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Abstract: We define rationally additive semirings that are a generalization of (w)-
complete and (w-)continuous semirings. We prove that every rationally additive semir-
ing is an iteration semiring. Moreover, we characterize the semirings of rational power
series with coefficients in N, the semiring of natural numbers equipped with a top
element, as the free rationally additive semirings.
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1 Introduction

Rationally additive semirings arise in [Mohri 1998]. Rationally additive semiring
possess enough infinite sums to solve any finite system of linear fixed point equa-
tions. They are a common generalization of (w)-complete and (w-)continuous
semirings [see Eilenberg 1974, Kuich 1987, Sakarovitch 1987, Kuich 1997] in
which all (countable) sums exist. Two prime examples of rationally additive
semirings are the semiring of rational (or regular) sets in A*, where A is any set,
and the semiring N22¢{A*) of rational power series over A with coefficients in
Ny, the semiring of natural numbers with a top element co.

In our main result, Theorem 10, we prove that every rationally additive semir-
ing is an iteration semiring. This fact extends a result of [Hebisch 1990] by which
every complete semiring is a Conway semiring. Iteration semirings appear implic-
itly in [Conway 1971]. They were explicitly defined in [Bloom, Esik 1993a, 1993b].
Conway conjectured that a complete axiomatization of the equational theory of
rational (regular) languages consists of the Conway semiring equations, defined
below, together with the equation 1* = 1 and an equation associated with each
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finite group. Conway’s conjecture was confirmed in [Krob 1991], see also [Esik

1999]. In [Bloom, Esik 1997], the authors conjectured that the valid equations of
rational power series with coefficients in N, the semiring of natural numbers
equipped with a top element, can be axiomatized by the iteration semiring equa-
tions and the equation 1* = 1**. This conjecture is still open. In Theorem 15,
we characterize the semirings of rational power series with coefficients in N, as
the free rationally additive semirings.

2 Conway semirings and iteration semirings

A *-semiring is a semiring [see Kuich, Salomaa 1986, Golan 1992]
S = (Sa+a 'aov 1)

equipped with a star operation * : S — S. A Conway semiring [Bloom, Esik

1993b] is a *-semiring S which satisfies the sum-star and product-star equations
(z+y)" = (z"y) 2" (1)
(zy)" = 1+ 2(yz)"y. (2)

Note that the fized point equation
¥ =1+ zz" (3)

holds in any Conway semiring. (Substitute 1 for y in (2).)

Suppose that S is a *-semiring and n > 0. We turn the matrix semiring
S™*™ into a *-semiring. Let M € S™*"™. When n = 0, M* is the unique 0 x 0
matrix, and when M = [a], then M* = [a"]. Suppose now that n > 1. Write

M= [ﬁg]’WhefeaiS (n—1)x(n—1)and dis 1 x 1. We define
» Q
M =m] (4)

where

a=(a+bd*c)"

8 = abd*

v = dea”

§ = (d+ ca®d)*.
Theorem 1. [Conway 1971, Bloom, Esik 1993] If S is a Conway semiring, then
s0 is each matriz semiring S™*™. Moreover, the above matriz formula (4) holds
for each way of splitting M into four blocks M = [Z 2] such that a and d are

square matrices.
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Suppose that G is a finite group of order n with elements g1, ..., g,. For each
i, let z; denote a variable associated with g;. We define Mg = [(Mg)i; ], where
(Mg),; is the variable associated with the group element gi_lgj7 ie., (Mg)ij = zx
where g, = g;° lgj. The matrix M is defined as in (4) above, so that each entry
of M is a term in the variables z1,...,zy,.

The group-equation associated with G [see Conway 1971] is the equation

e-M&-u=(x1+4+...+z,)",

where e is the 1 x n row matrix whose first entry is 1 and whose other entries
are 0, and where w is the n x 1 column matrix whose entries are all 1. (Under
the Conway semiring equations (1) and (2), the particular order g, ..., g, of the
group elements is irrelevant.)

An iteration semiring [see Bloom, Esik 1993, Esik 1999] is a Conway semiring
satisfying all group-equations.

Proposition 2. [Bloom, Esik 1993b] Any Conway semiring S satisfying the
functorial implication

AC =CB = A*C =(CB~,
for all matrices A € S™*™, B € S™*™ and C' € S™*™, is an iteration semiring.

Notation For each nonnegative integer n, we denote the set {1,...,n} by
[n]. Thus, [0] is another name for the empty set.

For any set X, we denote by X* the free monoid of all words over X' including
the empty word e. When S is semiring, S{A*) denotes the semiring of all power
series over A with coefficients in S. Moreover, we let S{A) denote the collection
of all finite sums of terms of the form sa with s € S and a € X.

3 Rationally additive semirings

A weak rationally additive semiring is a semiring S equipped with a partial
summation ), ; s; defined on countable families s; € S, i € I subject to the
following conditions:

— Ax;. When s; € S for i € F and F is finite, then )
s; as defined in the semiring S.

— Axy. For each s € S, the geometric sum fozo s™ exists.

— Axsz. If )7, ;s exists, then so do ), ss; and ), s;s, for each s € S,

moreover,
(00 =Y

icp Siis the sum of the

i€l

iel i€l
(E 8i)s = g 8;8.
iel i€l

— Axy. Suppose that the countable set I is the disjoint union of the sets I;, j €
J. Then for any family s; € S, 7 € I, if r; = Zielj s; exists for each j € J,
and if =}, ;r; exists, then 3, ; s; also exists and equals 7.
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A rationally additive semiring is a weak rationally additive semiring S that
satisfies:

— Axs. Suppose that the countable set I is the disjoint union of the sets I;, j €
J. Then for any family s; € S, € I, if s =), s; exists and r; = Zielj 8;
exist, for all j € J, then ZjeJ r; exists and equals s.

Proposition 3. Suppose that S is a weak rationally additive semiring.

— For any countable families s;, i € I and rj, j € J, if Y o5 = s and
> jegTi =1 exist, then so does 3 - ycpy g 8irj. Moreover, 37 cpy g SiTj =
sr.

— For any countable families s; € S and s; € S withi €I and j € J, if there
is a bijection w : I — J with s; = s, for all i € I, then Y . ;s; exists iff
Zje] s’; does, in which case the two sums are equal.

— Any countable sum ), s exists. Moreover, Y, ;0 =0, i.c., any countable
sum of 0 with itself is 0.
— For any countable family s;, © € I, if ZjeJ s; = r emists, where J is the set

of all i € I with s; # 0, then ), ; s; exists and equals 7.

icl

Proof. The first claim follows from Axs and Ax4. For the second, suppose that
> ic18i = s exists. Let J; = {in}, for each i € I. Thus the sets J; determine a
partition of J. Each sum )7, _; s} = s;, = s; exists, moreover, »_;_; s; exists.
Thus, by Ax4, we have that Zje, s’; exists and equals ), ; si. In the same way,
it follows that if 3, ; s, exists then ., s; also exists. For the third claim,
assume first that s = 1. If I is finite with n elements, then >~ ;s = >, ;1
exists by Axy, and equals the usual n-fold sum of 1 with itself. Assume now that
I is infinite. Then 7, ;s = > .., 1 = > 1" exists by Ax,. Thus for any s,
we have that >, ;s =", ;(s-1) = 5(> ;1) exists. When s is 0, this sum is
also 0. The last claim now follows from Axy. O

Remark. When S is rationally additive, the converse of the last fact also holds,
so that using the same notation, Zje] s; exists iff ), ; s; exists.

Suppose that S and S’ are (weak) rationally additive semirings. A homo-
morphism h : S — S’ is a semiring homomorphism that preserves all existing
countable sums. Thus, if ), ; s; exists, where s; € S for each ¢ € I, then so

does ) ,cysihand (D ,c;8i)h = > ,c; sih.

Ezample 1. A countably additive (or w-complete) semiring is a rationally addi-
tive semiring S such that Zie ;1 8; exists for all countable families s; € S, i € I.
For example, the power set semiring of a semiring is countably additive, where
summation is defined by set union. An example of a rationally additive semiring
which is not countably additive is the semiring of regular sets in A*, where A
is any set. In this semiring only those sums (unions) exist that are regular lan-
guages. An w-continuous (or just continuous) semiring is a countably additive
semiring which is naturally ordered and such that ), ; s; is the supremum of
the finite sums ), s;, for all finite subsets /' C I. Since any countably addi-
tive semiring is rationally additive, so is any w-continuous semiring. For more
on complete and continuous semirings, the reader is referred to [Eilenberg 1974,
Kuich 1987, Sakarovitch 1987, Kuich 1997].
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Example 2. A prime example of a countably additive semiring is the semiring
Noo = {0,1,...,00} obtained by adding a top element to the natural numbers
N equipped with the following summation. For all n; € Ny, ¢ € I, where I is
countable, define Ziel n; = oo if n; = oo for some i, or if n; > 0 for infinitely
many numbers i. Otherwise let ), ;n; be the ordinary sum. Note that all
countable sums exist in No,. Moreover, we have z- 00 = 0o -2 = oo for all z # 0.
We call the above countably additive structure on N, the standard countably
additive structure.

Remark. The same semiring S may sometimes be turned into a weak rationally
additive semiring in several different ways. Suppose that we have a weak ra-
tionally additive structure on S with summation denoted ). Then there is a
smallest weak rationally additive structure on S contained in > . If we denote
the summation operation of this structure by Z/, we have that Z;e 7 S; exists iff
I is finite, or there is an element s € S such that for some linear order 79,71, ...
of the set I, we have that s;, = s", for all n > 0, or there is a family s}, i € I
and an element s’ € S such that either s; = s}s’ for all i or s; = §'s} for all 4,
or there exist disjoint sets I;, j € J with I = UjcsI; such that r; = delj S

exists for each j € J and Z;EJ r; exists. In either case, Z;el
defined to be 3

scr Si- In the same way, each rationally additive structure on S
contains a least rationally additive structure.

si, when exists, is

Remark. There exists a weak rationally additive semiring which is not rationally
additive. For one example, take the (standard) countably additive semiring Nu,
defined above. It will be shown below in Corollary 14 that N, has no other
rationally additive structure properly included in the standard structure. On the
other hand, consider the least weak rationally additive structure contained in it.
Let 3 denote the corresponding summation. Then there is only a countable
number of sets K C N such that Z;E i k exists. Hence this weak additive
semiring structure is not the standard countably additive structure.

In any (weak) rationally additive semiring, we define

8-S
o0

S E s™.
n=0

It is clear that morphisms of (weak) rationally additive semirings preserve the
*-operation.

Proposition4. Any weak rationally additive semiring S is a Conway semiring.

Proof. Suppose that a,b € S and let @ and b denote distinct letters corresponding
to a and b, respectively. Below we will use regular languages in (@ +b)* as index
sets. For any word @ € (@ + b)*, let w denote the corresponding element in S.
Since (a +b)* = > "> (a + b)™ exists, it follows by Axy that > w also
exists, and (a + b)* = Zme(a+5)*
union of the sets Lj, = (@*b)*@*, k > 0. It follows by Ax, and Axs that each

e we(a+b)*
w. Let us partition (@ + b)* into the disjoint
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sum ) oo, w exists, and > oo, w = (a*b)*a*. Thus, again by Axy and Axs,
Yreolatb)fa* = (a*b)*a* exists. Since for each k we have D wer, W= (a*b)ka*,
it follows from Axy that ) ., w = (a*b)*a*. Hence (a + b)* =
(a*b)*a*.

Also, 372 a(ba)*b = a(3 72 (ba)¥)b = a(ba)*b exists, hence by Axy, (ab)* =
Sreolab)k =1+ 57 Ja(ba)*b =1+ a(ba)*b. O

weL W =

Corollary 5. The fixed point equation () holds in any weak rationally additive
Semiring.

Proposition 6. Any weak rationally additive semiring S satisfies 1* = 1**,
1*1* = 1% and 1* + 1* = 1*.

Proof. Equation 1* + 1* = 1* follows from Ax4. By Proposition 3,

rr=0"1n0_n=> 1= 1=1",
i=0 i=0 i,j=0 k=0

and by Axs,
o0 o0
D!
i=0 j=0

Hence, (1*)™ = 1*, for all n > 1. Moreover,

1**:1+§:(1*)”=1+§:1*=1+§:i1=1+1*=1*,
n=1 n=0

n=0m=0

where the last step follows from the fixed point equation. O

Remark. In fact, the equations 1*1* = 1* and 1* 4+ 1* = 1* hold in any Conway
semiring satisfying 1** = 1*.

Suppose that S is a weak rationally additive semiring. Then, as shown above,
S is a Conway semiring. Thus, by Theorem 9, the semirings S™*"™ n > 0 are
also Conway semirings. Moreover, for each decomposition of a matrix A € S™*™

in the form A = {Z Z} , where a and d are square matrices, we have

Ar = B‘g] (5)

where
a = (a+bd*c)*
B = abd*
v = dca*
d = (d+ ca*d)*.

Suppose now that S is rationally additive. We turn S™*™ into a rationally ad-
ditive semiring. Suppose that A; € S™*" i € I where I is countable. We say
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that >, eIA exists if ), (A;)jx exists for all j,k € [n]. Moreover, we define
(X icr Ai)jk = Y ;cr(Ai)jk, for each j,k € [n]. We define the summation on
countable families of matrices in S™*™ for n,m > 0 in the same way.

Proposition 7. Suppose that S is rationally additive. If A; € S™*™ 4 € I
such that > .., A; exists, then for any B € S™*P, Y . _. A;B exists and equals

(Xier 4B

Proof. Tt suffices to prove the proposition for p = 1. We argue by induction on
m. The case that m = 0 is trivial. When m = 1, the proposition holds by Axs.
Suppose now that m > 1. Then let m = mq +msg, where my, ms < m, and let us

el i€l

write A; = [a; b;],i € I, and B = g:j , where a; is n xmy, etc. Let a =), a;
and b = ), ;b;, so that A =3, A; = [ab]. By the induction assumption,
both 7, ; a;xz and ), ; by exist, moreover, ), a;x = ax and ), ; biy = by.
Since Axs holds in S, it follows that ), (a;x + bsy) exists and equals ax + by.
Thus, > ,c; AiB = (3_;c; Ai) B exists. Note that only a weak form of Axs was
used: the case When each set I; is finite. O

In the same way, we have:

Proposition 8. Suppose that S is rationally additive. If A; € S™*™, i € I
such that 3, ; A; exists, then for any B € SP*", Y. BA; exists and equals

B(Yier Ai)-

Theorem 9. When S is rationally additive, so is S™*™, for any n > 0. More-
over, for the star operation defined in (5), we have

k=0

Proof. Our claims are clear for n = 0,1. We proceed by induction on n. Assume
that n > 1. It is clear that Ax;, Ax4 and Axs hold in S™*™. The fact that Axs

holds was shown above.

Suppose now that A = [Z 2} € S"*" where a,b, c,d are submatrices of A

such that a and d are square matrices of size smaller than n. We want to show
that > po, AF = A*, i, that 377, A" exists and

el

where «, 3, v and § were given as above. We will only show that the submatrix
of Z:io AF at the left upper corner exists and equals a.

Consider the regular language L = (a + M*E)*. Then L is the union of the
disjoint sets L¥, k > 0, where L; =@ + bd'e. By the induction assumption,

a—l—bd*c:a—i—b(z c-a—i—Zbd]c—a—i— Z w—Zw

Jj=0 webd' e wely
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Hence, by Proposition 7 and Proposition 8,

(a+bd*c)2:(z w)(Zw): Z uv = Zw,

weLy wel w,veLy weL?

since each word in L? has a unique factorization as a product of two words in
L1. In the same way, it follows that

(a+bd*c)* = Z w,

weL¥

for all £ > 0. Thus, by the induction assumption,

(oo} (o]
(a4 bd*ec)" = Z(a +bd*c)k = Z w = w.
k=0 k=0we Ly welL
. . . k| Ok bk _
In particular, » o, w exists. Now let us write A" = Lk dk]’ k > 0. To com:
plete the proof, we need show that Z:’;O ay, exists and equals ) o, w. But for
each k, ap = ZmeL, | =k W- Thus, since Axs holds by the induction assump-

tion, >y, ax exists and equals wer w. (Again note that only the weak form
of Axs when the sets I; are finite has been used.) O

Theorem 10. Any rationally additive semiring S is an iteration semiring sat-
isfying 1% = 1%,

Proof. We have already proved that any rationally additive semiring .S is a Con-
way semiring and satisfies 1* = 1**. The fact that the group-equations hold
follows from the functorial implication, see Proposition 2, which can be estab-
lished as follows. Suppose that A € S™"*™, B € S™*™ and C € S™*™ with
AC = CB. Then A*C = CB*, for all k > 0. Thus, by Propositions 7 and 8,

oo oo

AC=()_AhHC = ki)A’fc = kioCBk =C(>_ B =cCB".

k=0 k=0

Assume that S is a rationally additive semiring and A is a set. We turn
the power series semiring S{A*)) into a rationally additive semiring. For any
countable family r; € S{A*), i € I, we say that ) ., 7; is defined if the sum
> icr(ri,u) is defined for all u € A*. Moreover, in this case, we let (3, 7i,u) =

Zie[(riv u)

Proposition 11. Suppose that S is a rationally additive semiring and A is a
set. Then S{A*) is also a rationally additive semiring.

i€l
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Proof. We only show that Axy and Axs hold in S{A*). So suppose that r €
S{A*). We clearly have that

Z(T”,é) - Z(Ta e)n = (Ta 6)*'
n=0 n=0

Suppose now that u # e. Then (r",u) = >, . _ (r,u1)...(r,u,). Thus,
by Axs, Y07 (r", u) exists if the sum >0, _ o (ru1)... (7 u,) does.
But this latter sum indeed exists. This can be seen as follows. For each fixed
UL, ..., U 7 € With uy ... up = u,

Z (rye)™(ryuy) ... (ryug)(r, €)™ = (rye)* (ryur) ... (ryur)(r, €)*

mo,...,mg >0

exists. Since ), _ (r,u1)...(r,u,) is just a finite sum of sums of this form,
it follows by Ax, that this sum also exists. Again, only a weak form of Axs has
been used. O

The following fact is clear.

Proposition12. Suppose that S is a (weak) rationally additive semiring and
S’ is a subsemiring of S which is closed under *. Say that Zie] s; exists in S’,
where s; € " for alli € I, if Y7, s; exists in S and belongs to S’, and in that
case, let the sum in S" be the same as in S. Then S’ is also a (weak) rationally
additive semiring.

When S is a *-semiring and B C S, the B-rational elements of S are those
contained in the *-semiring generated by B. Thus the B-rational elements form
a *-semiring denoted Rats(B), or just Rat(B). Let S be rationally additive and
let A be a set. Then, as shown above, S{A*) is also rationally additive and each
a € Aand s € S can be conveniently identified with a series in S{A*}). We
denote Srat<<A* >> = Rats«A*» (A @] S)

The countably additive semiring N, was defined above.

Proposition 13. Suppose that S is rationally additive. Then there is a unique
morphism Ny, — S.

Proof. Clearly, any morphism h : Ny, — S is forced to map each integer n to
the n-fold sum of 1 with itself and oo to 1*. The fact that this function is in
turn a morphism will follow by Remark 3 once we prove that for any countably
infinite family n;, i € I of nonzero elements of N, the sum Zie ;nih exists in
S and equals 1*. But this follows by Proposition 3. O

Corollary 14. There exits no rationally additive semiring structure on Ny
properly included in the standard structure.

Theorem 15. For each set A, N¥2*(A*) is freely generated by A in the class of
rationally additive semirings.
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Proof. We need to show that if S is a rationally additive semiring and h is a
function A — S, then h has a unique extension to a morphism h¥ : NXt(A*) —
S of rationally additive semirings. Suppose that r € N*2t(A*)). We are forced to
define

rhf = Z (r,u)uh, (6)

(r,u)#0

where for any word v = a;...a, € A* of length n, we define uh = (aih) -

- (aph). Note that the coefficient (r,u) of wh in (6) is taken in S. This is
meaningful, since to each integer n there corresponds in S the n-fold sum of 1
with itself, and to co the element 1*. See Proposition 13.

In a natural way, we may extend h to a function Ny, (A4) — S, and then to
a function (Neo(A))"*™ — S™*" for each n > 0. For each n € Ny, and a € A
we define (na)h = n(ah). For a finite sum ) ;. n;a;, we define (3, pnia;)h =
>icr ni(aih).

We must show that the sum on the right-hand side of (6) exists. Since r
is rational, by (a generalization of) Schiitzenberger’s theorem [see Bloom, Esik
1993b], there exists o € NIX" M € Noo(A)"*" and € NI*! with r =
aM*3. Now, by Theorem 9 and Propositions 7 and 8, we have that a(Mh)* =
Yoo a(Mh)* 3 exists. But for each k,

a(Mh)kg = Z (ryu)uh.

lul=k, (r,u)#0

e F

Thus, by Axy, the right-hand side of (6) exists and equals a(Mh)* (.

Note that for any finite set B C A such that v € B* holds for all wordsu € A*
with (r,u) # 0, i.e., such that supp(r) C B*, we have that rhf = > wep- (ryw)uh.
We use this fact in our proof that h¥ preserves all existing sums. Suppose that
r; € NRY(A*), i € I such that ), ;7 exists in NJ2*(A*), so that >, ;7
is rational. Since r = Zie[ r; is rational, there is a finite set B C A with
supp(r) C B*. Clearly then, supp(r;) C B* for all ¢ € I. By Ax4 and Axs, the
fact that Y, ; r;h* exists and equals rh* will follow if we can show that the sum
> uen-, ie1(ri, u)uh exists and equals 7h*. This in turn will hold if for each fixed

u € B*,

Z(m, u)uh = (Z(m, u))uh

iel il
exists and is equal to (r,u)uh. But by Proposition 13, the sum ), (7, u) exists
in S, and equals (r,u). O

Corollary 16. There is no rationally additive structure on NI2'{A*) properly
contained in the rationally additive structure inherited from the countably addi-
tive structure on Noo(A*)).
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