
A Generic NP-hardness Proof

for a Variant of Graph Coloring

Hans L. Bodlaender
(Institute of Information and Computing Sciences, Utrecht University

hansb@cs.uu.nl)

Abstract: In this note, a direct proof is given of the NP-completeness of a variant
of Graph Coloring, i.e., a generic proof similar to the proof of Cook of the NP-
completeness of Satisfiability. Then, transformations from this variant of Graph

Coloring to Independent Set and to Satisfiability are shown.
These proofs could be useful in an educational setting, where basics of the theory of
NP-completeness must be explained to students whose background in combinatorial
optimisation and/or graph theory is stronger than their background in logic. In addi-
tion, I believe that the proof given here is slightly easier than older generic proofs of
NP-completeness.
Keywords: NP-completeness, computational complexity, graphs, education
Category: F.2.2

1 Introduction

Cook’s proof of the NP-completeness of Satisfiability from 1971 [1] is a cor-
nerstone in the theory of the complexity of combinatorial (and other) problems.
In an attempt to provide a starting point for the theory of NP-completeness
that could be easier to students with a background in combinatorial optimisa-
tion and/or graph algorithms, I give in this note a variant of Cook’s proof for a
variant of the Graph Coloring problem.

A major drive of algorithms research is the wish to design algorithms that
solve important problems ‘fast enough’, i.e., a reasonable implementation of the
algorithm should give a correct output in reasonable time. It has been observed
that there are large classes of combinatorial problems, many with very important
applications, that do not have such algorithms available. In some cases, there is
a proof that these problems require ‘much’ time, or that no algorithm exists at
all for these problems. In other cases, while no ‘efficient’ algorithms are known
for the problem, also no proof of non-existence of such ‘efficient’ algorithms is
available. This note deals with the most famous (and probably most important)
of these classes: the class of NP-complete problems.

The class was defined first by Cook in 1971 in [1]. In that paper, Cook also
showed that an NP-complete problem indeed existed: he gave a ‘generic’ proof
of the NP-completeness of Satisfiability, a problem from logic. In this note, I
will review some of the most basic notions of NP-completeness, and then give a
new generic proof of NP-completeness for a different problem, namely a variant
of the Graph Coloring problem, called here Restricted Graph Coloring.
The structure of this proof will be rather similar to Cook’s proof, but I belief
the generic transformation to a problem from graph theory could be easier to
follow for some groups of students, and at a few details, this proof is easier.

Journal of Universal Computer Science, vol. 7, no. 12 (2001), 1114-1124
submitted:11/5/01, accepted: 23/10/01, appeared: 28/12/01  Springer Pub. Co.

To illustrate that the Restricted Graph Coloring problem is also a
viable starting point for starting a theory of NP-complete problems, the problem
is used as a starting point to proof NP-completeness of Independent Set and
Satisfiability.

Other problems can be used as well as starting point for NP-completeness.
One of them is the Square Tiling problem (also called the Jig-Saw problem, as
it models the problem to solve a jig-saw puzzle, for which a generic NP-hardness
proof is also known (see [6]).

An interesting discussion of NP-completeness, especially for those unfamil-
iar with the topic, appears in [4], where Kaye shows that the computer game
Minesweeper is NP-complete using a reduction from Satisfiability.

2 Notions and Definitions

2.1 Turing machines

A Turing Machine is a standard model of computation, introduced by Alan
Turing in 1936 [5]. In this note, I use the following Turing machine model.

A Turing machine consists of the following parts: a ‘finite state control’, a
‘tape’, and a ‘read-write head’. The finite state control is a set S of states, and
at any point in time, the machine is in exactly one of these states. The tape
is an infinite array of cells, each cell contains at each point in time exactly one
symbol from an alphabet Σ. The read-write head (or, in short: the head) is always
pointing to exactly one cell at the tape.

There are two special states, s0 and sA. s0 is the start state, i.e., when the
machine starts its operation, the state of the machine is s0. sA is the accept
state, and it will be explained below what its role is.

The cells are numbered with integers from Z, and it is assumed in this note
that the machine starts with the head pointing to cell 0.

The behaviour of the machine is described by a set of transitions: this is a set
δ ⊆ (S×Σ×S×Σ×{−1, 0,+1}). This works as follows: at each time step, the
machine is in some state s and there is some symbol σ below the head. If there is
no 5-tuple in δ of the form (s, σ, . . . , . . . , . . .), then the machine halts. In case the
machine halts in sA, then we say that the machine accepts, otherwise we say the
machine rejects. If there is exactly one 5-tuple of this form, say (s, σ, s′, σ′, ∆),
then three things happen. First, the symbol s′ will be written on the place of
the read-write head. (I.e., the symbol s on this place will be replaced by s′.)
Secondly, the machine will go to state σ′. Thirdly, if ∆ �= 0, then the read-write
head will be moved: if ∆ = 1, then it will be moved one position to the right,
and if ∆ = −1, then it will be moved one position to the left. It will not move
when ∆ = 0. I.e., if the read-write head pointed to cell i before the step, it will
point to cell i+∆ after the step.

Now, we distinguish two different types of Turing machines. For a determin-
istic Turing machine, for each s ∈ S and σ ∈ Σ, there is at most one tuple of
the form (s, σ, . . . , . . . , . . .) ∈ δ, i.e., either there is one transition or none.

In a non-deterministic Turing machine, or in short, NDTM, it is possible that
there are more tuples of such a form for given s ∈ S and σ ∈ Σ. If there are more
tuples, then we say the machine makes a non-deterministic step: it can actually
choose which of the transitions it will follow. We say the NDTM accepts if there

1115Bodlaender H.L.: A Generic NP-hardness Proof for a Variant of Graph Coloring

is at least one possible sequence of transitions that leads to halting in the accept
state.

There are several closely related models of Turing machines that all have the
same expressive power. Here, we will assume that the alphabet Σ consists of
three symbols: Σ = {0, 1, e}, where e denotes an ‘empty’ cell. Now, to each (de-
terministic or non-deterministic) Turing machine M , we associate the language,
accepted by the machine M , L(M): for a string s ∈ {0, 1}∗, we have s ∈ L(M),
if and only if M accepts when it starts with a tape, that contains the string s in
consecutive cells, (i.e., if s = s0s1 · · · sk−1, then for each i, 0 ≤ i ≤ k − 1, cell i
contains symbol si), and all other cells are empty (i.e., contain symbol e). Note
that the head starts at the first symbol of the string.

2.2 P, NP, and related notions

At first, we restrict ourselves to looking at combinatorial problems that make a
decision yes or no, i.e., problems that can be represented by the set of strings
that code the inputs with an answer yes.

The time a deterministic Turing MachineM takes on input s ∈ {0, 1}∗ is the
number of steps that is taken before the machine halts, when it starts with s
on the input tape with the head on the first character of s (as above.) The time
a non-deterministic Turing machine takes on input s is the maximum number
of steps that the machine can take before halting, starting again with s on the
input tape.

A Turing Machine is said to use polynomial time, if there is a polynomial p,
such that on any string s ∈ {0, 1}∗ with n characters the machine takes time at
most p(n).

The class P is defined as the set of languages L, for which there is a de-
terministic Turing Machine M that accepts L (i.e., L(M) = L), and that uses
polynomial time.

The notion is important, because Turing machines can simulate other models
of computation, that correspond with real-life computers. These simulations only
bring a small (polynomially bounded) overhead with them, which means that
the class P captures exactly those problems for which there is an algorithm,
solving it in polynomial time on a ‘normal’ computer.

P is a ‘worst-case concept’: if there is a problem that has an algorithm that is
almost always fast (using polynomial time), but that sometimes must use much
more time (e.g., exponential in the size of the input), then we cannot say the
problem belongs to the class P, while it still may be efficiently solvable in almost
all practical cases.

Still, the class P well coincides with what is felt to be practically doable.
Unfortunately, there are many problems for which we do not know that they
belong to P. In several cases, there is a proof that shows that the problem does
not belong to the class P, e.g., for some problems, it is known that any algorithm
for the problem uses worst case exponential time. There are many other cases
where such a proof is not available. Probably the most notable case of a class of
problems for which it is unknown whether they belong to P, but for which it is
expected they do not are the NP-hard problems.

The class NP is defined as the set of languages L for which there is a non-
deterministic Turing Machine that accepts L and that uses polynomial time.

1116 Bodlaender H.L.: A Generic NP-hardness Proof for a Variant of Graph Coloring

As every deterministic Turing machine is also a non-deterministic Turing
machine, we clearly have: P ⊆ NP.

So far, the Turing machines discussed only compute decision problems: prob-
lems with an answer yes or no. However, in order to define the notions of NP-
hardness and NP-completeness, we need also to be able to talk about the com-
putations of functions. A possible definition is the following: a deterministic
Turing machine is said to compute function f , if, when it starts with a tape with
a string x on consecutive non-empty cells, then it halts with the string f(x)
on consecutive non-empty cells. If the machine uses at most p(n) steps when
it starts with an input of length n with p a polynomial, then the function is
polynomial time computable. It can be seen that this notion of polynomial time
computability coincides with the usual notion used in algorithm design. In gen-
eral, when we denote algorithms, we do not use a Turing machine, but a machine
model that is much more resembling the machines that are on our desks, and
we allow ourselves to write down programs in a structured language with loops,
conditional statements, and use pointers, integer variables, objects, etc. It ac-
tually can be proved that all these constructions can be translated to a Turing
machine, without crossing the borderline around polynomial time computability.
This, however, will not be proven here, but the fact will used implicitly in proofs
given later in this note.

Now, we can define the notion of a polynomial time transformation. Let L1 ⊆
{0, 1}∗ and L2 ⊆ {0, 1}∗ be languages. A function f : {0, 1}∗ → {0, 1}∗ is a
polynomial time transformation from L1 to L2, if there is a deterministic Turing
machine that computes f in polynomial time, and for all x ∈ {0, 1}∗, x ∈ L1, if
and only if x ∈ L2.

A language L ⊆ {0, 1}∗ is said to be NP-hard, if for every language L′ in
NP, there is a polynomial time transformation from L′ to L. L is said to be
NP-complete, if it is NP-hard and L ∈ NP.

The question: Is there a polynomial time algorithm for an NP-complete prob-
lem? has many equivalent formulations. Usually, it is expressed as the P=NP-
question. This problem is one of the most important unsolved problems in the-
oretical computer science and mathematics, and despite many efforts for many
years by many researchers, it still is unsolved. Many researchers think that the
answer will be that P �= NP — such a result would imply that all NP-hard
problems cannot be solved in polynomial time. Thus, an NP-hardness or NP-
completeness proof for a problem L can be seen as strong evidence for the con-
jecture that L does not have a polynomial time algorithm solving it. Much more
on this issue can be said; readers unfamiliar with the topic are advised to consult
e.g. [3].

2.3 Combinatorial problems

Below, three combinatorial problems are given. The first one is a rather arbitrary
special case of the well known Graph Coloring problem, and the latter two
are well known problems.

Restricted Graph Coloring

Instance: Directed graph G = (V,E), set of colors C, for each edge
(v, w) ∈ E, a set of allowed color-pairs A(v, w) ⊆ C×C, and for each
vertex v ∈ V , a set of allowed colors B(v) ⊆ C.

1117Bodlaender H.L.: A Generic NP-hardness Proof for a Variant of Graph Coloring

Question: Is there a coloring c : V → C, such that for every edge
(v, w) ∈ E, (c(v), c(w)) ∈ A(v, w), and for every vertex v ∈ V , c(v) ∈
B(v)?

Independent Set

Instance: Undirected graph G = (V,E), integer K ≤ |V |.
Question: Does G have an independent set of size at least K, i.e., is

there a set W ⊆ V with for all {v, w} ∈ E: v �∈ W or w �∈ W , and
|W | ≥ K?

Satisfiability

Instance: Set of Boolean variables x1, . . . , xn; formula F of the form∧
1≤i≤r(

∨
1≤j≤ci

lij)), where each lij is of the form xi or ¬xi with
1 ≤ i ≤ n.

Question: Can we assign to each variable xi, 1 ≤ i ≤ n a value true or
false, such that formula F becomes true?

None of these problems is a language of the form L ⊆ {0, 1}∗. In order to fit
these problems into the formal framework as given above with Turing machines,
we need to code the inputs of the problems as binary strings. Thus, we assume
a ‘natural’ mapping of the inputs to a binary string. Note that such a mapping
will be anyhow used for any representation of the input on a computer, so we do
not make any strange assumption when we stipulate that we have such a coding.
For details, see e.g., [3, Chap. 2.1].

3 A Generic Proof of NP-completeness of Restricted Graph
Coloring

Now, the main result of this note is given. The construction is similar to the
proof of Cook [1] of the NP-completeness of Satisfiability.

Theorem 1. Restricted Graph Coloring is NP-complete.

Proof. To proof NP-completeness for a problem R, two things must be proved.
First, it must be shown that the problem belongs to NP, and secondly, from
every problem Q in NP, there must be a polynomial time transformation from
Q to R. Membership of Restricted Graph Coloring in NP is not so hard
to prove, and omitted from this note.

Now, it will be shown that for every problem R in NP, there is a polynomial
time transformation from R to Restricted Graph Coloring.

Let R be an arbitrary problem in NP. Because R belongs to NP, we know
that there is a non-deterministic Turing MachineM that recognises R, and that
uses on an input of n bits at most p(n) time steps, where p is a polynomial. We
make the following assumptions on M :

– M does not access any tape location before location 0.
– M has one accepting state sA with no transitions out of sA.
– S is the set of states of M .
– The alphabet used for the tape is Σ.
– The head starts at time 0 at position 0, and M starts in state s0.

1118 Bodlaender H.L.: A Generic NP-hardness Proof for a Variant of Graph Coloring

– The set of transitions is T ⊆ S ×Σ × S ×Σ × {−1, 0,+1}.
– When there are two different transitions possible from a (state, symbol)-

pair, then they can differ in the result state and in the direction the
head moves, but not in the symbol written, i.e., if (s, σ, s′, σ′, δ) ∈ T and
(s, σ, s′′, σ′′, δ′) ∈ T , then σ′ = σ′′. (Note that one can easily simulate a TM
to another TM with this property that uses at most twice as many time
steps: split a non-deterministic step in a non-deterministic step that only
moves non-deterministically to a different state, but does not change the
head or the symbol below the head, and a deterministic step that writes a
symbol and possibly moves the head.)

To the set of transitions T , we add transitions that keep the TM running
in the accepting state: for each σ ∈ Σ, add the transition (sA, σ, sA, σ, 0). The
original Turing Machine halts at or before time p(n)− 1 in state sA, if and only
if the modified TM is in state sA at time p(n) − 1. Let T ′ be this new set of
transitions, and let M ′ be the modified TM .

Note that M ′ can only access tape locations 0, 1, . . ., p(n) − 1.
A description of the construction of G, C, A, and B now follows. This de-

scription is interleaved with an explanation of why this construction is made in
this way.

The graph G = (V,E) has the following kind of vertices:

– We have vertices vt,l, 0 ≤ t ≤ p(n) − 1, 0 ≤ l ≤ p(n) − 1, i.e., for each time
step t, 0 ≤ t ≤ p(n)−1 and for each location on the tape l, 0 ≤ l ≤ p(n)−1,
we have a vertex. This vertex will denote what symbol can be found on
location l at time step t.

– We have vertices st, 0 ≤ t ≤ p(n)− 1, i.e., for each time step t, we have one
vertex. This vertex will get a color that denotes what position the head is,
what is the current state, and (duplicating information for a vertex of the
first set) what symbol is below the head.

There are two kinds of colors:

– Each pair (σ, b), with σ ∈ Σ and b ∈ {true, false} is a color in C. Write
X = Σ × {true, false}.

– Each triple (s, l, σ) ∈ S × {0, 1, . . . , p(n) − 1} × Σ is a color in C. Write
S′ = S × {0, 1, . . . , p(n) − 1} ×Σ.

So, C = X ∪ S′.
Now, the description of B is given.

– For vertices v0,l, 0 ≤ l ≤ p(n) − 1, if the tape has symbol σ at position l
before the run of the Turing Machine, i.e., at time 0, then take B(v0,l) =
{(σ, false)} for l ≥ 0, and take B(v0,0) = {(σ, true)}. This forces that a
run of M ′, simulated by the coloring indeed starts with the correct initial
configuration. The Boolean values denote whether the head is at that symbol
during the corresponding time step.

– For vertices vt,l, 1 ≤ t ≤ p(n) − 1, 0 ≤ l ≤ p(n) − 1, take B(vt,l) = X . The
first argument of the color given to these vertices denotes the symbol that
is on position l at time t during the run of M ′, simulated by the coloring of
G, and the second argument is a boolean that tells whether the head is at
that location.

1119Bodlaender H.L.: A Generic NP-hardness Proof for a Variant of Graph Coloring

vt,p(n)−1

vt+1,p(n)−1

vt+2,p(n)−1

vt+1,1

st

st−1

vt,1 vt,2
vt,p(n)−2

vt+1,p(n)−2

vt+2,p(n)−2

vt,0

vt+1,0

vt+2,0 vt+2,1 vt+2,2

st+2

vt+1,2

Figure 1: The constructed graph G: detail

– For vertex s0, B(s0) = {(s0, 0, σ)}, where σ is the symbol at position 0 of
the input, i.e., at time 0. This makes that the color of s0 denotes that the
head starts at position 0, and that the automaton starts in state s0.

– For vertices st, 1 ≤ t ≤ p(n) − 2, take B(st) = S′. This forces that at each
time during the run of M ′, simulated by the coloring of G, the head is at a
location, and the machine is in a state.

– For vertex sp(n)−1, take B(sp(n)−1) = {(sA, l, σ) | 0 ≤ l ≤ p(n)− 1, σ ∈ Σ}.
This forces that the run of M ′, simulated by the coloring of G is in an
accepting state at time p(n) − 1.

Edges, and the allowed color-pairs for edges are used to force that the coloring
of G simulates a run of M ′ that is allowed by the set of transitions.

We have the following kind of edges:

– Edges that check consistency at a certain time step. For each time step
t, 0 ≤ t ≤ p(n) − 1, and each location l, 0 ≤ l ≤ p(n) − 1, we take
an edge (st, vt,l), with A(st, vt,l) = {((s, l, σ), (σ, true)) | σ ∈ Σ, s ∈ S} ∪
{((s, l′, σ), (σ′, false)) | σ, σ′ ∈ Σ, s ∈ S, 0 ≤ l′ ≤ p(n) − 1, l′ �= l}. This
edge forces that when st gets a color (s, l, σ), then vt,l gets color (σ, true),
and all vt,l′ , l �= l′, get the value false as second argument. So, these check
consistency of the color of st with the colors of the vertices vt,l under the
‘interpretation’ given to these colors.

– Edges that check that the tape is not changed on locations without the head.
For each time step t, 0 ≤ t ≤ p(n) − 2, and each location l, 0 ≤ l ≤ p(n) −
1, take an edge (vt,l, vt+1,l) with A(vt,l, vt+1,l) = {((σ, false), (σ, b)) | b ∈
{true, false}, σ ∈ Σ} ∪ {((σ, true), X) | σ ∈ Σ}. This makes sure that the
symbol at a tape-location can only be changed at a time step when the head
is at that location.

1120 Bodlaender H.L.: A Generic NP-hardness Proof for a Variant of Graph Coloring

– Edges that check that symbols are written correctly. For each time step t,
0 ≤ t ≤ p(n) − 2, and each location l, 0 ≤ l ≤ p(n) − 1, we take an edge
(st, vt+1,l). A(st, vt+1,l) is the union of the following two sets:
• {((s, l, σ), (σ′, b)) | b ∈ {true, false}, (s, σ, s′, σ′, δ) ∈ T for some s′ ∈ S,
δ ∈ {−1, 0,+1}}. If we are in state s and symbol σ is below the head at
position l, then at time step l + 1, the symbol at position l must be the
unique symbol for which there is a transition of the form (s, σ, s′, σ′, δ).

• {((s, l′, σ), (σ′, b)) | (s, l′, σ) ∈ S′, (σ′, b) ∈ X, l �= l′}. If st has the color
(s, l′, σ) and l �= l′, then vt+1,l denotes the content of a cell at time t+1
for a location where the head was not at time t. In such a case, we do
not need to enforce anything that was not already enforced by other by
other conditions.

– Edges that check that states are changed and the head is moved according
to the transition rules. For every time t, 0 ≤ t ≤ p(n) − 1, we have an edge
(st, st+1), with A(st, st+1) = ((s, l, σ), (s′, l′, σ′)) | σ′ ∈ Σ, (s, σ, s′, σ′′, l′ −
l) ∈ T for some σ′′ ∈ Σ}. If we are in state s at time t and σ is under the
head at location l, and we go to state s′ with the head at location l′, then
the head is moved l′− l, and a transition of the form (s, σ, s′, σ′′, l′− l) must
belong to T . (We do not specify what symbol is written. This was checked
by the previous set of edges.)

This finishes the construction. We now have:

Claim 2 There is a coloring of G, satisfying the conditions posed by color-pairs
A and color sets B, if and only if the non-deterministic Turing Machine M
accepts the input.

The claim can be proved by using induction, and proving the following
stronger claim.

Claim 3 There is a coloring c of G consistent with the conditions posed by A
and B, if and only if there is a possible execution of M ′, such that

– σ is at location l at time t and the head is not at location l at time t, if and
only if c(vt,l) = (σ, false) (0 ≤ t ≤ p(n) − 1, 0 ≤ l ≤ p(n)− 1, σ ∈ Σ.

– σ is at location l at time t and the head is at location l at time t, if and only
if c(vt,l) = (σ, true) (0 ≤ t ≤ p(n) − 1, 0 ≤ l ≤ p(n) − 1, σ ∈ Σ.

– M ′ is in state s at time t with the head at location l, with symbol σ at head-
location l, if and only if c(st) = (s, l, σ) (0 ≤ t ≤ p(n)− 1, 0 ≤ l ≤ p(n)− 1,
σ ∈ Σ.

Comments given with the construction show the correctness of this claim.
Now, we have a polynomial time transformation from problem R to Re-

stricted Graph Coloring.

4 Transformations

Generic proofs of NP-completeness are in general much harder than proving
NP-completeness with transformations to problems known to be NP-complete.
In this section, a few such transformations are given. These also show that Re-

stricted Graph Coloring is a reasonable choice for starting proofs of NP-
completeness with.

1121Bodlaender H.L.: A Generic NP-hardness Proof for a Variant of Graph Coloring

Theorem 4. Independent Set is NP-complete.

Proof. Membership in NP is easy to see.
To show NP-hardness, a transformation from Restricted Graph Color-

ing is used.
Let G = (V,E), C, A, and B be given as input of the Restricted Graph

Coloring problem.
A graph H = (W,F) will now be constructed. The set of vertices of H is

W = {wv,c | v ∈ V, c ∈ B(v)}. The set of edges F of H is the union of the
following edge sets:

– {{wv,c, wv,c′} | v ∈ V, c, c′ ∈ B(v), c �= c′}. I.e., for every v, the vertices of
the form wv,c form a clique.

– {{wv,c, wv′,c′} | (v, v′) ∈ E, (c, c′) �∈ A(v, v′)}.
Claim 5 H has an independent set of size at least |V |, if and only if G has a
graph coloring satisfying the conditions posed by A and B.

Proof. Suppose G has such a coloring c. Now, let X = {wv,c(v) | v ∈ V }. One
easily checks that X is an independent set of size |V |.

Suppose H has an independent set X of size at least |V |. For each vertex
v ∈ V , X can contain at most one vertex of the form wv,c (because these vertices
form a clique for given v). As |X | ≥ |V |, we have that X contains exactly one
vertex of the form wv,c for each v. Now, write c(v) = c, if wv,c ∈ X . This is
a function V → C. By construction, c(v) ∈ B(v). For every edge (v, v′) ∈ E,
(wv,c(v), wv′,c(v′)) �∈ E (asX is an independent set), hence (c(v), c(v′)) ∈ A(v, v′).

As the transformation can be done in polynomial time, NP-hardness of In-

dependent Set follows.

Theorem 6. Satisfiability is NP-complete.

Proof. Clearly, Satisfiability belongs to NP.
To show NP-hardness, a transformation from Restricted Graph Color-

ing is used.
Let G = (V,E), C, A, and B be given as input the Restricted Graph

Coloring problem.
This input is now transformed to an instance of Satisfiability. This latter

instance uses the following set of Boolean variables: X = {xv,c | v ∈ V | c ∈
B(v)}. Intuitively, xv,c is the variable that denotes whether v gets color c.

The set of clauses I consists of the following subsets:

– Clauses that make sure every vertex v has at least one color from B(v). For
every vertex v ∈ V , take a clause

∨
c∈B(v) xv,c.

– Clauses that make sure every vertex has at most one color. For every vertex
v ∈ V , and every two distinct colors c, c′ ∈ B(v), c �= c′, take a clause
¬xv,c ∨ ¬xv,c′ .

– Clauses that make sure that for every edge (v, v′), the colors given to v and
v′ do not form a pair outside of A(v, v′). For every edge (v, v′) ∈ E, and every
c ∈ B(v), c′ ∈ B(v′) with (c, c′) �∈ A(v, v′), take a clause ¬xv,c ∨ ¬xv′,c′ .

1122 Bodlaender H.L.: A Generic NP-hardness Proof for a Variant of Graph Coloring

Claim 7 G has a coloring fulfilling the conditions posed by A and B, if and only
if the set of variables X has a truth assignment that makes all clauses in I true.

Proof. Suppose we have such a truth assignment. Now, set c(v) = c, iff
xv,c = true. By the first set of clauses, such a c exists for every v ∈ V . By
the second set of clauses, at most one such c exists per v. So, c : V → C
is a function. By construction c(v) ∈ B(v) for each v ∈ V . Now, for every
(v, v′) ∈ E, (c(v), c(v′)) ∈ A(v, v′). Suppose there is an edge (v, v′) ∈ E with
(c(v), c(v′)) �∈ A(v, v′). Then the clause ¬xv,c ∨ ¬xv′,c′ is not satisfied, contra-
diction.

Suppose we have such a coloring c. Set xv,c to true, iff c(v) = c. One easily
verifies that this truth assignment satisfies all clauses.

Thus, the construction given is a polynomial time transformation from Sat-

isfiability to Restricted Graph Coloring, and hence the theorem follows.

5 Conclusions

This note showed the NP-completeness of some problems using a generic proof.
For purposes of presentation of the theory of NP-completeness to students with a
background in combinatorial optimisation, operations research, or graph theory,
this approach could be more insightful, at least for some groups of students, than
following the classic proof of Cook. Those familiar with Cook’s proof [1], (see also
[3]) may notice the inspiration I had from that proof. I believe that translating
Cook’s proof to the Restricted Coloring Problem gives a slightly simpler
construction. There is, however, ample room for improvement.

In my view, the main shortcoming of the presentation here is the reliance
on Turing machines. As a model of computing, Turing machines are much more
distinct from computing devices that are nowadays used than, e.g., the model
of a Random Access Machine. Thus, to argue that NP-completeness indeed is
viable evidence for the conjectured non-existence of polynomial time / efficient
algorithms for the problem, one needs to argue that a simulation of a machine
like a Random Access Machine on a Turing machine has only a polynomial loss
of efficiency - a fact that needs a detailed proof and may be not very appealing
to the group of students the proofs in this note were meant for. (The argument
was briefly hinted at in Section 2, but not given.) Thus, a nice question could be
to give a generic proof of NP-completeness for some graph problem based upon
the Random Access Machine model. It can be observed that the construction
used here actually does give some freedom, and it seems that using a RAM with
words of O(log n) bits could be used instead of Turing Machines. An informal
generic proof of the NP-completeness of Circuit Satistiability appears in [2].

A different option could be to use hypergraphs instead of graphs for the first
generic proof. Consider the following problem:

Restricted Hypergraph Coloring

Instance: Hypergraph G = (V,E), with for every e ∈ E, |e| ≤ 3; set of
colors C; for every e ∈ E, set of functions Ce, of the form f : e→ C.

Question: Is there a coloring c : V → C, such that for all e ∈ E, the
restriction of c to e belongs to Ce?

1123Bodlaender H.L.: A Generic NP-hardness Proof for a Variant of Graph Coloring

A generic proof of NP-completeness of this problem is actually somewhat
shorter than the proof of Restricted Graph Coloring, but can go along the
same lines. However, the problem seems harder to understand, and may be less
easy to start reductions from.

Acknowledgement

This research was partially supported by EC contract IST-1999-14186: Project
ALCOM-FT (Algorithms and Complexity - Future Technologies).

References

1. S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd Ann.
Symp. on Theory of Computing, pages 151–158, New York, 1971. ACM.

2. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, Mass., USA, 1989.

3. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

4. R. Kaye. Minesweeper is NP-complete. The Mathematical Intelligencer, 22:9–15,
2000.

5. A. Turing. On computable numbers, with an application to the entscheidungsprob-
lem. Proc. London Math. Soc. Ser. 2, 42:230–265, 1936.

6. P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity,
Logic and Recursion Theory, pages 331–363. Lecture Notes in Pure and Applied
Mathematics, vol. 187, Marcel Dekker Inc., 1997.

1124 Bodlaender H.L.: A Generic NP-hardness Proof for a Variant of Graph Coloring

