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1 Introduction

Let Σ be a finite alphabet. By the neighborhood of a word w ∈ Σ∗ of radius α with
respect to a distance measure δ, we mean the set of all words u that have the dis-
tance measure δ(u,w) at most α. We denote this neighborhood by E({w}, δ, α).
Naturally, the neighborhood of a language L of a radius α with respect to δ,
denoted E(L, δ, α), is the union of E({w}, δ, α) for all words w ∈ L. A distance
δ is said to be finite if E({w}, δ, α) is finite for all w ∈ Σ∗ and α ≥ 0. Informally,
δ is said to be additive if its measurement distributes over concatenation. We
say that δ regularity-preserving (context-free-preserving, computable-preserving,
computably enumerable-preserving) if E(R, δ, α) is regular (context-free, com-
putable, computably enumerable) for every regular (context-free, computable,
computably enumerable) language R and radius α ≥ 0.

In this paper, we prove that every additive distance is finite. We prove that
every additive distance (or quasi-distance) is regularity-preserving. We also show
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that additive neighborhoods of any radius of context-free, computable and com-
putably enumerable languages are, respectively, context-free, computable and
computably enumerable. Examples of various additive and non-additive distance
measures are also given in the paper.

The paper is organized as follows: In the next section we introduce the ba-
sic notation. In Section 3, we define distances and quasi-distances. Our results
concerning finite, additive, and regularity-preserving distance measures are pre-
sented in Section 4. Additive neighborhoods of context-free and computable and
computably enumerable languages are studied in Sections 5 and 6.

A preliminary but slightly different version of this paper has appeared in
[Calude, Salomaa, Yu, 01].

2 Preliminaries

We assume that the reader is familiar with the basics of formal languages and fi-
nite automata in particular, cf. [Hopcroft and Ullman, 79, Salomaa, 73, Yu, 97].
Here we introduce the notation we will use in the later sections.

The symbol Σ denotes a finite alphabet and Σ∗ the set of finite words over
Σ. The empty word is denoted by λ and the length of a word w ∈ Σ∗ by |w|.
The shuffle of words u, v ∈ Σ∗,

ω(u, v) ⊆ Σ∗

is the set of all words x1y1x2 . . . xmym such that u = x1 · · ·xm, v = y1 · · · ym,
xi, yi ∈ Σ∗, i = 1, . . . ,m, m > 0. The catenation of languages S, T ⊆ Σ∗ is
denoted by ST .

A deterministic finite automaton (DFA) is a five-tuple

A = (Q,Σ, γ, s, F )

where Q is the finite set of states, Σ is the finite alphabet, s ∈ Q is the initial
state, F ⊆ Q is the set of final states, and γ : Q×Σ → Q is the state-transition
function. If A is defined as above except that γ is a function Q × Σ → P(Q)
then we say that A is a nondeterministic finite automaton (NFA). (Here P(Q)
is the set of subsets of Q.)

The state-transition relation γ of an NFA is extended in the natural way to
a function γ̂ : Q×Σ∗ → P(Q). We denote also γ̂ simply by γ and the language
accepted by A is L(A) = {w ∈ Σ∗ | γ(s, w) ∩ F �= ∅}.

A context-free grammar is a four-tuple

G = (N,T, S, P )

where N is the finite nonterminal alphabet, T is the finite terminal alphabet,
N ∩T = ∅, S ∈ N is the initial nonterminal and P is the finite set of productions
of the form A → w, A ∈ N , w ∈ (N ∪ T )∗.

The single step derivation relation of G, ⇒G, is defined by setting u ⇒G v
if we can write u = u1Au2, v = u1wu2, where A → w ∈ P , (u1, u2 ∈ (N ∪ T )∗).
We denote by ⇒∗

G the reflexive and transitive closure of ⇒G and the language
generated by the grammar G is L(G) = {w ∈ T ∗ | S ⇒∗

G w}. A language is said
to be context-free if it is generated by a context-free grammar.
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A context-free grammar G = (N,T, S, P ) is said to be in Chomsky normal
form if all productions of P are of the following forms A → BC, A → a, A,B,C ∈
N , a ∈ T . It is well known that any context-free language can be generated by
a context-free grammar in Chomsky normal form.

A context-free grammar G = (N,T, S, P ) is said to be right-linear if the
productions of P are of the forms A → bB, A → b where A,B ∈ N , b ∈ T .
Right-linear grammars generate exactly the regular languages.

3 Distances and Quasi-Distances

We want to measure the distance between distinct words of Σ∗. Let S be a set.
We say that a function δ : S×S → [0,∞) is a distance if it satisfies the following
three conditions:

(D1) δ(x, y) = 0 iff x = y, for all x, y ∈ S,
(D2) δ(x, y) = δ(y, x), for all x, y ∈ S,
(D3) δ(x, z) ≤ δ(x, y) + δ(y, z), for all x, y, z ∈ S.

Condition (D3) is called the triangle-inequality. A function δ : S × S → [0,∞)
that satisfies (D2) and (D3) and the weaker condition

(D1’) δ(x, x) = 0, for all x ∈ S,

is called a quasi-distance on S. A quasi-distance allows the possibility that
δ(x, y) = 0, for x �= y.

Note that if δ is a quasi-distance on S we can define an equivalence rela-
tion ∼δ on S by setting x ∼δ y iff δ(x, y) = 0. Then the mapping δ′ defined
by δ′([x]∼δ

, [y]∼δ
) = δ(x, y) is a distance on S/ ∼δ. (Since δ satisfies the con-

dition (D3) it follows that the value of δ′([x]∼δ
, [y]∼δ

) does not depend on the
representatives x and y.)

Let δ be a (quasi-) distance on S, K ⊆ S and α ≥ 0. The neighborhood of K
of radius α (with respect to δ) is

E(K, δ, α) = {x ∈ S | (∃y ∈ K) δ(x, y) ≤ α}.
A natural distance between words of the same length is the so calledHamming

distance. Since we need to compare also words of different lengths, there is more
than one natural way to extend Hamming distance.

Let # be a symbol not appearing in Σ and put Γ = Σ ∪ {#}. For a, b ∈ Γ
define

∆(a, b) =
{

1, if a �= b,
0, if a = b.

Define ∆n : Γn × Γn → IN by setting

∆n(x1 · · ·xn, y1 · · · yn) =
n∑

i=1

∆(xi, yi).

The prefix-Hamming distance δpH on Σ∗ is defined as follows. Let u, v ∈ Σ∗.
Then

δpH(u, v) =
{

∆|v|(u#k, v), if k = |v| − |u| ≥ 0,
∆|u|(u, v#k), if k = |u| − |v| > 0.
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The prefix-Hamming distance counts the number of distinct symbols in the first
min{|u|, |v|} positions of the words u and v and adds to the result the length of
the remaining suffix. It is easy to verify that δpH satisfies the triangle-inequality
and, thus, it is a distance. On the other hand, this distance is not very useful
from a practical point of view because inserting or deleting one letter can change
the distance of given words by an arbitrary amount (depending on the length of
the words).

A better extension is the function which considers all possible ways to pad
both words and then takes the minimum of the obtained distances. Let u, v ∈ Σ∗.
Then we define

δH(u, v) = min{∆k(x, y) | k ≥ max{|u|, |v|},
x ∈ ω(u,#k−|u|), y ∈ ω(v,#k−|v|)}. (1)

Notice that for all u, v ∈ Σ∗, δH(u, v) ≤ max{|u|, |v|}, and δH(u, v) =
min{∆|uv|(x, y) | x ∈ ω(u,#|v|), y ∈ ω(v,#|u|)}.

In general, δH(u, v) �= ∆max{|u|,|v|}(x, y), for every x ∈ ω(u,#max{|u|,|v|}−|u|),
y ∈ ω(v,#max{|u|,|v|}−|v|). For example, take u = abab, v = baba and observe that
ω(u,#0) = {u}, ω(v,#0) = {v}, ∆4(u, v) = 4 > δH(u, v) = ∆5(u#,#v) = 2.

It is convenient to look at (1) as a process. Consider changing a word into
another word by means of the following three types of edit steps ([Manber, 89]):
a) insert—insert a character into a word, b) delete—delete a character from a
word, c) replace—replace one character with a different character. Edit steps
can be applied in any order. For example, to change the word abab into baba
we can use rule c) (replace) four times and we get bbab, baab, babb, baba. We can
be more efficient by deleting the first character of abab to get bab, then insert a
at the end, so with only two edit steps we obtain baba. As we have seen below,
δH(abab, baba) = 2; it can be obtained by first constructing the extended words
abab# and #baba and then computing their ∆5 distance. In fact, we have:

Lemma1. For all words u, v, δH(u, v) coincides with the minimal number of
edit steps necessary to change u into v.4

Corollary 2. The function δH satisfies (D1)–(D3).

The function δH is a distance by Corollary 2; as it extends Hamming’s dis-
tance it is appropriate to call it the shuffle-Hamming distance.

An immediate property of the shuffle-Hamming distance follows: insertions
and deletions of the special symbol # do not count.

Lemma3. For all u, v ∈ Σ∗, and i ≥ 0, δH(u, v) = δH(ū, v̄), for all ū ∈
ω(u,#i), v̄ ∈ ω(v,#i).

Other possible distances can be obtained by varying edit steps (e.g., allowing
adjacent characters in one word to be interchanged while copied to the other
word) or by assigning cost functions to edit steps (e.g., capturing the idea that
the cost of replacing a character is less than the combined costs of deletion and
insertion). See [Calude and Calude, 83] for more examples of discrete distances.
4 This number is called the Levenstein distance or edit-distance; see [Stephen, 94], pp

40–41 and [Cormen et al., 90], pp 325–326; it has been introduced by by Levenstein
[Levenstein, 65] and, independently, by Ulam [Ulam, 86].
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4 Neighborhoods of Regular Languages

Let L be a regular language over Σ. We are interested in the following question:
Which conditions the distance δ should satisfy in order to guarantee that all the
languages E(L, δ, α), α ≥ 0, are regular? We say that a distance δ is regularity-
preserving if E(L, δ, α) is a regular language for all regular languages L and
α ≥ 0.

It is fairly straightforward to construct examples of distances on Σ∗ that are
not regularity-preserving. Here is such an example.

Example 1. Given a language L ⊆ Σ∗ we can define

δL(u, v) =

{0, if u = v,
1/2, if u �= v, u, v ∈ L
1, if u �= v, and at least one of u, v is not in L.

It is easy to verify that δL is a distance. Then by choosing L to be some non-
regular language and w ∈ L, we have E({w}, δL, 1/2) = L. ��

Clearly we need to impose some additional conditions on the distance δ. Note
that the distance in Example 1 has the property that for n ≥ 0 and α ≥ 1/2,
the inequality δ(u, anbn) ≤ α has infinitely many solutions. Hence, the following
finiteness requirement seems to be a suitable candidate to guarantee that a
distance is regularity-preserving.

We say that a (quasi-) distance δ on Σ∗ is finite if for all w ∈ Σ∗ and α ≥ 0,
the set E({w}, δ, α) is finite.

Both the shuffle-Hamming distance and the prefix-Hamming distance con-
sidered above are clearly finite. The following example shows that finiteness of
a distance δ is, unfortunately, not sufficient to guarantee that δ is regularity-
preserving.

Example 2. Let Σ = {a, b, c}. By slightly modifying the prefix-Hamming distance
δpH we construct a finite distance δ on Σ∗ that is not regularity-preserving.

For u, v ∈ Σ∗ we define

δ(u, v) =
{

3/2, if u = anban, v = ancan, n ≥ 0, or vice versa,
δpH(u, v), otherwise.

Clearly δ satisfies the conditions (D1) and (D2), so in order to show that it is
a distance it is sufficient to verify the triangle-inequality. Assuming that (D3)
does not hold, we must have x, y, z ∈ Σ∗ such that

δ(x, z) > δ(x, y) + δ(y, z). (2)

Since for all u, v ∈ Σ∗, δ(u, v) ≥ δpH(u, v) and δpH is a distance, it follows that
if (2) holds, then necessarily δ(x, z) �= δpH(x, z), that is, x = anban, z = ancan,
n ≥ 0, or vice versa. Thus δ(x, z) = 3/2, and (2) implies that δ(x, y) = 0 or
δ(y, z) = 0. Both possibilities directly yield a contradiction.

Also, δ is finite since for any α ≥ 2 and w ∈ Σ∗ we have E({w}, δ, α) =
E({w}, δpH, α).
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To see that δ is not regularity-preserving choose L = a∗ba∗. Then

E(L, δ, 3/2)− E(L, δ, 1) = {ancan | n ≥ 0},
which implies that at least one of the languages E(L, δ, 3/2) and E(L, δ, 1) is not
regular. ��

The above example shows that we need to look for stronger restrictions for
regularity-preserving distances. Since elements of Σ∗ have a unique decompo-
sition into subwords (of given length) it is perhaps reasonable to assume that
the distances should “respect” such decompositions. Thus we say that a (quasi-)
distance δ on Σ∗ is additive if always when w = w1w2 (w1, w2 ∈ Σ∗) we have
for all α ≥ 0,

E({w}, δ, α) =
⋃

β1+β2=α

E({w1}, δ, β1)E({w2}, δ, β2). (3)

First we observe that an additive distance is always finite. Note that an
additive quasi-distance δ need not be finite. If, for some b ∈ Σ, δ(b, λ) = 0, then
any δ-neighborhood is necessarily infinite.

Lemma4. Every additive distance is finite.

Proof. Let δ be an additive distance on Σ∗. By (3), for any w = b1 · · · bk, bi ∈
Σ, i = 1, . . . , k, E({w}, δ, α) is contained in the catenation of the languages
E({b1}, δ, α), . . . , E({bk}, δ, α). Thus, it is sufficient to show that E({b}, δ, α) is
finite for b ∈ Σ and α ≥ 0.

Let u = c1 · · · cm, ci ∈ Σ, be an arbitrary word of Σ∗. The additivity condi-
tion implies that u ∈ E({b}, δ, α) iff there exists i ∈ {1, . . . ,m} such that

δ(b, ci) +
∑

j∈{1,...,m}, j 	=i

δ(λ, cj) ≤ α. (4)

There exist only a finite number of words u = c1 · · · cm that satisfy the above
inequality. ��

Both the prefix-Hamming distance and the shuffle-Hamming distance are
additive.

Proposition5. The distances δpH and δH defined on an alphabet Σ are additive.

Proof. We show that δH is additive as the proof for the distance δpH is simpler.
Let w = w1w2 be an arbitrary decomposition of a word w ∈ Σ∗. We show

that for every u ∈ Σ∗,

u ∈ E({w1w2}, δH, α) iff u ∈
⋃

β1+β2=α

E({w1}, δH, β1)E({w2}, δH, β2).

Assume δH(u,w1w2) ≤ α. As edit steps (in the process of changing a word
into another word) can be applied in any order, we can start the process of
changing u into w1w2 in such a way to obtain first w1 from a prefix u1 of
u, and then w2 (from the remaining suffix u2 of u). Consequently, δH(u1, w1) +
δH(u2, w2) = δH(u,w1w2) ≤ α. Conversely, if ui ∈ E({wi}, δH, βi), i = 1, 2, β1+
β2 ≤ α, then we have δH(u1u2, w1w2) ≤ δH(u1, w1) + δH(u2, w2) ≤ α. ��
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From Example 2 we know that a finite distance need not preserve regularity.
Below we show that, on the other hand, additivity is a sufficient condition to
guarantee that even a quasi-distance preserves regularity. Note that, as observed
above, an additive quasi-distance need not be finite. First we prove the following
lemma.

Lemma6. Assume that δ is an additive quasi-distance on Σ∗.

(i) For each b ∈ Σ and α ≥ 0, E(b, δ, α) is regular.
(ii) Let b ∈ Σ and α ≥ 0 be fixed. There exists an integer k and numbers

0 = α1 < . . . < αk = α such that

E(b, δ, αi), i = 1, . . . , k,

are all the distinct neighborhoods of b having radius at most α.

Proof. (i) Let u = c1 · · · cm, m ≥ 0, ci ∈ Σ, i = 1, . . . ,m. As in the proof of
Lemma 4 it follows that u ∈ E(b, δ, α) iff the inequality (4) holds. (Note that, in
contrast to Lemma 4, δ is now only a quasi-distance, so this does not imply the
finiteness of the neighborhood.)

Denote
Θ = {d ∈ Σ | δ(d, λ) = 0}.

Let Ψ be the set of finite multisets of elements of Σ,

{ci, cj1 , . . . , cjr}
such that δ(λ, cjl

) �= 0, l = 1, . . . , r and

δ(b, ci) +
r∑

l=1

δ(λ, cjl
) ≤ α.

Then u = c1 · · · cm satisfies the inequality (4) iff u is the shuffle of a sequence
obtained by listing the elements of a multiset belonging to Ψ (in arbitrary order)
and a word in Θ∗. The shuffle of a finite language and a regular language is always
regular.

(ii) In the construction above the elements of the multisets belonging to Ψ
completely determine the neighborhoods of radius at most α around b. Thus as
the radii αs, s = 1, . . . , k, we can simply take all the (distinct) sums δ(b, ci) +∑r

l=1 δ(λ, cjl
) where the multiset {ci, cj1 , . . . , cjr} belongs to Ψ . (Note that Ψ is

a finite collection of multisets.) ��
The above construction implies that Lemma 6 (ii) can be written in the fol-

lowing stronger form:

Corollary 7. Assume that δ is an additive quasi-distance on Σ∗ and let b ∈ Σ
and α ≥ 0 be fixed. Then we can write

E(b, δ, α) = R1 ∪ . . . ∪Rk,

where 0 = α1 < . . . < αk = α and Ri = {w ∈ Σ∗ | δ(b, w) = αi}, i = 1, . . . , k, is
regular.
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Proof. Without loss of generality we can assume that the numbers αi in Lemma 6
(ii) are chosen so that there exists wi ∈ Σ∗ with δ(b, wi) = αi, i = 1, . . . , k. Let
Ri, i = 1, . . . , k, be as above. By Lemma 6 (ii), Ri = E(b, δ, αi) − E(b, δ, αi−1),
i = 2, . . . , k, and R1 = E(b, δ, 0). By Lemma 6 (i), these sets are regular. ��

Now we are ready to prove the main result of this section.

Theorem 8. Assume that δ is an additive quasi-distance on Σ∗ and let L ⊆ Σ∗
be regular. Then E(L, δ, α) is regular for all α ≥ 0.

Proof. Let α ≥ 0 be fixed and let A = (Q,Σ, γ, s, F ) be a DFA such that
L = L(A). Without loss of generality we can assume that the initial state s is
not reachable from any other state.

By Corollary 7, for each b ∈ Σ we can write

E(b, δ, α) = Rb
1 ∪ . . . ∪Rb

k(b),

where
Rb

j = {w ∈ Σ∗ | δ(w, b) = αb
j}, 0 ≤ αb

j ≤ α,

is regular, j = 1, . . . , k(b). Denote D′ = {αb
j | b ∈ Σ, 1 ≤ j ≤ k(b)} and

D = {β ≤ α | β = β1 + . . . + βr, βi ∈ D′, 1 ≤ i ≤ r}.
We construct an NFA B = (QB, Σ, γB, sB, FB) such that

L(B) = E(L(A), δ, α).

Choose QB = Q×D, sB = (s, 0) and

FB =
{

F ×D ∪ {sB} if λ ∈ E(L(A), δ, α)
F ×D, otherwise.

The transition relation γB is defined as follows. Let q ∈ Q, β ∈ D and b ∈ Σ.
Then

(q′, β + αb
j) ∈ γB((q, β), b) (5)

for every q′ ∈ γ(q,Rb
j), 1 ≤ j ≤ k(b), such that β + αb

j ≤ α. (Here γ(q,Rb
j) =

{γ(q, v) | v ∈ Rb
j}.) Since Rb

j is regular, the set γ(q,Rb
j) (⊆ Q) can even be

effectively determined.
Let w = b1 · · · bm, m ≥ 1, bi ∈ Σ, i = 1, . . . ,m. Since δ is additive

w ∈ E(L(A), δ, α) iff (∃u ∈ L(A)) such that

u ∈
⋃

β1+...+βm=α

E(b1, δ, β1) · · ·E(bm, δ, βm). (6)

In the transitions (5), on input b the first component of the states of B simulates
the computation of A on an arbitrary (nondeterministically chosen) word of v ∈
Rb

j , and in the second component we correspondingly increment the distance by
αb

j = δ(b, v). By observation (6), some sequence of the nondeterministic choices
on input w = b1 · · · bm leads to an accepting state of FB iff w is in E(L(A), δ, α).
By the choice of the set FB , the NFA B accepts λ if and only if λ ∈ E(L(A), δ, α).

��
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5 Additive Neighborhoods of Context-Free Languages

We show that also the family of context-free languages is closed under additive
quasi-distances, that is, for any context-free languageL, additive quasi-distance δ
and α ≥ 0, the neighborhood E(L, δ, α) is context-free. In this case a construction
(following the idea of the proof of Theorem 8) of a pushdown automaton that
nondeterministically simulates the possible computations on all inputs in the
neighborhood would not work due to the fact that the different computations
could use the stack in very different ways. Our proof uses a grammatical approach
where a context-free grammar distributes the distance bound into different parts
of a generated word. Additivity is obviously necessary for the construction to
work and the construction relies essentially on Lemma 6 (ii).

Theorem 9. Let δ be an additive quasi-distance on Σ∗. For every context-free
language L ⊆ Σ∗ and α ≥ 0, the neighborhood E(L, δ, α) is context-free.

Proof. Let G = (N,Σ, S, P ) be a Chomsky normal form grammar generating
the language L. Denote

L′
b,β = E(b, δ, β), b ∈ Σ, β > 0.

By Lemma 6 (ii), there exist an integer kb and values 0 = αb,1 < . . . < αb,kb
= α

such that for any β ≤ α, L′
b,β = L′

b,αb,i
for some 1 ≤ i ≤ kb. Without loss of

generality we can assume that the sequence of sets L′
b,αb,i

, 1 ≤ i ≤ kb, is strictly
increasing for a fixed b ∈ Σ (just eliminate from the αb,j sequence possible
unnecessary values that do not strictly increase the neighborhood). Now we
define

Lb,αb,1 = L′
b,αb,1

and Lb,αb,i
= L′

b,αb,i
− L′

b,αb,i−1
, i = 2, . . . , kb. (7)

By Lemma 6 (i) the languages Lb,αb,i
, b ∈ Σ, 1 ≤ i ≤ kb are regular and let

Gb,i = (Nb,i, Σ, Sb,i, Pb,i)

be a right-linear grammar generating Lb,αb,i
. Again without loss of generality

we can assume that the non-terminal alphabets of G and grammars Gb,i, b ∈ Σ,
1 ≤ i ≤ kb are all pairwise distinct.

Denote
I = {αb,i | b ∈ Σ, 1 ≤ i ≤ kb}

and let

K = {x ∈ [0, α] | x = i1 + · · · + il, ij ∈ I, j = 1, . . . , l, (l ∈ IN)}.
Since I is finite it follows that also K is finite.

We define a context-free grammar G′ = (N ′, Σ, S′, P ′) where

N ′ = N ×K ∪
⋃

b∈Σ,1≤i≤kb

Nb,i,

S′ = (S, α), (note that α = αb,kb
, for all b ∈ Σ and hence (S, α) ∈ N ×K), and

P ′ = P1 ∪ P2 ∪ P3,

149Calude C.S., Salomaa K., Yu S.: Additive Distances and Quasi-Distances Between Words



where

P1 = {(A, β) → (B, β1)(C, β2) | A → BC ∈ P, β, β1, β2 ∈ K,β1 + β2 ≤ β},
P2 = {(A, β) → Sb,i | A → b ∈ P, αb,i ≤ β ∈ K},

and
P3 =

⋃
b∈Σ,1≤i≤kb

Pb,i.

We claim that L(G) = E(L, δ, α). Let w ∈ Σ∗ be arbitrary. Since δ is additive,
we have

w ∈ E(L, δ, α) iff w = u1 · · ·un, ui ∈ E(bi, δ, βi), (8)
bi ∈ Σ, ui ∈ Σ∗, i = 1, . . . , n,
where b1 · · · bn ∈ L, β1 + . . . + βn = α.

For any bi ∈ Σ, the languages L′
bi,αbi,1

, . . . , L′
bi,αbi,kbi

are exactly all the distinct

neighborhoods of bi of radius at most α. In (8), the radii βi (1 ≤ i ≤ n),
do not necessarily belong to the finite set {αbi,1, . . . , αbi,kbi

}, but there exists
j ∈ {1, . . . , kbi} such that ui ∈ Lbi,αbi,j

since⋃
j=1,...,kbi

Lbi,αbi,j
= E(bi, δ, α).

If j is chosen as above, from (7) it follows that δ(ui, bi) = αbi,j and thus ui ∈
E(bi, δ, βi) implies

αbi,j ≤ βi. (9)

Now the grammar G′ can generate the string w as follows. The productions of
P1 simulate the derivation of b1 · · · bn according to G and nondeterministically
distribute the correct “weights” αbi,j, j ∈ {1, . . . , kbi}, to the nodes that corre-
spond to the terminal symbols bi (in the simulated derivation of G). The fact
that β1 + . . . + βn = α and equation (9) guarantee that this is always possible.
Using a rule of P2, in the node “corresponding to bi” the grammar G′ continues
with the initial nonterminal of the grammar Gbi,j and using the rules of P3 it
can generate the word ui ∈ Lbi,αbi,j

.
For the converse inclusion, using the definition of the productions of G′, we

see that if G′ generates a string w, then necessarily the right side of (8) holds
for w with β1 + . . . + βn = α replaced by β1 + . . . + βn ≤ α. Note that the
productions of P1 and P2 guarantee that the cumulative “weight”, that is, the
sum of the second components of the nonterminals in a sentential form of G′
is nonincreasing at any derivation step. Since δ is additive, this means that
necessarily w ∈ E(b1 · · · bn, δ, β1 + . . . + βn) ⊆ E(b1 · · · bn, δ, α). ��

As can be expected, in Theorem 9 the additivity assumption is necessary
and context-free languages are not closed under extensions generated by general
distances: for example, choose a non-context-free language in Example 1.
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Furthermore, by modifying the distance used in Example 2 we see that
context-free languages are not closed even under finite distances. Let Σ =
{a, b, c} and define

δ′(u, v) =
{

3/2, if u = anbanban, v = ancancan, n ≥ 0, or vice versa,
δpH(u, v), otherwise

where u, v ∈ Σ∗ and δpH is the prefix-Hamming distance. Exactly as in Exam-
ple 2 it is verified that δ′ is a finite distance, and by choosing L = a∗ba∗ba∗ we
have

E(L, δ′, 3/2) ∩ a∗ca∗ca∗ = {ancancan | n ≥ 0},
which is not context-free. The above shows actually that even for a regular
language the neighborhood with respect to a finite distance is not necessarily
context-free.

6 Neighborhoods of Computable and Computably
Enumerable Languages

In this section we show that the neighborhoods of computable (computably
enumerable) languages are computable (computably enumerable) not only in
case of additive quasi-distances, but also for finite ones.

Theorem 10. Let δ be quasi-distance on Σ∗ that is additive or finite. For every
computable (computably enumerable) language L ⊆ Σ∗ and α ≥ 0, the neighbor-
hood E(L, δ, α) is computable (computably enumerable).

Proof. Let α > 0 be fixed. Assume first that L is computable. Clearly, u ∈
E(L, δ, α) iff L ∩ E({u}, δ, α) �= ∅. If δ is a finite quasi-distance, then the set
L ∩ E({u}, δ, α) is finite, so E(L, δ, α) is computable.

Assume now that δ is an additive quasi-distance. We first prove that Lemma 6
(ii) holds true not only for elements in the alphabet Σ, but for arbitrary words
w ∈ Σ∗. Indeed, in view of Lemma 6, for any given b ∈ Σ, we have the sequence
0 = αb,1 < . . . < αb,kb

= α such that E(b, δ, αb,j) are all the distinct neightbor-
hoods of b of radius at most α. We can choose each αb,j value to be maximal,
that is, if αb,j < x < αb,j+1, then E(b, δαb,j) = E(b, δ, x).

Now consider an arbitrary w ∈ Σ∗, let w = a1 · · · an (ai ∈ Σ). Since δ is
additive, for any γ < α we have

E(w, δ, γ) =
⋃

β1+...+βn=γ

E(a1, δ, β1) · · ·E(an, δ, βn). (10)

In the right side each neighborhood E(ai, δ, βi) is equal to E(ai, δ, αai,j) with
the property that αai,j ≤ βi < αai,j+1. This means that there exist only a finite
number (depending on w) of distinct right sides of (10), that is, a finite number
of distinct neighborhoods E(w, δ, γ) where γ < α. Hence L ∩ E({u}, δ, α) is
computable, so E(L, δ, α) is computable.

Finally, a simple dovetailing argument shows that the neighborhood
E(L, δ, α) is computably enumerable provided δ is a finite quasi-distance or an
additive quasi-distance (in the last case we use Theorem 8 to note that for every
word w, E({w}, δ, α) is regular).
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