.

Finally, in order to remain faithful to Gao and Sarkar’s description, we restrict
our attention to runs in which acquires and releases come in matching pairs.

Run condition 2 If a ProcAgent p acquires at a move Ap and releases after
Ap, then there is a move Rp after Ap at which p releases such that p does not
acquire in (Ap, Rp).

Run condition 3 If a ProcAgent p releases at a move Rp, then there is a move
Ap before Rp at which p acquires such that p does not release in (Ap, Rp).

LC0: Processor Agent Module

The behavior of a processor agent is presented as an ASM module in [Figure 1],
where the general behavior is as follows: based on the current opType, the actions
specified by an appropriate abstract rule (Read , Write, Acquire, or Release) are
performed. These rules are redefined in [Section 3], giving us a complete ASM
model LCmm. A different set of definitions for these same rules then appears in
[Section 4], resulting in a distinct ASM model LCcp.

A ProcAgent may begin performing operations only when its associated lo-
cation has been initialized. While an operation is executed, the operation to
be performed in the next step is obtained through the rule Get next operation ,
which simply consults the environment to determine what should be done next.
Note that a processor agent may update its opType attribute to undef. In this
case, it temporarily stops performing memory operations but continues to ex-
ecute its program, executing Get next operation until the resulting opType is
“well-defined” (non-undef).

The acquire case is slightly different because a processor agent must first wait
for ownership of the location. Thus, execution of the ProcAgent module with
opType = acquire does not change opType until the location has been acquired
(i.e., Self.loc.owner = Self). As for the release case, it is Run Condition 3 that
ensures that the releasing agent indeed has ownership of the location, so it is
correct to release ownership (i.e., update Self.loc.owner to undef).

1094 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

module ProcAgent:
if Self.loc.initialized? then

case Self.opType of
read: Read
write: Write
acquire: Acquire
release: Release
undef: Get next operation

rule Read :
Get next operation

rule Write:
Get next operation

rule Acquire:
if Self.loc.owner �= Self then Self.waiting? := true
else Get next operation

rule Release:
Self.loc.owner := undef
Get next operation

rule Get next operation :
Self.opType := Self.nextOpType

Figure 1: Module for processor agents (ProcAgent).

module OwnAgent:
if Self.loc.owner.undef? and Self.loc.nextOwner.def? then

Self.loc.nextOwner.waiting? := false
Self.loc.owner := Self.loc.nextOwner

Figure 2: Module for ownership agents (OwnAgent).

LC0: Ownership Agent Module

The module for ownership agents is given in [Section 2]. If the location asso-
ciated with the agent currently has no owner and nextOwner is defined, then
according to Run Condition 1, the processor agent indicated by nextOwner is
currently waiting to gain ownership of the location. Therefore the ownership
agent grants ownership to the processor agent, updating its waiting? status to
false and making it the owner. Note that the waiting? attribute’s only role is to
allow this interaction with the OwnAgent: once a ProcAgent updates its waiting?
attribute to true, only the appropriate OwnAgent can update it to false. The
same is true of the owner attribute: once an OwnAgent updates it to a particular
ProcAgent p, only that ProcAgent can change it (when releasing the location).

1095Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

3 The LC Memory Model

In the previous section, we described a generic framework — in terms of abstract
Read , Write, Acquire and Release rules — that provides the top-level descrip-
tion of both the memory consistency model (LCmm) and the cache protocol
model (LCcp). In this section we present a complete specification for the LC
model, LCmm, by defining the transition rules according to the memory model
specifications.

The state of a memory system is determined entirely by the operations that
have been performed upon the system. Following [Gao and Sarkar 00], we view
the state of a memory system as a history of events (i.e., instances of operations)
that modify the memory system state. These events are organized according to
a partial order relation. The following information is recorded for each event: its
type (read, write, acquire, release), the agent that generated it (its issuer), and
the location on which it was performed.

Events are temporally ordered by a relation ≺. Each processor must act as if
it observed the events in an order compatible with ≺. When a processor performs
an operation, an event is added to the history, and ≺ is updated accordingly.
In practice, the memory system does not maintain such a history, but this view
is useful for thinking of consistency models in an implementation-independent
way. How ≺ is updated depends on the consistency model adopted. For instance,
SC would require a total order of events, common to all processors. On the other
hand, in a relaxed model like LC, a partial order is sufficient.

For any memory model, a key question is: what value should be returned
when a processor performs a read? For a strong memory model, there is a unique
value to be returned, the value written by the most recent write operation.
However, when a weaker memory model is used, there may be more than one
value associated with a single location at a given time. In such models, a read
operation is thus associated with a set of values.

A specification of a memory consistency model can thus be characterized by
two main features:

– What is the precedence relation between a new event and other events al-
ready recorded in the history?
In the case of LC, this question is answered as follows. A new write, acquire,
or release event e by a processor agent p on a location � is ordered so that it
succeeds any event already issued by p on �. In other words, the set of events
by p on � is linearly ordered. Furthermore, since the history is a partial order
and ≺ is transitive, the new event also succeeds any event e′ ≺ e, including
events issued by other processor agents.
In the case of a new acquire event a, the partial order is updated further.
The latest release event issued on � (by any processor agent)2 precedes a,
along with any events that precede that release. This release could have been
issued by any processor agent, not necessarily the issuer of the new acquire.
Hence, it is through acquires that events issued by different processor agents
are ordered.

2 Note that there is at most one latest release for � at any given time, since (as pointed
out in [Section 2] and formalized by Run Condition 3) a processor agent only releases
� if it has (exclusive) ownership of �. Moreover, for each location the initializer agent
also issues a release.

1096 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

– Which values are associated with a new read event?
In LC, when a processor agent p issues a read on a location �, any write
event on � that has not been “overwritten” by another write event has its
value associated with the new read event. We formalize this notion as follows.
Let e be the last event issued by p; then according to the LC model, write
event w is readable by p if and only if there is no write event w′ such that
w ≺ w′ � e. This can be true of a write event w in either of the following
ways:
• If w precedes e and w is “recent” in the sense that there is no intervening

write event between w and e, w’s value is readable.
• Alternatively, if w is simply unordered with respect to e, w’s value is

also readable.3

Our specification differs from Gao and Sarkar’s description in a few respects.
First, we model a read as a single-step operation and we do not place read
events in the history. Second, our rules ensure that ≺ remains a transitive relation
throughout the course of the system’s execution.

LCmm: Universes, Attributes, and Relations

Function Profile
e.issuer Event → ProcAgent ∪ InitAgent
w.val WriteEvent → Value
p.latestEvent ProcAgent → Event
�.latestRelease Location → ReleaseEvent
i.initWrite InitAgent → WriteEvent
reads?(rd, v) ReadEvent × Value → Boolean
e ≺ e′ Event × Event → Boolean

Table 3: Additional attributes and relations for LCmm.

We define universes ReadEvent, WriteEvent, AcquireEvent and ReleaseEvent
to represent the sets of events of various types, and the universe Event to refer
to the union of these various sets. Each Event has an issuer attribute (the agent
that issued the event). A WriteEvent also has a val attribute indicating the value
written.

We introduce attributes to maintain the most recent events issued. Each
processor agent has a latestEvent attribute (the most recent event issued by the
agent) and each location has a latestRelease attribute (the most recent release
issued on the location).

Finally, we define two key relations, which are both empty initially:
3 Note that if w is unordered with respect to e, then the associated write has been

performed by another processor agent q, and p and q have not synchronized with
proper acquire/release operations. Thus the value of w could have been written to
memory at an arbitrary moment, which is why it must be considered readable by p.

1097Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

– reads?(rd, v) indicates whether value v can be read at ReadEvent rd. The set
of values that can be read by rd is thus {v|reads?(rd, v)}.

– e ≺ e′ represents the partial order among memory events.

Attributes and relations associated with events and with locations are presented
in [Table 3].

Terminology

The following terms refer to the issuing of events in a run of LCmm.

Definition An event e with e.issuer = p (for some ProcAgent p) is a p-event.
Definition If a ProcAgent p makes a move Rd that creates a ReadEvent rd,

we say that p issues a read event rd at Rd. (Similarly for write,
acquire, and release.)

Definition If a ProcAgent p reads at a move Rd and readOK?(w, p) for a
WriteEvent w, we say that p reads w at Rd. We also say that p
reads value w.val at Rd.

LCmm: Conditions on Runs

We restrict attention to runs in which the following conditions are true in the
initial state of LCmm:

Init condition 3 For every Location �, �.latestRelease.undef?.

Init condition 4 For every ProcAgent p, p.latestEvent.undef?.

LCmm: Terms and Transition Rules

The rules for the non-read operations by processor agents in LCmm are given
in [Figure 3], where in each case a new event of the appropriate type is created
whose issuer is Self, i.e., the agent that executes the rule and generates the event.

The rule for read operations is given in [Figure 4]. The term readOK?(w, p),
also defined in [Figure 4], determines whether the write value of WriteEvent w
is readable for ProcAgent p. For the value of WriteEvent w to be readable by
processor agent p at a move Rd, w must be a write to the appropriate location,
and as noted earlier, there must be no WriteEvent w′ that “overwrites” w.

The set of values that can be read by a new ReadEvent is specified by up-
dating the reads? relation. Any write event whose value is considered readable
(according to readOK?) is in the set. For all non-read events, ≺ is updated to
account for the newly created event:

– The new event succeeds its issuer’s latest event (as well as all predecessors
of that event).

1098 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

rule Write:
extend WriteEvent with w

w.issuer := Self
w.val := Self.writeVal
Order w after Self.latestEvent and its predecessors
Self.latestEvent := w

Get next operation

rule Acquire:
if Self.loc.owner �= Self then Self.waiting? := true
else

extend AcquireEvent with a
a.issuer := Self
Order a after Self.latestEvent and its predecessors
Order a after Self.loc.latestRelease and its predecessors
Self.latestEvent := a

Get next operation

rule Release:
extend ReleaseEvent with r

r.issuer := Self
Order r after Self.latestEvent and its predecessors
Self.latestEvent := r
Self.loc.latestRelease := r

Self.loc.owner := undef
Get next operation

rule Order e after d and its predecessors :
if d.def? then

d ≺ e := true
do-forall c: Event: c ≺ d

c ≺ e := true

Figure 3: LCmm rules for write, acquire and release operations.

– Synchronization between processors imposes additional ordering constraints.
In LC, these synchronizations occur exclusively through acquire and release
operations. Thus a new AcquireEvent succeeds the latest release event on the
location being acquired — which, by Run Conditions 2 and 3, is sure to exist
and is sure to have been performed by the appropriate ProcAgent — as well
as all predecessors of the latest release.

The rules presented in Figs. 3–4 refine the processor agent modules of LC0.
Along with the ownership agent module in [Figure 2], they complete LCmm, our
ASM representation of the LC model.

4 The LC Cache Protocol

We now present LCcp, a formal model of the LC cache protocol, in which we
make various assumptions about how values can be stored. In particular, we

1099Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

rule Read :
extend ReadEvent with rd

rd.issuer := Self
do-forall w: WriteEvent: readOK?(w, Self)

reads?(rd, w.val) := true
Get next operation

term readOK?(w, p):
w.issuer.loc = p.loc and not (∃w′: WriteEvent) w ≺ w′ � p.latestEvent

Figure 4: Rule and auxiliary term for read operation in LCmm.

assume that each processor is equipped with its own cache and that there is a
set of memory cells collectively called main memory, distinct from any proces-
sor’s cache. Each location has a value stored in main memory. Processors store
temporary copies of values from main memory in their caches. The processors
can modify these copies without necessarily updating main memory. When a
processor writes to a location, the new value is written to the processor’s cache.
Eventually this value is also written back to the main memory. Thus, in this
model, agents update cache entries and main memory locations instead of a
history of events.

At any time, each cache entry is either valid or invalid, and a valid entry is
either clean or dirty. A valid entry has a readable value, while an invalid one does
not. A clean entry has a value from main memory that has not been overwritten;
a dirty entry has a value written by the local processor that has not been written
back to the main memory. When all the cache entries are occupied, a write or
read of a location with no entry in the cache requires the removal (or ejection)
of an existing location from the cache. A cache replacement policy is used to
select which location should be removed from the cache.

A writeback to main memory is not a single-step action. There is some delay
between the initiation of a writeback (when the value stored in the cache is sent
to the memory) and the completion of the writeback (when the value is finally
recorded in memory). Writebacks may be completed concurrently with actions
by processor agents. To represent the process of writing back values to main
memory, we introduce a universe of writeback agents. Any writeback is initiated
by generating a writeback agent and by copying the dirty cached value to the
writeback agent. The writeback is completed when the writeback agent copies
this value to main memory.

Our view of writebacks as multi-step actions requires us to clarify the mean-
ing of a release operation. One effect of a release is to make the last write by
the releaser available to other processor agents. This is why a release initiates
a writeback in the case of a dirty cache entry. But since a writeback cannot
be performed in a single step, the following question arises: is it sufficient to
initiate the writeback before completion of the release (i.e., give up ownership
and proceed to the next operation), or must the writeback also be completed?
Gao and Sarkar indicate the latter. This assumption implies that a releasing
processor agent has to wait for a writeback to complete before proceeding to the

1100 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

next operation [Gao and Sarkar 00].
The actions for each operation are as follows. When a processor agent issues

a read to a location that has no entry in the cache, the read will add a value to
the cache. If the location’s most recent writeback agent has a value whose write
back operation has not yet completed, the value of that writeback is added to the
cache. Otherwise the value stored in main memory is added to the cache. A write
generates a value, caches it, and updates the status of the cache entry to dirty.
An acquire of a location invalidates the cache entry for the location, unless the
entry is dirty (in which case the last value written by the processor remains in
the cache because it is a legal value for subsequent read operations). A release of
a dirty location initiates a writeback of the value stored in the cache, then waits
until the value is transferred to main memory. Only when that writeback and
all previous ones to the same location are completed does the release terminate.

Note that the LC cache protocol only requires two inexpensive operations
to enable synchronization between multiple processors: the self-invalidation of
cache entries that are not dirty for the Acquire rule, and the writeback of a dirty
cache entry for the Release rule. Therefore no expensive invalidation or update
requests need to be sent across the network under the LC cache protocol.

Function Profile
p.cacheVal ProcAgent → Value
p.cacheValid? ProcAgent → Boolean
p.cacheDirty? ProcAgent → Boolean
p.ejectee ProcAgent → ProcAgent
p.latestWB ProcAgent → WritebackAgent
�.MMVal Location → Value
wb.issuer WritebackAgent → ProcAgent
wb.val WritebackAgent → Value
wb.active? WritebackAgent → Boolean

Table 4: Additional attributes for LCcp.

LCcp: Attributes

In LCcp, a processor agent p is also associated with a processor P and a location
�. For each processor agent p, the attribute cacheVal gives the value in p’s cache
for location � (if any such value exists), and cacheValid? and cacheDirty? give the
valid/invalid status and dirty/non-dirty status of the cache entry.

In order not to tie our model to any specific cache replacement policy, the
cache entry to be ejected (if any) is determined by a monitored function, the
attribute ejectee. For each processor agent p, ejectee selects another processor
agent for the same processor which also has a cache entry; the cache entry of
p.ejectee is then to be ejected in order to make room for p’s entry.

The attribute MMVal is associated with each location � and represents the
value currently stored in the main memory for �. The new universe WritebackAgent
represents the agents charged with writing values to main memory. The attribute

1101Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

latestWB associated with each ProcAgent p gives the writeback agent most re-
cently generated by p. We associate three attributes with the WritebackAgent
universe: issuer, which gives the processor agent that generated the writeback
agent; val, which gives the value to write to main memory; and active?, which
determines whether a given writeback agent has yet to write its value to main
memory. [Table 4] summarizes the attributes used to model caches, writeback
agents, and the main memory.

Terminology

In LCcp, releases are multi-step actions. Therefore, we must reformulate what it
means for a processor agent to perform a release. In our terms, a processor agent
first prepares to perform a release by initiating a writeback of its dirty cache
entry and waiting for the writeback to complete. It only performs the release
(relinquishing ownership) after these actions have completed. We formalize this
as follows.

Definition If a ProcAgent p makes a move Rp at which p.opType = release,
then

– If p.cacheDirty? or not p.allWritebacksCompleted?, we say that
p prepares to release at Rp;

– Otherwise, we say that p releases at Rp.

We use the following terms to characterize read actions and cache maintenance
actions in ρcp.

Definition If a ProcAgent p reads at a move Rdp, we say that p reads value v at
Rdp, where v = p.cacheVal if p.cacheValid? and v = p.loc.MMVal
otherwise.

Definition Let p be a ProcAgent that reads at a move Rdp.

– If not p.cacheValid? and p.allWritebacksCompleted?, we say that
p performs a miss read at Rdp;

– Otherwise, if p.cacheDirty? or not p.allWritebacksCompleted?,
we say that p performs a dirty read at Rdp;

– Otherwise, we say that p performs a clean read at Rdp.

Definition Let p be a ProcAgent, and let wbp be a WritebackAgent for which
wbp.issuer = p.

– If at a move Ip, p.cacheDirty? is updated from true to false, we
say that a writeback of p’s cache entry is initiated at Ip.

4

– If at a move Cp, wbp.active? is updated from true to false, we
say that a writeback of p’s cache entry is completed at Cp.

– Let Ip be a move at which a writeback of p’s cache entry is
initiated and wbp is generated. Let Cp be a move of wbp at
which a writeback of p’s cache is completed. Then we say that
the writeback initiated at Ip is completed at Cp.

4 Note that a writeback may be initiated by p itself (through a release) or by another
ProcAgent (through a read or write that triggers an ejection of p’s cache entry).

1102 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

LCcp: Conditions on Runs

We put the following restrictions on initial states of LCcp.

Init condition 5 For every ProcAgent p, not (p.cacheValid? or p.cacheDirty?).

Init condition 6 The WritebackAgent universe is empty.

The attribute ejectee must take on reasonable values during a run. We restrict
attention to runs that obey the following conditions:

Run condition 4 For every ProcAgent p, if p.ejectee.def?, then
p.ejectee.proc = p.proc and p.ejectee.cacheValid?.

Run condition 5 For every ProcAgent p, if p.ejectee.def?, then
p.ejectee.opType �= read and p.ejectee.opType �= write.

LCcp: Transition Rules

rule Eject cache entry of p:
p.cacheValid? := false
if p.cacheDirty? then

Initiate writeback on cache entry of p

rule Initiate writeback on cache entry of p:
p.cacheDirty? := false
extend WritebackAgent with wbp

wbp.issuer := p
wbp.val := p.cacheVal
wbp.active? := true
p.latestWB := wbp

module WritebackAgent:
if Self.active? then

Self.loc.MMVal := Self.val
Self.active? := false

term p.allWritebacksCompleted?:
(∀wbp: WritebackAgent: wbp.issuer = p) not wbp.active?

Figure 5: LCcp rules for cache maintenance.

The rules and terms associated with cache ejection and writeback are pre-
sented in [Figure 5]. The ejection of a cache entry requires an invalidation of

1103Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

the cache entry, and a writeback if the entry is dirty. The writeback initiation
updates the cache entry’s status to non-dirty, generates a writeback agent, and
passes the cached value to the writeback agent. A writeback agent makes a single
move in which it copies its value to main memory.

rule Read :
if not Self.cacheValid? then

if Self.allWritebacksCompleted? then Self.cacheVal := Self.loc.MMVal
else Self.cacheVal := Self.latestWB.val
Self.cacheValid? := true
if Self.ejectee.def? then Eject cache entry of Self.ejectee

Get next operation

rule Write:
Self.cacheVal := Self.writeVal
Self.cacheValid? := true
Self.cacheDirty? := true
if Self.ejectee.def? then Eject cache entry of Self.ejectee
Get next operation

rule Acquire :
if Self.loc.owner �= Self then Self.waiting? := true
else

if Self.cacheValid? and not Self.cacheDirty? then Self.cacheValid? := false
Get next operation

rule Release :
if Self.cacheDirty? then Initiate writeback on cache entry of Self
elseif Self.allWritebacksCompleted? then

Self.loc.owner := undef
Get next operation

Figure 6: LCcp rules for read, write, acquire and release operations by processor agents.

The rules for read, write, acquire, and release operations by processor agents
are presented in [Figure 6]. If there is no valid cache entry, reading involves
fetching a value from the last writeback agent or from main memory. Writing
involves storing a new value in the cache.

In the case of a read or write, a new cache entry may be needed; therefore the
attribute ejectee is checked to determine whether a cache entry is to be ejected
to make room for the new one. The rules for acquire and release operations are
simple. An acquire invalidates a clean cache entry. A release initiates a writeback
of the cache entry, if it is dirty. Only when all writebacks on the cache entry are
completed does the release terminate.

1104 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

5 LCcp Obeys LCmm

In this section, we outline the proof that shows that the cache protocol described
by LCcp implements the abstract model described by LCmm. For a detailed
proof, the reader should consult our technical report [Wallace et al. 01]. More
precisely, our goal is to show that any value read in an execution of LCcp is also a
legal value in an equivalent execution of LCmm. In a run of LCmm, for each read
operation a set of legal readable values is computed, while in the run of LCcp

a single value is read at each read operation. We consider runs of LCmm and
LCcp in which the memory operations that are performed and the order in which
they are performed are identical. We then show that for each read operation of
LCcp, the single value read is in the set of readable values computed at the
corresponding move of LCmm’s run.

Equivalent Runs of LCmm and LCcp

We must first start by considering what it means for runs of LCmm and LCcp

to be equivalent. An ASM run consists of a partial order of moves performed
by agents, with some agent executing its associated module at each move. In-
formally, for runs of the two models to be equivalent, the system components
(locations and processors) must be the same, and the same agents must make
the same moves in the same order. More precisely, the following conditions must
be met:

– The static information (e.g., number of processors, locations, and agents)
must be the same in the two runs.

– The runs must have the same partial order of moves.
– For each move, the environment in the two runs must produce the same

results for the monitored functions nextOpType, writeVal, and nextOwner.

We formalize the above as follows:

– Let σ be a state of LCmm or LCcp. Then σ− is the reduct of σ to the static
and monitored functions common to LCmm and LCcp (i.e., the static and
monitored functions of LC0, introduced in [Section 2]).

– A state σmm of LCmm is equivalent to a state σcp of LCcp if σ−
mm and σ−

cp
are isomorphic.

Let ρ∗cp = (µ∗
cp, αcp, σ

∗
cp) be a run of LCcp. µ∗

cp is a partially ordered set of moves,
αcp is a function mapping moves to agents (i.e., gives the agent performing a
move), and σ∗

cp is a function mapping finite initial segments of moves to states
of LCcp (the state resulting from each finite initial segment of moves).

In the proofs, we need to consider a sequential “equivalent” of a distributed
run rather than the run itself. According to the ASM Lipari guide [Gurevich 95],
we lose no generality by proving correctness of an arbitrary linearization of a
run. Hence, we can consider a linearization ρcp= (µcp, αcp, σcp) of ρ∗cp. µcp is a
topological sort of µ∗

cp: a linearly ordered set of moves (an arbitrary interleaving)
that has the same moves as µ∗

cp and preserves all the ordering of µ∗
cp.

Let ρmm= (µmm, αmm, Σmm) be a run of LCmm that is equivalent to a run
of LCcp, as defined below. Informally, in the runs ρmm and ρcp, the same agents

1105Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

perform the same operations in the same order; only the implementation details
differ: in LCmm the partial order ≺ is updated, while in LCcp it is the cache
entries and main memory locations that are updated.

More formally, a run ρmm can be considered equivalent to a run ρcp as follows.
First of all, it should be noted that fewer moves are made in ρmm than in ρcp:
WritebackAgents do not exist in ρmm and so do not make moves; a release in
ρmm is always a single-move action (there is no need to prepare for a release).
We thus restrict µmm to the moves of µcp that are neither writeback-agent moves
nor release preparation moves. More formally, µmm = µcp \ (WB ∪ PR), where
WB = {M ∈ µcp: WritebackAgent(αcp(M))} and
PR = {M ∈ µcp:αcp(M) prepares to release at M}. Likewise, we define αmm as
the restriction of αcp to moves of µmm. Finally, for each prefix X of µmm,
σmm(X) is equivalent to σcp(X). Since the only sources of nondeterminism in
LCmm are the monitored functions nextOpType, writeVal and nextOwner, and
these are identical in ρcp and ρmm, ρmm is unique up to isomorphism.

Lemmata: Ordering of Events in ρmm

The proof that LCcp implements LCmm hinges on two important properties of
the ordering of events in ρmm, stated in the following lemmata. Lemma 1 states
that the events issued by a ProcAgent are linearly ordered by ≺; whenever a
processor agent issues two events d and e in sequence, d becomes a predecessor
of e. This can be proved using a straightforward induction on the number of
p-events issued between moves Dp and Ep.

Lemma 1 In ρmm, let p be a ProcAgent, let dp be a p-event issued at a move
Dp, and let ep be a p-event issued at a move Ep after Dp. Then dp ≺ ep.

The next property concerns how events issued by different agents in ρmm can
become ordered with respect to each other. In determining whether a write event
wp by one agent p is readable by another agent q (assuming that p and q operate
on a common location), it is necessary to determine whether wp precedes q’s
latest event (according to ≺). If not, wp is readable; if so, wp is only readable
if there is no write event intervening between wp and q’s latest event. Lemma 2
asserts that

– a p-write becomes a predecessor of a q-event if p releases after the write and
q then acquires;

– this is the only way that a p-write can come to be ordered with respect to a
q-event.

Lemma 2 In ρmm, let p and q be distinct ProcAgents for which p.loc = q.loc.
Let Wp be a move at which p issues a WriteEvent wp, and let Rdq be a move
after Wp at which q issues a ReadEvent. Then wp ≺ q.latestEvent at Rdq if and
only if

– p issues a ReleaseEvent rp at a move Rp in the interval (Wp, Rdq) and
– q issues an AcquireEvent aq at a move Aq in the interval (Rp, Rdq).

1106 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

Lemmata: Properties of Read Operations

Lemmata 3–5 concern the three types of read operation in ρcp: dirty, miss, and
clean. For a read operation of any type in ρcp, we establish that the value read
is one of the (possibly many) values read at the corresponding move of ρmm.

Lemma 3 In ρcp, let RdD
p be a move at which a ProcAgent p performs a dirty

read of a Value v. Then in ρmm, p also reads v at RdD
p .

Proof outline. Let � be the location associated with p. A dirty read at RdD
p

means that, in ρcp, p.cacheDirty? or not p.allWritebacksCompleted? at the time
the read is performed. This means that p reads the last value it wrote, ei-
ther by consulting the cache or its last writeback agent. By Lemma 2, this
last write is unreadable by p in ρmm if and only if, in the interval I between
the write and the read, (1) p releases its location �; and then (2) some other
processor agent acquires �, writes, and then releases; and then (3) p acquires.
However, a release by p cannot complete in the interval I since preparing for
a release always sets p.cacheDirty? to false and completing the release means
p.allWritebacksCompleted? is true, thus contradicting the fact that the read at
RdD

p was dirty. Therefore, v is a readable value in ρmm. ✷

Lemma 4 In ρcp, let RdM
p be a move at which a ProcAgent p performs a miss

read of a Value v. Then in ρmm, p also reads v at RdM
p .

Proof outline. Let � be the location associated with p. A miss read at RdM
p

means that, in ρcp, not p.cacheValid? and p.allWritebacksCompleted?. In other
words, p reads the last value of � written back to main memory at some move
W by a processor agent q.

If p = q, the write at W is unreadable in ρmm only if p performs a subsequent
write before the read. However, if such a write was performed, it would have made
the cache dirty, thus contradicting the fact that RdM

p is a miss read (and the
fact that the write at step W was the last such write). Thus, the write at W is
readable in ρmm.

If p �= q, Lemma 2 implies that the write at W is unreadable in ρmm if
and only if, between W and the read at RdM

p , (1) q releases and then (2) p
acquires, and one of the following happens between q’s release and p’s acquire:
(3a) q writes again before releasing; or (3b) p writes after acquiring; or (3c)
some other processor agent acquires �, writes, and then releases. Cases (3a) and
(3c) contradict the fact that W was the last write written back to main memory.
Case (3b) would have made the cache dirty; thus the read at RdM

p would not be
a miss read.

Therefore, v is a readable value in ρmm. ✷

Lemma 5 In ρcp, let RdC
p be a move at which a ProcAgent p performs a clean

read of a Value v. Then in ρmm, p also reads v at RdC
p .

Proof outline. A clean read at RdC
p means that, in ρcp, p.cacheValid?,

not p.cacheDirty? and p.allWritebacksCompleted?. In turn, this implies that p

1107Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

reads a value from the cache, and that this value was placed there as a re-
sult of either (A) a miss read of a value written (at W) by some q or (B) the
last write by p.

In case (A), Lemma 2 implies that the write is unreadable in ρmm if and only
if, between the write and the read, (1) q releases the location � and then (2) p
acquires, and one of the following happens: (3a) q writes again before releasing;
or (3b) p writes after acquiring; or (3c) some other processor agent acquires �,
writes, and then releases. (2) is not possible since it would invalidate the cache
entry, an impossibility since the cache entry is valid at RdC

p .
In case (B), Lemma 2 implies that the write is unreadable in ρmm if and

only if (1) p releases and then (2) p acquires, and, between p’s release and p’s
acquire, (3) some other processor agent acquires �, writes, and then releases. But
p’s acquire would invalidate the cache entry, which is impossible since the cache
entry is valid at RdC

p .
In either case, v is a readable value in ρmm. ✷

Theorem: LCcp Obeys LCmm

Finally, we can state our main theorem, which follows directly from the previous
lemmata:

Theorem 1 Let Rdp be a move of ρcp at which a ProcAgent p reads a Value v.
Then at Rdp in ρmm, p also reads v.

6 LCcp is Strictly Stronger Than LCmm

In this section, we want to show that LCcp does not allow certain behavior
allowed by LCmm. In particular, we give an execution of LCmm in which a
particular value is read, value which cannot be read in any equivalent run of
LCcp.

Consider a run ρmm of LCmm with the following properties. In ρmm, two
distinct ProcAgents p and q operate on a common Location �, and no other
ProcAgents operate on �. (Other ProcAgents may perform operations on Locations
other than �.) The operations of p and q occur in the following sequence:

Ap: Acquire by p.
Wp: Write by p, that writes the value 1.
Rp: Release by p.
Wq: Write by q, that writes the value 2.
Aq: Acquire by q.
Rdq: Read by q.

At Rdq, the value 1 is readable according to LCmm, that is, in ρmm, q can
read the value 1 at move Rdq. The value 1 is unreadable at Rdq only if it is
overwritten by a write operation that is a successor of Wp. Such a write cannot
exist because: (1) there are no other writes by p; (2) the only acquire is at Aq;
and (3) there are no writes after Aq.

Then, we show that in any equivalent run of LCcp, 2 will definitely be the
(sole) value read at Rdq. There are two cases:

1108 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

1. If q’s cache entry is written back after the write (due to an ejection), 2 is
written to main memory. By this time, the value 1 written by p must have
already been written back before q’s write, since p releases before Wq. So 1
is overwritten by 2 in main memory; since there are no other writes to �,
there can be no further writebacks. Therefore q reads 2 from main memory
at Rdq.

2. If q’s cache entry is not written back, the value 2 is still present in the cache
at Rdq, so q reads 2 from the cache at Rdq.

From these two properties, we can state the following theorem.

Theorem 2 There exists a run ρmm of LCmm in which a read operation Rd
returns a value v that cannot be returned by the same read operation in any
equivalent run ρcp of LCcp.

7 Related work

There has been a substantial amount of research on the use of formal methods in
the area of shared memory models. Much of this work focuses either on high-level
memory models or on low-level cache consistency protocols. On the high-level
side, Adve and Hill [Adve and Hill 93] define, in a semi-formal manner, two
shared-memory models (data-race-free-0 and data-race-free-1) that attempt to
capture the common features of various other weak memory models (e.g., weak
ordering, release consistency). Frigo and Luchangco [Frigo and Luchangco 98]
formally define various memory models using what they call a “computation-
centric” approach. In this approach, a computation is defined in a manner
similar to the abstract interpreter of Gao and Sarkar, using a directed acyclic
graph that relates program operations. The effect of a memory model is de-
fined through the specification of a set of observer functions that determine, for
any given computation, which values can be read.5 This combination of com-
putation and observer functions makes it possible to relate different memory
models in a formal and simple way. Shen et al. [Shen et al. 99] introduce the
CRF model, which attempts “to decompose load and store instructions into
finer-grain orthogonal operations”. Using these instructions, for which they pro-
vide a formal term rewriting system, they then specify various other memory
models.6 However, no equivalence proofs are really provided, since the speci-
fications are really definitions by translation into CRF. Finally, the memory
model for the Java programming language has inspired several efforts in for-
malization [Gontmakher and Schuster 00, Gurevich et al. 00, Maessen et al. 00,
Manson and Pugh 01]; all of these works focus exclusively on the abstract mem-
ory model rather than particular implementations of it.

On the low-level side, various cache coherence protocols have been formally
verified, usually relative to SC [Clarke et al. 94, Pong and Dubois 97]
[Henzinger et al. 99]. Some of these proofs can be done automatically using
(finite-state) model checking. How to formalize the LC cache coherence pro-
tocol in the context of model checking is not clear, since the partial order re-
lation introduced in the abstract LC memory model grows arbitrarily large as
5 This is reminiscent of the ASM notion of (partially ordered) run.
6 Interestingly, Shen et al. state that LC “cannot be represented by CRF”, since LC

does not provide coherence.

1109Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

execution proceeds. Nevertheless, we feel that this is an interesting idea to in-
vestigate, using the results of previous work on tailoring ASM to model checking
[Castillo and Winter 00, Winter 00].

We feel that an important aspect of our work is the way in which it bridges
the high-level and the low-level models. The flexibility of ASM allows us to rep-
resent the LC memory model in its full generality and then move seamlessly
to a model of the LC cache protocol. There have been some other attempts to
bridge this gap. Shen and Arvind [Shen and Arvind 97] propose a solution based
on term-rewriting rules. We believe that ASM permits more concise, readable
and scalable models. Term-rewriting rules become particularly large and cum-
bersome when the level of abstraction is low; this problem is avoided in ASM by
representing each state transformation as a (typically small) collection of local
updates rather than as a single large global one. Akhiani et al. [Akhiani et al. 99]
describe the use of Lamport’s Temporal Logic of Actions (TLA) [Lamport 94]
in the verification of a cache coherence protocol developed by Compaq.7 Simply
providing a specification of a full implementation of such a protocol is an impres-
sive feat; nevertheless, it should be noted that they had difficulties in providing a
full verification of the protocol and ultimately proved only a fraction of the total
invariant. Of course, our verification involves only an abstract cache protocol; it
remains to be seen whether our approach can handle the complexity of a true
implementation. It would be interesting to test Börger’s claim [Börger 95] that
the separation of verification from specification afforded by ASM can provide a
simpler verification process than the integrated specification-verification system
of TLA.8

8 Conclusion

In this paper, we have presented formal specifications for the LC memory model
and cache protocol. These specifications, contrary to the descriptions presented
in [Gao and Sarkar 94] or [Gao and Sarkar 00], have been expressed rigorously.
Using these formal specifications and the notions of sequential and distributed
runs, we have then been able to show that the protocol indeed satisfies the model.
In other words, we have shown that, using the LC protocol, any value returned
by a read operation is a value legal according to the LC memory model. In
addition, we also showed that the protocol is stronger than the abstract memory
model: certain values that can be read by the abstract memory model cannot
be read by the protocol.

An interesting path of further study for us lies in the use of model checking
techniques to automate portions of our proof. Another idea we plan to pursue is
to express other weak memory models in ASM terms and see how these models,
and their associated protocols, compare with LC. Finally, the new memory model
for the Java language proposed by Manson and Pugh [Manson and Pugh 01]
uses a variant of LC; we are currently working on an ASM specification of this
memory model.
7 The specification of another cache coherence protocol was in progress at the time of

the report; final results are not given.
8 See Gurevich and Huggins [Gurevich and Huggins 97] for a critique of TLA from an

ASM perspective.

1110 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

Acknowledgments

This research was partially funded by grants from the Natural Sciences and
Engineering Research Council of Canada (NSERC). We thank Guang R. Gao
for many valuable and lively discussions on memory models.

References

[Adve and Gharachorloo 95] Adve, S.V., Gharachorloo, K.: “Shared memory consis-
tency models: a tutorial”; Research Report 95/7, Digital Western Research Labo-
ratory (1995).

[Adve and Hill 93] Adve, S.V, Hill, M.D.: “A unified formalization of four shared-
memory models”; IEEE Trans. on Parallel and Distributed Systems 4, 6 (1993),
613–624.

[Akhiani et al. 99] Akhiani, H., Doligez, D., Harter, P., Lamport, L., Tuttle, M., Yu,
Y., Scheid, J.: “TLA+ verification of cache-coherence protocols”; Available at
http://www.research.compaq.com/SRC/tla/papers.html (1999).

[Bershad et al. 93] Bershad, B., Zekauskas, M., Sawdon, W.: “The Midway distributed
shared memory system”; Proc. IEEE COMPCON (1993).

[Blumofe et al. 96] Blumofe, R.D., Frigo, M., Joerg, C.F., Leiserson, C.E., Randall,
K.H.: “An analysis of DAG-consistent distributed shared-memory algorithms”;
Proc. ACM SPAA (1996), 297–308.

[Börger 95] Börger, E.: “Why use Evolving Algebras for hardware and software engi-
neering?”; In Bartosek, M., Staudek, J., Wiedermann, J. (editors), “SOFSEM’95:
22nd Seminar on Current Trends in Theory and Practice of Informatics”, LNCS
1012, Springer-Verlag (1995), 236–271.

[Castillo and Winter 00] Del Castillo, G., Winter, K.: “Model checking support for
the ASM high-level language”; Proc. TACAS, LNCS 1785, Springer-Verlag (2000),
331-346.

[Clarke et al. 94] Clarke, E., Grumberg, O., Long, D.: “Verification tools for finite-
state concurrent systems”; In “A Decade of Concurrency — Reflections and Per-
spectives”; LNCS 803, Springer-Verlag (1994), 124–175.

[Culler et al. 99] Culler, D.E., Singh, J.P., Gupta, A.: “Parallel computer architecture:
a hardware/software approach”; Morgan Kaufmann (1999).

[Frigo and Luchangco 98] Frigo, M., Luchangco, V.: “Computation-centric memory
models”; Proc. ACM SPAA (1998).

[Gao and Sarkar 94] Gao, G.R. and Sarkar, V.: “Location consistency: Stepping be-
yond the barriers of memory coherence and serializability.”; ACAPS Technical
Memo 78, School of Computer Science, McGill University (1994).

[Gao and Sarkar 00] Gao, G.R., V. Sarkar: “Location consistency — A new memory
model and cache consistency protocol”; IEEE Trans. on Computers 49, 8 (2000),
798–813.

[Gharachorloo et al. 90] Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P.,
Gupta, A., Hennessy, J.: “Memory consistency and event ordering in scalable
shared-memory multiprocessors”; Proc. ISCA (1990), 15–26. Also in Computer
Architecture News 18, 2 (1990).

[Gontmakher and Schuster 00] Gontmakher, A., Schuster, A.: “Java consistency: non-
operational characterizations for Java memory behavior”; ACM Trans. on Com-
puter Systems 18, 4 (2000), 333–386.

[Gurevich 95] Gurevich, Y.: “Evolving Algebras 1993: Lipari guide”; In Börger, E.
(editor), “Specification and Validation Methods”, Oxford University Press (1995),
9–36.

[Gurevich and Huggins 97] Gurevich, Y., Huggins, J.K.: “Equivalence is in the eye of
the beholder”; Theoretical Computer Science 179, 1-2 (1997), 353–380.

1111Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

[Gurevich et al. 00] Gurevich, Y., Kutter, P.W., Odersky, M., Theile, L. (editors): “Ab-
stract State Machines: Theory and Applications”; LNCS 1912, Springer-Verlag
(2000).

[Gurevich et al. 00] Gurevich, Y., Schulte, W., Wallace, C.: “Investigating Java con-
currency using Abstract State Machines”; In [Gurevich et al. 00], 151-176.

[Henzinger et al. 99] Henzinger, T.A., Qadeer, S., Rajamani, S.K.: “Verifying sequen-
tial consistency on shared-memory multiprocessor systems”; In Proc. CAV: Com-
puter Aided Verification, LNCS 1633, Springer-Verlag (1999), 301–315.

[Keleher et al. 92] Keleher, P., Cox, A.L., Zwaenepoel, W.: “Lazy release consistency
for software distributed shared memory”. Proc. ISCA (1992), 13–21. Also in Com-
puter Architecture News 20, 2 (1992).

[Lamport 79] Lamport, L.: “How to make a multiprocessor computer that correctly
executes multiprocess programs”; IEEE Trans. on Computers C-28, 9 (1979), 690–
691.

[Lamport 94] Lamport, L.: “The temporal logic of actions”; ACM Trans. on Program-
ming Languages and Systems 16, 3 (1994), 872–923.

[Maessen et al. 00] Maessen, J.-W., Arvind, Shen, X.: “Improving the Java memory
model using CRF”; Proc. OOPSLA (2000), 1–12.

[Manson and Pugh 01] Manson, J., Pugh, W.: “Multithreaded semantics for Java”; CS
Technical Report 4215, University of Maryland (2001).

[Pong and Dubois 97] Pong, F., Dubois, M.: “Verification techniques for cache coher-
ence protocols”; ACM Computing Surveys 29, 1 (1997), 82–126.

[Shen and Arvind 97] Shen, X., Arvind: “Specification of memory models and design
of provably correct cache coherent protocols”; CSG Memo 398, Laboratory for
Computer Science, MIT (1997).

[Shen et al. 99] Shen, X., Arvind, Rudolph, L.: “Commit-reconcile & fences (CRF):
a new memory model for architects and compiler writers”; Proc. ISCA (1999),
150–161.

[Wallace et al. 01] Wallace, C., Tremblay, G., Amaral, J.N.: “The Location Consis-
tency memory model and cache protocol: Specification and verification”; Technical
Report 01-01, Computer Science Department, Michigan Technological University
(2001).

[Winter 00] Winter, K.: “Towards a methodology for model checking ASM: Lessons
learned from the FLASH case study”; In [Gurevich et al. 00], 398–425.

1112 Wallace C., Temblay G., Amaral J.N.: An Abstract State Machine Specification ...

