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Abstract: In a database with categorical attributes, each attribute defines a partition
whose classes can be regarded as natural clusters of rows. In this paper we focus on
finding a partition of the rows of a given database, that is as close as possible to the
partitions associated to each attribute. We evaluate the closeness of two partitions
by using a generalization of the classical conditional entropy. From this perspective,
we wish to construct a partition (referred to as the median partition) such that the
sum of the dissimilarities between this partition and all the partitions determined by
the attributes of the database is minimal. Then, the problem of finding the median
partition is an optimization problem, over the space of all partitions of the rows of the
database, for which we give an approximative solution. To search more efficiently the
large space of possible partitions we use a genetic algorithm where the partitions are
represented by chromosomes. Our genetic algorithm obtains better clustering results
than the classical k-means algorithm.
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1 Introduction

Clustering is an important problem in many computer science domains and is
particularly important in the context of data mining.

The clustering problem can be described as follows: given a set of N objects,
characterized by n attributes, we want to group these objects such that objects
which are similar to be placed in the same group and objects which are dissimilar
to be placed in different groups.

Research in clustering has been focus more on data characterized by numer-
ical or quantitative attributes, for which natural distances (like Euclidean or
Manhattan distance) between the objects to be clustered are available. Clus-
tering categorical or qualitative attributes presents an special challenge, since a
natural ordering of the attributes values is not available. Previous research in
this direction include algorithms introduced in [VJR99, SRK99, Hua97].
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In this paper we focus on the case of categorical attributes databases and we
investigate the application of information-theoretical methods to the clustering
problem. The objects that we cluster are represented by tuples in a table and
the goal of the genetic algorithm is to construct a partition of the set of rows
whose classes are regarded as clusters of the rows. We require that this partition
satisfy the following two conditions:

1. it must summarize the partitions generated by the attributes of the table.
2. the number of classes of the partition should not exceed a prescribed upper

limit.

The first condition ensures that the resulting partition represents a clustering
of the rows, while the second condition represents a restriction of the number of
classes in this clustering.

In literature, the partition satisfying the first condition is called median par-
tition or consensus partition and was analyzed in [BL95, Rég83a, Rég83b]. Re-
search concerning the application of genetic algorithms to grouping problems
was presented in [Hol92, Mic99, Fal99, Mit97, JB91].

Finding the median partition is an NP-complete problem as it was shown
by [BL95]. That is why we focus in this paper on finding an approximative so-
lution using a genetic algorithm approach. To determine how well a partition
summarizes the attribute partitions of a table, we use a measure based on a gen-
eralization of the conditional entropy, that was introduced in [SCC00c, SCC00a].

The rest of the paper is organized as follows: Section 2 introduces definitions
and notation, and presents a generalization of the classical entropy measure
and important properties of this generalization. Section 3 describes the genetic
algorithm that we use to search for the median partition. Section 4 presents
the results of our experiments as well as an analysis of the implications of the
different techniques used. Section 5 concludes the paper with a summarization
of our results.

2 Definitions

2.1 Generalized entropy

The set of partitions of a set R is denoted by PART(R). For π, σ ∈ PART(R)
we write π ≤ σ if every class of σ is a union of classes of π. We denote by
ωR ∈ PART(R) the one-class partition, and by αR ∈ PART(R) the partition with
one-element classes. We denote by |π| the number of classes of the partition π.

Let U be a set whose elements are referred to as attributes. We assume that
for every element A of U there is a set denoted by Dom(A) referred to as the
domain of A such that |Dom(A)| ≥ 2.

A table is a function T : R ×H −→ ⋃
DH , where R, a finite set, is referred

to as the set of rows of T , H is a finite subset of U (called the heading of T ),
DH = {Dom(A) | A ∈ H}, and T (r, A) ∈ Dom(A) for every r ∈ R and A ∈ H .

The projection of the table T : R×H −→ ⋃
DH on the set of attributes L ⊆ H

is the table T [L] : R×L −→ ⋃
DL given by T [L](r, A) = T (r, A) for every r ∈ R

and A ∈ L. If r is a row of the table T , then the set {T (r, A) | A ∈ H} is the
content of the row r. Note that this definition of a table allows for the existence of
multiple rows having the same content. The projection of the row r of the table T
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on L is the set r[L] = {T (r, A) | A ∈ L}. For A ∈ H , QT [A] = {T (r, A) | r ∈ R}
represents the content of the column associated with the attribute A in the table
T .

The active domain of a set of attributes L in the table T is the set aDomT (L)
= r[L]. The cardinality of the active domain of L in the table T is denoted by
aTL, or, when there is no risk for confusion, just by aL.

Let T : R×H −→ ⋃
DH be a table with n attributes and H = A1A2 . . . An.

Every attribute set L ⊆ H determines a partition πL = {D1, . . . , DaL} of the
set R of rows in table T , where aDomT (L) = {v1, . . . , vaL} and Di = {r ∈ R |
T (r, L) = vi} for 1 ≤ i ≤ aL. Clearly, if L = {Ai1 , . . . , Ai�

}, then πL =
⋂{πAij

|
1 ≤ j ≤ �}. When L = H , we denote by πH =

⋂{πAi | 1 ≤ i ≤ n} the partition
determined by the intersection of all n attribute partitions. We call this partition
the intersection partition.

Let R be the set of reals. The k-dimensional simplex is the set SIMPLEXk−1

= {(p1, . . . , pk) ∈ R
k | pi ≥ 0 and p1 + · · ·+ pk = 1}.

A function f : R −→ R is concave on a set S ⊆ R if f(αx + (1 − α)y) ≥
αf(x) + (1 − α)f(y) for α ∈ [0, 1] and x, y ∈ S. The function f is sub-additive
(supra-additive) on S if f(x + y) ≤ f(x) + f(y) (f(x + y) ≥ f(x) + f(y)) for
x, y ∈ S.
Definition 1 A generator is a concave, subadditive function f : [0, 1] −→ R

such that f(0) = f(1) = 0 and f(θa1)+· · ·+f(θan) ≤ θ(f(a1)+· · ·+f(an))+f(θ)
for every (a1, . . . , an) ∈ SIMPLEXn−1 and θ ∈ [0, 1].

The impurity measure induced by f is i(p1, . . . , pk) = f(p1)+ · · ·+f(pk), for
every (p1, . . . , pk) ∈ SIMPLEXk−1.

It is easy to verify that such functions as fgini(p) = p − p2 (the Gini index),
fent(p) = −p log p (the Shannon entropy), or fpeak (given by fpeak(p) = p for
0 ≤ p ≤ 0.5 and fpeak(p) = 1− p for 0.5 < p ≤ 1) are generators.

Definition 2 Let f be a generator, R be the set of rows of a table T , and let
π = {B1, . . . , Bn}, σ = {C1, . . . , Cm} be two partitions of R.

The f -impurity of partition π (called also the f -entropy of π) is Hf(π) =∑n
i=1 f

(
|Bi|
|R|

)
.

The specific f -impurity of a subset L of R relative to a partition π is the
quantity

impf
π(L) = f

( |L ∩B1|
|L|

)
+ · · ·+ f

( |L ∩Bn|
|L|

)
.

The f -impurity of π relative to σ is

Hf (π|σ) =
m∑

j=1

|Cj |
|R| impf

π(Cj) =
1
|R|

m∑
j=1

|Cj |
n∑

i=1

f

( |Bi ∩Cj |
|Cj |

)
.

This quantity is also called the f -conditional entropy of π relative to σ.

In other words, the conditional entropy Hf (π|σ) is the average value of the
specific impurity of the classes of the partition σ relative to the partition π.
Note that Hf (π|ωR) = Hf (π) for every π ∈ PART(R). We have σ ≤ π, if and
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only if Hf (π|σ) = 0. Thus, for any partition of the set R we have Hf (π|αR) = 0
and Hf (ωR|π) = 0.
Several properties of entropy (see [SCC00b]) are given next.

(i) Let f be a generator and let π, σ be two partitions of a set R. We have:
Hf (π) ≥ Hf (π|σ) ≥ Hf (π ∧ σ) −Hf (σ).

(ii) If π1, π2, σ ∈ PART(M) are such that π1 ≤ π2, then Hf (π1|σ) ≥ Hf (π2|σ).
(iii) If π, σ1, σ2 ∈ PART(R) are such that σ1 ≤ σ2, then Hf (π|σ1) ≤ Hf (π|σ2).
(iv) If π1, π2, σ ∈ PART(M) are such that π1 ≤ π2, then Hf (π1) ≥ Hf (π2).
(v) Let f be a generator and let π, σ be two partitions of a set R. We have

1
2

[Hf (π) +Hf (σ)
] ≤ Hf(π ∧ σ) ≤ Hf (π) +Hf (σ).

(vi) Let f be a generator and let π, σ be two partitions of a set R. We have

1
2
Hf (π) − 1

2
Hf (σ) ≤ Hf (π|σ) ≤ Hf (π)

and
1
2
Hf (σ)− 1

2
Hf (π) ≤ Hf (σ|π) ≤ Hf (σ).

(vii) Let f be a generator and let π1, π2, . . . πn partitions of a set R. We have

1
n

n∑
i=1

Hf (πi) ≤ Hf (π1 ∧ π2 . . . ∧ πn) ≤
n∑

i=1

Hf (πi).

2.2 Properties of Partitions with k classes

Let πk = {B1, B2 . . . Bk} ∈ PART (R) with |πk| = k classes and let πk−1 be the
partition with k−1 classes, obtained from πk by fusing the classes Bi and Bj , and
keeping the rest of the classes unmodified. The difference between the entropies
of the two partitions is given by Hf (πk) − Hf (πk−1) = f

(
|Bi|
|R|

)
+ f

(
|Bj |
|R|

)
−

f
( |Bi∩Bj |

|R|
)

≥ 0 (since the generator f is sub-additive). Thus, by joining two
classes of a partition we obtained another partition with a smaller value of its
entropy. Similarly, by splitting a class of a partition we obtained another partition
with a greater value of the entropy. The quantity Hfgini(πk) − Hfgini(πk−1) =
2 |Bi||Bj|

|R|2 . Thus for the Gini index, the maximum decrease in the entropy is
obtained when the largest classes of the partition πk are united. For the Shannon
entropy, the decrease in entropy is Hfent(πk) − Hfent(πk−1) = 1

|R| (1 +
1
r )

r|Bi|,

where r = |Bj|
|Bi| . If we choose Bi as the largest class of πk, then the maximum

value of the expression (1+ 1
r )

r is obtained for the largest possible value of r, thus
for the largest value of |Bj |. Again, to obtain the greatest decrease in entropy
we have to fuse the largest classes of the partition πk.

Given a set R, αR has the largest value of the entropy

Hf (αR) = |R|f
(

1
|R|

)
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and the largest number of classes |αR| = |R| and ωR has the smaller value of the
entropy Hf (αR) = 0 and the smallest number of classes |ωR| = 1. We can obtain
any partition π with k classes, by starting from αR and successively fusing two
classes. We obtain in this way a series of partitions π0 = αR, π

1, π2 . . . πk = π
such that each πi has the same classes as πi−1 with the exception of two classes
which are united in πi. If we want the partition π to have the smallest possible
value of the entropy among all partitions with k classes, in the sequence of
partitions obtained above, we must always to unite the largest possible classes,
to ensure at each step the largest decrease in the value of the entropy. Thus, in
this process, we always add one more element to the largest class obtained so
far. Therefore, the partition π having |π| = k classes and the smallest possible
value of Hf(π) has k − 1 classes of cardinality 1 and one class of cardinality
|R| − k + 1.

The partition π having |π| = k classes and the largest possible value of the
entropy, has classes of equal cardinality |R|

k .
We conclude that the entropy of a partition π such that |π| = k is bounded

by

kf

(
1
|R|

)
+ f

( |R− k + 1|
|R|

)
≤ Hf (π) ≤ kf

(
1
k

)
.

Given an entropy value Hf

target ≤ |R|f( 1
|R| ), we can estimate an upper and

lower bound for the number of classes k = |π| of a partition π which has entropy
Hf (π) = Hf

target.

For the Gini index as generator, the inequality Hf

target = Hf (π) ≤ kf (
1
k

)
implies

k ≥



1

1−Hf

target


 ,

and the inequality Hf

target = Hf (π) ≥ kf
(

1
|R|

)
+ f

(
|R−k+1|

|R|
)
, yields

k ≤
⌈
|R|

√
Hf

target + 1
⌉
.

For the Shannon entropy as generator, we obtain the boundaries 2
Hf

target ≤
k ≤ |R|+1− �eH

f

target�, where k0 is the first integer that makes the inequality
|R|

e
Hf

target
≤ (|R| − k + 1)(|R|−k+1) true.

For a generator f , the upper bound of the value k, obtained from the inequal-
ity Hf

target ≤ kf
(

1
k

)
represents the number of classes of a partition π with equal

cardinality classes having the value of the entropy Hf (π) = Hf

target. The lower
bound represents the number of classes of a partition with one class containing
the majority of the elements. Since the last situation will be very unlikely to
occur in practical clustering problems, more attention should be given to the
upper bound estimate.
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2.3 Dissimilarity measure

A generalization of the notion of metric on a set is the notion of dissimilarity
(see[KR90] and [JMF99]) which is useful in clustering.

A dissimilarity on a set S is a function d : S×S −→ R such that d(x, y) ≥ 0,
d(x, x) = 0 and d(x, y) = d(y, x) for every x, y ∈ S.

The dissimilarity d is said to be definite if for all x, y ∈ S, d(x, y) = 0 implies
x = y. If a dissimilarity satisfies the triangular inequality d(x, y) + d(y, z) ≥
d(x, z) for x, y, z ∈ S, then we obtain the familiar notion of metric on S.

If f is a generator, then the mapping df : PART(R) × PART(R) −→ R

given by df (π, σ) = Hf (π|σ) +Hf (σ|π) for σ, π ∈ PART(R), is clearly a definite
dissimilarity on PART(R). When π is close to σ, meaning that their classes have
many elements in common, then both Hf (π|σ) and Hf (σ|π) are close to 0, so
df (π, σ) is close to 0.

3 Clustering using Genetic Algorithms

3.1 Genetic Algorithm

Let T : R×H −→ ⋃
DH be a table. We are searching for the median partition,

that is a partition π such that |π| ≤ k, and π minimizes the sum∑
A∈H d

f (πA, π).
A k-chromosome on a table T : R × H −→ ⋃

DH is a function K : R −→
{1, . . . , k}. An element of the set {1, . . . , k} is called a class identifier.

The partition πK of the set of rows R determined by the k-chromosome K
is πK = {C1, . . . , Ck}, where Cj = {r ∈ R | K(r) = j} for 1 ≤ j ≤ k.

The input parameters of the genetic algorithm are summarized in Figure 1.

M cardinality of the chromosomial population
N number of rows in the table T
n number of columns in the table T
k number of classes in the median partition
r percent of chromosomes that are used for crossover
m percent of chromosomes that undergo a mutation

Nmax maximum number of consecutive iterations without improvement
ε margin error for the fitness function

Figure 1: The input parameters of the genetic algorithm

The chromosomial population consists of k-chromosomes, K1,K2 . . .KM ,
where each k-chromosome Ki can be regarded as a sequence of length N = |R|
representing a possible assignment of the rows of the table T to the k classes of
the partition πKi . Initially, the chromosomes K1,K2 . . .KM are generated using
random values between 1 and k.

The idea of the genetic evolution is to modify the chromosomes in the current
population by using mutation and crossover as genetic operators such that in
the new population we have chromosomes that will be increasingly closer to the
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median partition, that is, they will summarize better and better the columns of
the table T .

We use the classical single point crossover operator. Starting from two chro-
mosomes, a random crossing point (called a crossover site) is selected as a num-
ber l between 1 and N . The offspring will contain the first 1 to l positions from
the first parent and the last l+1 to N positions from the second parent and vice
versa. We use the classical mutation operator which involves changing randomly
a number of max{1, 0.1N} positions in the chromosomes. The new value for each
chromosome position is chosen randomly from 1 to k.

The pseudocode of the algorithm is the following:

initialize the population of genetic algorithm
while (true)

compute the fitness of chromosomes in the population;
if (there has been no relative

improvement in best fitness value for Nmax iterations)
then

output the partition of Kbest;
exit;

copy fittest (1− r −m)M chromosomes to new population;
select probabilistically max{2, rM} chromosomes to cross over;
apply crossover operator to the selected chromosomes

and copy the offspring to the new population;
select with uniform probability max{1,mM} chromosomes to mutate;
apply mutation operator to the selected chromosomes

and copy the modified chromosomes to the new population;
replace old population by the new one;

For each chromosome Ki we compute the value fitness(Ki). We denote by
Kbest the chromosome which has the largest fitness(Ki) value; its fitness is de-
noted by fitnessbest.

If in Nmax consecutive iterations there is no improvement in the best fitness,
then the algorithm will halt and the median partition will correspond to the
chromosome Kbest. Otherwise, a new population is computed using the elite
selection (see [Mic99]). The fittest max{M − 3, (1− r−m)M} chromosomes are
copied directly in the new population, ensuring that we will never lose the best
chromosome from the old population.

Next, a number of max{2, rM} chromosomes from the old generation are
selected probabilistically to be used in the generation of the new offspring by
crossover. The selection method used is a roulette wheel strategy (or fitness-
proportionate selection) in which the chromosomes having greater values of their
fitness have also a greater chance of being selected. The newly generated chro-
mosomes are copied into the new population.

Finally, a number of max{1,mM} chromosomes are selected with uniform
probability and are subjected to mutations. The mutation operator is not biased
towards the fittest chromosomes and therefore the chromosomes that will suffer
a mutation are selected with uniform probability.
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3.2 Genetic Algorithm Fitness Measures

Let π ∈ PART (R), Kf (π) =
∑

A∈H Hf (πA|π) and Lf (π) =
∑

A∈H Hf (π|πA).
In the median partition problem, we are searching for a partition π which mini-
mizes the distance df (π) =

∑
A

[Hf (πA|π) +Hf(π|πA)
]
= Kf (π) + Lf (π).

We have df (ωR) = Kf (ωR), since πA ≤ ωR and Hf (ωR|πA) = 0 for all
partitions πA. Also Kf (ωR) =

∑
A Hf (πA), so df (ωR) =

∑
A Hf (πA).

Similarly, we have df (αR) = Lf (αR), since πA ≥ αR and Hf (πA|αR) = 0
for all partitions πA. Given that πA = {BA

1 , . . . B
A
l } and αR = {D1, . . . D|R|}

we have Hf (αR|πA) =
∑l

i=1
|BA

i |
|R|

∑|R|
j=1 f

( |BA
i ∩Dj |
|Bi|

)
. There are |BA

i | non-empty
intersections in the inner sum, so

Hf (αR|πA) =
l∑

i=1

|BA
i |2
|R| f

(
1

|Bi|
)
.

Thus, df (αR) =
∑l

i=1
|BA

i |2
|R| f

(
1

|Bi|
)
.

αR ≤ π ≤ ωR, Hf (πA|π) ≤ Hf (πA|ωR) and Hf (π|πA) ≤ Hf (αR|πA). Thus,
we have an upper bound for the value df (π), namely df (π) ≤ df (ωR) + df (αR).

We propose the quantities summarized in Figure 3.2 as measures of the close-
ness between the partitions represented by the chromosomes and the attribute
partitions.

Kf (π) =
∑

A∈H
Hf (πA|π)

Mf (π) = Kf (π) + Lf (π)

N f (π) =
∑

A∈H

Hf (π|πA)

1+Hf (πA)
+

∑
A∈H

Hf (π|πA)

1+Hf (π)

Of (π) =

{
Kf (π) if Hf (π) ≤ Hf

avg
Lf (π) otherwise

Pf (π) =

{
Kf (π) if Kf (π) ≥ Lf (π)
Lf (π) otherwise

Qf (π) = |Kf (π) + Lf (π)|+ |Kf (π)−Lf (π)|

Figure 2: Measures for assessing the quality of the partition π

Based on these measures, we define the fitness measure associated with each
chromosome K whose partition is πK , as in Figure 3.2.

Note that if a chromosome has a small value for Kf (πKi), then its associated
fitness value fitnessfK(Ki) will be large. This property holds for all proposed
fitness measures.

The measure Kf (π) leads the convergence process toward a partition π whose
classes fit as well as possible inside the classes of all attribute partitions.

The measure Mf(π) requires the partition π to have classes that fit as well
as possible inside the classes of all attribute partitions and conversely the classes

160 Cristofor D., Simovici D.: Finding Median Partitions ...



fitnessfK(K) =
max{Kf (πKi

)|1≤i≤n}
Kf (πK )

fitnessfM(K) =
max{Mf (πKi

)|1≤i≤n}
Mf (πK)

fitnessfN (K) =
max{Nf (πKi

)|1≤i≤n}
Nf (πK)

fitnessfO(K) =
max{Of (πKi

)|1≤i≤n}
Of (πK)

fitnessfP(K) =
max{Pf (πKi

)|1≤i≤n}
Pf (πK)

fitnessfQ(K) =
max{Qf (πKi

)|1≤i≤n}
Qf (πK )

Figure 3: Fitness Measures

of the attribute partitions should fit as well as possible inside the classes of the
partition π.

For a given partition π and a given database, Kf (π) and Lf (π) do not have
the same range of possible values, but Hf (πA|π)

1+Hf (πA) and
Hf (π|πA)
1+Hf (π) both range between

0 and 1. The measureN f (π) uses the scaled versions of the conditional entropies.
The introduction of the measure Of (π) is explained by the following results.

For any partition π by summing over all partitions πA we get the following
inequalities 1

2

∑
A Hf (πA) − 1

2nHf(π) ≤ Kf (π) ≤ ∑
A Hf (πA) and 1

2nHf(π) −
1
2

∑
A Hf (πA) ≤ Lf (π) ≤ nHf (π). Let Hf

avg be the average entropy of the

partitions generated by the attributes of the table, given by Hf
avg =

∑
A

Hf (πA)

n .

The previous inequalities can be rewritten as Hf
avg −Hf (π) ≤ 2Kf (π)

n ≤ 2Hf
avg

and Hf (π) − Hf
avg ≤ 2Lf (π)

n ≤ 2Hf (π). We have two cases depending on the
relative values of Hf (π) and Hf

avg:

1. If Hf
avg ≥ Hf (π), then we have max

{
Lf (π)

n ,Hf
avg − 2Kf (π)

n

}
≤ Hf (π) ≤

Hf
avg, Kf (π) ≤ nHf

avg, and Lf (π) ≤ nHf (π) ≤ nHf
avg.

To have the blocks of the partition π fit as well as possible inside the blocks of
the partitions πA, we seek to minimize the average f -impurity of the blocks
of π, relative to each of these partitions, that is, we seek to minimize Kf (π).
The inequality 0 ≤ Hf

avg − Hf(π) ≤ 2Kf (π)
n , guarantees that if Kf (π) is

small, then Hf (π) is close to Hf
avg.

For the quantity Mf (π) = Kf (π) + Lf (π) we have also the following lower
and upper bound n

2 { Hf
avg −Kf (π) } ≤ Kf (π) + Lf (π) ≤ 2nHf

avg.

2. If Hf
avg < Hf (π), then we have max

{
Lf (π)

n ,Hf
avg

}
≤ Hf (π) ≤ Hf

avg +
2Lf (π)

n , Kf (π) ≤ nHf
avg, and Lf (π) ≤ nHf (π).

To have the blocks of the attribute partitions πA, fit as well as possible
inside the blocks of the partition π found by the genetic algorithm, we seek
to minimize the average f -impurity of the blocks of attribute partitions πA,
relative to the partition obtained by the genetic algorithm, that is, we seek
to minimize Lf (π). The inequality 0 ≤ Hf (π)−Hf

avg ≤ 2Lf (π)
n , insures that

the value of Hf (π) will get close to the value Hf
avg.
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In this case the lower and upper bound of the quantity Mf (π) = Kf (π) +
Lf (π) are n

2 { Hf (π)−Hf
avg } ≤ Kf (π) + Lf (π) ≤ nHf

avg + nHf (π).

To conclude, by minimizing Kf (π) and Lf (π) we obtain a partition π which
has the value Hf (π) as close as possible to the value Hf

avg. This observation
suggest the following convergence criteria for the genetic algorithm:

If Hf
avg ≥ Hf (π), the genetic algorithm will minimize Kf (π), favoring parti-

tions with many blocks of smaller sizes. Otherwise (Hf
avg < Hf (π)), the genetic

algorithm will minimize Lf (π), favoring partitions with fewer blocks of bigger
sizes. This alternation between minimization of Kf (π) and Lf (π) corresponds
to the measure Of (π) from figure 3.2.

Similarly, the measure Pf(π) uses the idea of alternating between the mini-
mization of Kf (π) and Lf (π), but the choice depends on the relative values of the
two quantities. Namely, if Kf (π) < Lf (π) the genetic algorithm will minimize
Lf (π), otherwise will minimize Kf (π).

When the quantity Kf (π) is very small, the partition π has many classes with
smaller sizes, that fit well inside the classes of attribute partitions and therefore
the classes of attribute partitions might not fit that well inside the classes of
π, leading to a greater value of the quantity Lf (π). Thus, we want to favor
partitions for each the difference between the two quantities is small in absolute
value. The measure Qf (π) is based on this observation.

For any given database, we have Hf
avg ≤ Kf (πH) ≤ nHf

avg. Thus, the
average entropy of the attribute partitions has always a smaller value than the
entropy of the intersection partition. We denote by kH = |πH |. The blocks
of πH fit perfectly inside the blocks of all attribute partitions πA, so πH is a
candidate for the partition that we search. But, we are not interested in this
special partition since it might have a large number of blocks (close to the total
number of rows |R|) and thus, the corresponding clustering of the data is not
interesting. We are interested to find a partition π that is as close as possible to
all attribute partitions and has the maximum possible number of blocks k less
than kH . In this process of minimizing Kf (π) and Lf (π), the entropy Hf (π) of
the partition π will get closer and closer to the value of the average entropy of
the attribute partitions Hf

avg.
The interpretation of the measure Of (π) is illustrated in Figure 4.
If Hf (π) ≥ Hf

avg, the partition π has too many blocks or very small blocks
and the minimization of Lf (π) has the effect of decreasing the number of blocks
or respectively uniting blocks of the partition π. Otherwise (Hf (π) ≤ Hf

avg),
π has too few blocks or blocks with large sizes and the minimization of Kf (π)
has the effect of increasing the number of blocks or splitting the blocks of the
partition π.

For databases for which the value Hf
avg represents a good approximation

of the entropy of the partition that we are searching, then the measures Of (π)
or Pf(π) should be used in the convergence process of the genetic algorithm
in preference to the other proposed measures. The partition π associated with
the minimum possible value of the quantity Mf (π) has the entropy Hf (π) close
to the value of the average entropy of all attribute partitions Hf

avg. Thus, the
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avg Hf (πH)Hf (π)Hf (π)

min Kf (π)
increasing the number
of classes or splitting larger

classes

min Lf (π)
decreasing the number

larger classes
of classes or merging

increase in entropy values

Figure 4: Explanation of the convergence process for measure Of (π)

number of blocks k = |π| of the partition π can be estimated from the inequality
kf

(
1
|R|

)
+ f

(
|R−k+1|

|R|
)

≤ Hf
avg ≤ kf (

1
k

)
as explained in the previous sec-

tion. For the Gini index generator we get the limits for the number of classes:

|R|
√
Hf
avg + 1 ≥ k ≥ 1

1−Hf

avg
. If the partition π has well represented classes

(with similar cardinalities) then the lower bound limit is a better estimation
of k. On the other hand if π has almost all elements grouped into one class,
then the upper bound limit is a better estimate. If we do not know in advance
what to assume about the nature of the partition π that we searched, we have
to apply the genetic clustering algorithm searching for successive values of k,
starting from 1

1−Hf

avg
and increasing k by 1. The quantity Mf(π) will have a

minimum for the value of k reflecting the natural number of classes. If the value
Mf (π) always increases as we increment the number of classes, then the value
k = 1

1−Hf

avg
represents the natural number of classes.

4 Experimental results

We studied the clustering found by three algorithms, our genetic algorithm de-
noted by ALG-RAND, the algorithm introduced by [Rég83a], denoted by ALG-TP,
based on the idea of transferring elements from one class to another until no im-
provements has been done in a number of consecutive iterations, and the classical
k-means algorithm denoted by K-MEANS.

To prove the better quality of the partition obtained by our method, we used
synthetically generated databases for which we know in advance the partition
embedded in the data, denoted by reference partition.

The generation of these databases follows the pattern: for each row number
rowid ∈ [1, N ], a number i ∈ [1, c] is randomly generated and saved at position
rowid in the reference partition and in all attribute partitions, but one. The
exception attribute Ae ∈ H , randomly chosen, receives at position rowid a dif-
ferent value j ∈ [1, c], j �= i. To ensure that the reference and attribute partitions
have exactly c classes, the first values for i are 1, 2, . . . c.

We generated a synthetic database with a fixed number of rows N = 50
and columns n = 5, and embedded a k = 5 class partition in the data. To
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see how the algorithm behave on average when the population of chromosomes
increases relative to the size of the database, we ran the genetic algorithm with
10 different values for the random number generator seed and with the number
of chromosomes equal to 1, 2, up to 10 times the number of rows. The other
parameters for the genetic algorithm are: crossover rate of 0.8, mutation rate
of 0.1, the Shannon entropy used as generator and 100 consecutive iterations
without improvement. The results are shown in Figures 5, 6, and 7.
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Figure 5: Classification rate / ALG-RAND with increasing number of chromosomes

ALG-RAND performed extremely well and found the reference partition or a
close approximation of it, leading to classification rates (the number of rows clas-
sified in the partition found by the algorithm in the same way as in the reference
partition) between 0.94 and 1. By increasing the size of the chromosomial popu-
lation, the number of iterations required by the algorithm decreases significantly.
The time required by the algorithm is linear in the number of chromosomes.

We fixed the number of chromosomes to N = 50 and we generated databases
with c = 5 columns, k = 5 class partitions embedded in the data and a number
of rows equal respectively to 1, 2 up to 10 times the number of chromosomes.
The other parameters for the genetic algorithm remained as in the previous
experiment. The results are shown in Figures 8, 9, and 10.

With the increase in the number of rows, the classification rate decreases
since the search space becomes more complex, the number of iterations and the
time increases. The increase in the number of iterations and the time is linear
in the size of the database.

We generated a database with N = 100 rows, n = 10 columns, and c = 5
classes in the attribute and reference partitions. On this database, we ran our
genetic algorithm ALG-RAND, the algorithm ALG-TP and the algorithm K-MEANS
implemented in the WEKA package, searching for a partition with k = 5 classes.
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Figure 6: Number of iterations / ALG-RAND with increasing number of chromosomes
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Figure 7: Time (secs) / ALG-RAND with increasing number of chromosomes

We executed 10 runs for each algorithm, corresponding to different values for the
seed of the random number generator and we computed the average performance
of the partitions found. For the genetic algorithm we used the fitness measures
based on the quantities presented in Figure 3.2, 100 chromosomes, a crossover
rate of 0.8, a mutation rate of 0.1, the Gini index and respectively the Shannon
entropy as generators, and 100 consecutive iterations without improvement. The
results are summarized in the Figure 11. The results table contains the entropy
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Figure 8: Classification rate / ALG-RAND with increasing number of chromosomes
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Figure 9: Number of iterations / ALG-RAND with increasing number of chromosomes

of the intersection partition Hf (πH), the average value of the entropies of all
attribute partitions Hf

avg, the entropy of the reference partition Hf (πref) and
its associated valueMf (πref). For the genetic algorithms we present the average
value of the following measures: Hf (π), Mf(π), d(π, πref) (the distance between
π and πref), the classification rate cr, and the number of iterations nitrs. For
the ALG-TP and the K-MEANS algorithms we present only the average value of the
classification rate.
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Figure 10: Time (secs) / ALG-RAND with increasing number of chromosomes

The genetic algorithms using fitness measures based on the quantities from
Figure 3.2 lead in all cases to a partition close to the reference partition, in
approximatively the same number of iterations. The genetic algorithm using the
Gini index as generator obtained the best partition in the case of the measure
Qf (π), for which Mf (π) = 3.820 is the closest value to Mf (πref) = 3.561, and
Hfgini(π) = 0.793 is the closest value to Hfgini

avg = 0.793. For this quality measure
the average classification rate was 0.99, leading to a very good approximation
of the searched partition, in which 99 elements have been classified in average
as in the reference partition. When the Shannon entropy was used as generator,
the best partition was found by using the measure Kf (π); in this case also the
associated value Mf (π) = 11.102 is the closest value to Mf (πref) = 10.480, and
Hfentr (π) = 2.300 is the closest value to Hfentr

avg = 2.298. For the measure Kf (π),
the genetic algorithm has also a high value of the average classification rate
equal to 0.992, meaning that 99 elements have been grouped as in the reference
partition.

We are searching for a partition π having well represented classes, that is
we do not have any reason to assume that some classes have significantly more
elements than the others, and we can estimate the number of classes k of this
partition using the value of the average entropy of the attribute partitions. When
the Gini index is used as generator, the value of k is given by � 1

1−Hf

avg
� =

�4.85� = 5, and when the Shannon entropy is used, we have k = �2H
f

avg� =
�22.3� = 5. This estimation corresponds to the real number of classes of the
reference partition.

The algorithm ALG-TP converged toward a partition that is far from the
reference partition, having in average a classification rate of 0.616. ALG-TP favors
partitions with fewer than k classes and thus, with larger class cardinalities.

167Cristofor D., Simovici D.: Finding Median Partitions ...



ALG-RAND with Gini index

Hfgini(πH) = 0.99 Hfgini

avg = 0.793

Hfgini(πref) = 0.793 Mf (πref) = 3.561

fitnessfK Hfgini(π)Mf (π) d(π, πref) cr nitrs

Kf (π) 0.784 4.461 0.122 0.911 798

Mf (π) 0.757 4.331 0.111 0.909 704

N f (π) 0.776 4.224 0.093 0.94 690

Of (π) 0.787 4.216 0.090 0.938 719

Pf (π) 0.786 4.127 0.080 0.945 745

Qf (π) 0.793 3.820 0.036 0.99 706
ALG-RAND with Shannon entropy

Hfent(πH) = 6.643 Hfent
avg = 2.300

Hfent(πref) = 2.298 Mf (πref) = 10.480

fitnessfK Hfent(π) Mf (π) d(π, πref) cr nitrs

Kf (π) 2.300 11.102 0.029 0.992 816

Mf (π) 2.054 13.003 0.170 0.867 769

N f (π) 2.274 11.660 0.068 0.972 780

Of (π) 2.274 12.365 0.117 0.924 811

Pf (π) 2.279 12.273 0.106 0.934 851

Qf (π) 2.273 12.337 0.120 0.905 960
ALG-TP Average Classification Rate 0.616
K-MEANS Average Classification Rate 0.824

Figure 11: ALG-RAND, ALG-TP, and K-MEANS on the first synthetically generated database

The K-MEANS algorithm from the WEKA package converged to better par-
titions than ALG-TP, having an average classification rate of 0.824, but still did
not outperformed our genetic algorithms.

We can conclude that on this database, our genetic algorithms produce better
clusterings than the classical “transfer points” and k-means algorithms.

A second type of synthetically generated databases are characterized by at-
tribute partitions with a predominant class. The generation process differs from
the one described previously, in the fact that after the first c positions have being
filled with the sequence 1, 2, . . . c, the number i to be filled in the reference and
all attribute partitions, is set to 1 for any two other rows. Thus, the reference
and attribute partitions have class 1 with the largest cardinality value.

The parameters of the genetic algorithms and the setting of the experiments
remain the same as in the previous ones. The results are summarized in Figure
12.

The partitions found by the genetic algorithms using both the Gini index
and Shannon entropy as generators, are very close to the reference partition
for the quality measures Mf (π) and N f (π). The best partition is found in
case of the Gini index for Mf (π), when Mf (π) = 4.380 is the closest value
to Mf (πref) = 3.353, and in case of the Shannon entropy for N f (π), when
Mf (π) = 11.580 is the closest value toMf (πref) = 9.600. The best classification
rate for the genetic algorithms is in average 0.895 for the Gini index and 0.927
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ALG-RAND with Gini index

Hfgini(πH) = 0.99 Hfgini

avg = 0.660

Hfgini(πref) = 0.623 Mf (πref) = 3.353

fitk Hfgini(π)Mf (π) d(π, πref) cr nitrs

Kf (π) 0.767 6.921 0.460 0.61 792

Mf (π) 0.614 4.380 0.141 0.895 721

N f (π) 0.599 4.478 0.159 0.876 789

Of (π) 0.660 6.986 0.486 0.722 727

Pf (π) 0.650 4.861 0.198 0.874 835

Qf (π) 0.648 5.087 0.229 0.848 780
ALG-RAND with Shannon entropy

Hfent(πH) = 6.643 Hfent
avg = 1.911

Hfent(πref) = 1.810 Mf (πref) = 9.600

fitk Hfent(π) Mf (π) d(π, πref) cr nitrs

Kf (π) 2.156 15.796 0.383 0.653 843

Mf (π) 1.656 12.181 0.142 0.903 852

N f (π) 1.757 11.580 0.109 0.927 850

Of (π) 1.879 13.696 0.245 0.842 803

Pf (π) 1.863 13.745 0.238 0.841 872

Qf (π) 1.896 15.285 0.340 0.775 813
ALG-TP Average Classification Rate 0.82
K-MEANS Average Classification Rate 0.833

Figure 12: ALG-RAND, ALG-TP, and K-MEANS on the second type of synthetically generated
database

for the Shannon entropy.
For this database ALG-TP performed better than in the previous experiment,

but still the average classification rate 0.82 is smaller than the performance of
the genetic algorithm using Mf(π) and N f (π) as quality measures. The better
performance of ALG-TP for this database is explained by the tendency of the
algorithm to converge toward partitions with fewer classes of larger cardinality.

Again the K-MEANS algorithm from the WEKA package has a better classifi-
cation rate 0.833 than the one of ALG-TP, and is still not as good as the genetic
algorithm using the measures Mf (π), and N f (π).

Note that the quality measures N f (π) and Pf (π) lead to good classification
rates regardless of the type of database.

As we discussed in section 2.2, we can obtain an estimate of the natural
number of classes in the input database, by using the value of Hf

avg. In the
second experiment we work with a database havingHfentr

avg = 1.911. For this value
the lower bound estimate of the number of classes gives k = �21.911� = 4. Using
the same database we executed 10 runs of the algorithm ALG-RAND, searching
for partitions with k ∈ {3, 4, 5, 6, 7, 8, 9, 10} classes.

We observe from Figure 13 that the value of the quantity Mf (π) we search
to minimize reaches a minimum for values of k around the real number of classes
embedded in the data. A detailed description of the partitions found by ALG-RAND
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ALG-RAND with N f (π) and Shannon entropy

Hfent(πH) = 6.643 Hfent
avg = 1.911

Hfent(πref) = 1.810 Mf (πref) = 9.600

k Hfentr (π)Mf (π) d(π, πref) cr nitrs
3 1.292 13.384 0.242 0.827 581
4 1.555 12.373 0.163 0.894 663
5 1.757 11.580 0.109 0.927 850
6 1.885 10.712 0.051 0.967 998
7 1.952 11.102 0.068 0.959 1178
8 2.051 11.632 0.093 0.946 1080
9 2.148 12.456 0.133 0.919 1349
10 2.295 13.615 0.192 0.876 1345

Figure 13: ALG-RAND with N f (π), Shannon entropy and various k on the second type
of synthetically generated database

in one of the 10 experiments is given in Figure 14.

πref
k class card Hfentr (π)Mf (π) cr
5 57 17 10 9 7 1.810 9.600

ALG-RAND with N f (π) and Shannon entropy

k class card Hfentr (π)Mf (π) cr
3 57 33 10 1.322 13.047 0.84
4 58 19 16 7 1.602 11.546 0.9
5 57 17 10 9 7 1.810 9.600 1
6 56 17 16 10 1 1.724 11.365 0.92
7 56 17 10 9 7 1 1.882 10.196 0.99
8 57 17 10 8 7 1 1.855 9.932 0.99
9 53 16 10 9 7 4 1 2.074 11.856 0.95
10 50 10 9 9 8 7 7 2.286 13.441 0.85

Figure 14: Characteristics of the partitions found by ALG-RAND with N f (π) on the
second type of synthetically generated database

The best partition found by ALG-RAND using the quality measure N f (π) and
the Shannon entropy is the one obtained for k = 5, characterized by the smallest
value of Mf(π). In this case ALG-RAND obtained exactly the reference partition,
as the classification rate of 1 indicates. Even if we started the algorithm by asking
for more that the real number of classes, the partitions found by the algorithm
have discovered the major classes of the reference partition and the additional
classes have smaller cardinalities. This show that our algorithms are robust and
they are able to discover the real clustering of the data even if they are asked
for more than the necessary number of classes.
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We conclude that whenever we do not know in advance the number of classes
in the natural clustering of the input data, we have to run a couple of experiments
with increasing values of k = |π|, and we have to consider both the shape of the
partition π found by the algorithm and its associated value Mf (π). We can use
as the best approximation of the median partition, the partition that has the
smaller value of Mf(π) and the fewest number of small cardinality classes.

5 Conclusions

We demonstrated the use of the notion of generalized entropy for designing
a genetic algorithm for finding clusters in a given data and experimented with
different fitness measures for the evaluation of the chromosomial population. Our
experiments showed that, with very few exceptions, the algorithms converged to
the clustering that we embedded in the synthetically generated databases, and,
when they didn’t converge, then they found a clustering that was close to the
“hidden” one.

The number of iterations required by our algorithms scales linearly with the
size of the database.

Using the dissimilarity measure Kf (π)+Lf (π), it is possible to determine the
number of clusters embedded in the data in the absence of any apriori knowledge.
As shown in this paper the information-theoretical measures proved successful
in finding the natural clustering of the data.
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[BL95] Jean-Pierre Barthélemy and Bruno Leclerc. The median procedure for parti-
tions. In DIMACS Series in Discrete Mathematics and Theoretical Computer
Science. AMS, 1995.

[Fal99] Emanuel Falkenauer. Genetic algorithms and grouping problems. Jon Wiley,
New York, 1999.

[Hol92] John H. Holland. Adaptation in Natural and Artificial Systems. The MIT
Press, Cambridge, Massachusetts, 1992.

[Hua97] Zhexue Huang. A fast clustering algorithm to cluster very large categorical
data sets in data mining. In Research Issues on Data Mining and Knowledge
Discovery, pages 0–, 1997.

[JB91] Donald R. Jones and Mark A. Beltramo. Solving partitioning problems with
genetic algorithms. Proceedings of the fourth International Conference on
Genetic Algor hms, pages 442–449, 1991.

[JMF99] A.K. Jian, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM
Computing Surveys, vol 31, no. 3, September 1999.

[KR90] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data. John
Wiley, New York, 1990.

[Mic99] Zbigniew Michalewicz. Genetic algorithms + Data Structures = Evolution
Programs. Springer, New York, 1999.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
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