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Abstract: In this paper we introduce the concept of the quasi-product of tree au-
tomata. In a quasi-product the inputs of the component tree automata are operational
symbols in which permutation and unification of variables are allowed. It is shown that
in sets of tree automata which are homomorphically complete with respect to the quasi-
product the essentially unary operations play the basic role among all operations with
nonzero ranks. Furthermore, we give a characterization of homomorphically complete
sets which is similar to the classical one.
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1 Introduction

The concept of products of automata has been introduced by V. M. Glus̆kov
as an abstract model of electronic circuits (see, [Glus̆kov 1961]). In the general
form of the product all the component automata are fed back to each other.
To decrease the feed-back complexity, several special forms of the product have
been introduced. One of them is the loop-free product given by J. Hartmanis in
[Hartmanis 1962]. In a loop free product we have only steering, there is no feed-
back. A celebrated structure theory for loop-free products has been developed by
K. B. Krohn and J. L. Rhodes. A nice presentation of the Krohn-Rhodes theory
can be found in [Ginzburg 1968]. It is shown in [Gécseg 1965] that there is no
finite set of finite automata which is complete in the sense that every automaton
can be represented homomorphically by a loop-free product of automata from
this set. To find products simpler than the general product under which there are
finite homomorphically complete sets, in [Gécseg 1974] we introduced a hierarchy
of products called αi-products, where i runs over the set of non-negative integers.
In an αi-product the set of component automata is linearly ordered and to the
input of the ith component at most the next i−1 components are fed-back. The
first member of the hierarchy is equivalent to the loop-free product. Thus, there
is no finite homomorphically complete set for the α0-product. It is easy to show
that this is true also for the α1-product. It was Z. Ésik who showed the existence
of finite homomorphically complete sets for the α2-product (see, [Ésik 1985]).
Based on this result, in [Ésik and Horváth 1983] Z. Ésik and Gy. Horváth proved
that the α2-product is equivalent to the general product from the point of view
of homomorphic representation. The system of the µi-products introduced by P.
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Dömösi and B. Imreh in [Dömösi and Imreh 1983] is another comprehensively
studied hierarchy of products. In a µi-product, where i is a non-negative integer,
to the input of a component automaton at most i component automata may be
fed back. In [Gécseg and Jürgensen 1991] the power of α0-products, µ1-products,
and α0 − ν1-products are compared. Moreover, in [Gécseg and Jürgensen 1990]
the computational power of soliton automata is studied by products of automata.

In [Steinby 1977] Magnus Steinby introduced the concept of products of tree
automata as a generalization of the Glus̆kov-type product of finite state au-
tomata. In the same paper he shows that the characterization of isomorphically
complete sets of ordinary automata can be carried over to tree automata in a
natural way. This is not so in the case of homomorphic completeness. For ex-
ample, in the classical case every homomorphically complete set of automata
contains a single automaton which itself is homomorphically complete. On the
other hand, depending on the rank type of the considered tree automata, for
every natural number k, there exists a k-element set of tree automata which is
homomorphically complete and minimal (see [Gécseg 1994]). One reason for this
behavior is that by the definition of the product of tree automata no operation
symbol can be replaced by another one if they have different ranks even in the
case when both of them depend on the same variables. To remedy it, in this
paper we introduce the quasi-product which is slightly more general than the
product given in [Steinby 1977].

Finally, we note that the tree automata to be considered here are the so-
called frontier-to-root tree automata processing a tree from the frontier towards
the root. We shall not deal with systems working in the opposite direction which
are called root-to-frontier tree automata. Results concerning completeness of
root-to-frontier tree automata can be found in [Virágh 1983].

2 Notions and notations

Sets of operational symbols will be denoted by Σ with or without superscripts.
If Σ is finite, then it is called a ranked alphabet. For the subset of Σ consisting
of all m-ary operational symbols from Σ we shall use the notation Σm (m ≥ 0).
By a Σ-algebra we mean a pair A = (A, {σA|σ ∈ Σ}), where σA is an m-ary
operation on A if σ ∈ Σm. If there will be no danger of confusion then we
omit the superscript A in σA and simply write A = (A,Σ). Finally, all algebras
considered in this paper will be finite, i.e., A is finite and Σ is a ranked alphabet.

A rank type is a non void set R of nonnegative integers. A ranked alphabet
Σ is of rank type R if {m | Σm �= ∅} ⊆ R. An algebra A = (A,Σ) is of rank type
R if Σ is of rank type R. Let us note that in [Steinby 1977] the concept of the
rank type is used in a stronger sense. Namely, there an algebra A = (A,Σ) is
of rank type R if {m|Σm �= ∅} = R. Under the definition of the quasi-product
such a strong concept of rank type will not be needed.

Let Ξ be a set of variables. The set TΣ(Ξ) of ΣΞ-trees is defined as follows:

(i) Ξ ⊆ TΣ(Ξ),
(ii) σ(p1, . . . , pm) ∈ TΣ(Ξ) whenever m ≥ 0, σ ∈ Σm and p1, . . . , pm ∈ TΣ(Ξ),

and
(iii) every ΣΞ-tree can be obtained by applying the rules (i) and (ii) a finite

number of times.
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In the sequel Ξ will stand for the countable set {ξ1, ξ2, . . .} and for every
m ≥ 0, Ξm will denote the subset {ξ1, . . . , ξm} of Ξ.

If p ∈ TΣ(Ξl) and p1, . . . , pl ∈ TΣ(Ξm) are trees, then p(p1, . . . , pl) ∈ TΣ(Ξm)
is the tree obtained by replacing each occurrence of ξi (i = 1, . . . , l) in p by pi.

A tree p ∈ TΣ(Ξ1) is completely balanced if

1) all paths leading from the root of p to leaves of p are of the same length, and
2) if p1 and p2 are subtrees of p with the same height, then p1 = p2.

The set of all completely balanced trees from TΣ(Ξ1) will be denoted by T̂Σ(Ξ1).
The basic part of a tree recognizer or (deterministic) tree transducer is an

algebra: both types of systems are built on algebras. From the point of view of
the structure theory of tree automata, important classes of algebras are those
which are complete by one of the following definitions.

A class K of algebras of rank type R is homomorphically complete if for
every algebra A of rank type R there is an algebra B in K such that A is a
homomorphic image of a subalgebra of B.

A class K of algebras of rank type R is forest complete if for every forest T
recognizable by a tree recognizer built on an algebra of rank type R there is an
algebra A in K such that T can be recognized by a tree recognizer built on A.

A class K of algebras of rank type R is transformation complete if for every
tree transformation τ induced by a deterministic frontier-to-root tree transducer
built on an algebra of rank type R there is an algebra A in K such that τ can
be induced by a tree transducer built on A.

We say that a class K of algebras is closed under deletion of operations, if
for all A = (A,Σ) ∈ K with |Σ| ≥ 2 and σ ∈ Σ, the algebra A′ = (A,Σ′),
where Σ′

m = Σm \ {σ} for all m ≥ 0 and σ̄A
′
(a1, . . . , al) = σ̄A(a1, . . . , al)

(σ̄ ∈ Σ′
l , l ≥ 0, a1, . . . , al ∈ A), is also in K.

It can be seen from the proof of Theorem 7 in [Gécseg 1994] that for every
class of algebras which is closed under the deletion of operations the three condi-
tions of completeness coincide. Since classes of algebras obtained from given sets
of algebras by means of quasi-product are closed under the deletion of operations,
in this paper we shall restrict ourselves to homomorphic completeness.

Let R be a rank type and take the algebras Ai = (Ai, Σi) (i = 1, . . . , k > 0)
with rank type R and let

ϕ = {ϕm : (A1 × . . .×Ak)m ×Σm →
TΣ1(Ξm) × . . .× TΣk

(Ξm) | σ ∈ Σm, m ∈ R}
be a family of mappings, where Σ is an arbitrary ranked alphabet of rank type
R. Then by the generalized product of A1, . . . ,Ak with respect to Σ and ϕ we
mean the algebra A = (A,Σ) with A = A1 × . . . × Ak such that for arbitrary
σ ∈ Σm (m ∈ R) and (a11, . . . , a1k), . . . , (am1, . . . , amk) ∈ A,

σA((a11, . . . , a1k), . . . , (am1, . . . , amk)) =

(pA1
1 (a11, . . . , am1), . . . , pAk

k (a1k, . . . , amk)),

where (p1, . . . , pk) = ϕm((a11, . . . , a1k), . . . , (am1, . . . , amk), σ). For this general-
ized product we use the notation

∏k
i=1 Ai[Σ,ϕ].

A similar generalization of the cascade product can be found in [Ésik 1996].
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Let us extend ϕm to a mapping from (A1×. . .×Ak)m×TΣ(Ξm) to TΣ1(Ξm)×
. . .× TΣk

(Ξm) in the following way: for arbitrary a ∈ Am and p ∈ TΣ(Ξm)

(i) if p = xj (1 ≤ j ≤ m), the ϕm(a, xj) = (xj , . . . , xj),
(ii) if p = σ(p1, . . . , pl) (σ ∈ Σl, l ≥ 0), then

ϕm(a, p) =

(q1(π1(ϕm(a, p1)), . . . , π1(ϕm(a, pl))), . . . ,

qk(πk(ϕm(a, p1)), . . . , πk(ϕm(a, pl))))

where (q1, . . . , qk) = ϕl(p1(a), . . . , pl(a), σ) and πj is the jth projection.

3 Quasi-products

A generalized product A = (A,Σ) =
∏k

i=1 Ai[Σ,ϕ], where Ai = (Ai, Σ
(i))

(i = 1, . . . , k), is called a quasi-product if for ϕm(a1, . . . ,am, σ) = (p1, . . . , pk)
(a1, . . . ,am ∈ A1 × . . . × Ak, σ ∈ Σm, m ≥ 0) we have pi = σi(ξi1 , . . . , ξimi

)
(1 ≤ i1, . . . , im ≤ m) and σi ∈ Σ

(i)
mi (i = 1, . . . , k). If in this quasi-product

A1 = . . . = Ak = B then we speak of a quasi-power of B, and write Bk[Σ,ϕ].
Let us note that the above quasi-product is called a (general) product if mi = m
and ξij = ξj for all i = 1, . . . , k and j = 1, . . . ,m.

The cascade product introduced by G. Ricci in [Ricci 1973] is a special quasi-
product.

The next lemma gives necessary conditions for a class of algebras to be ho-
momorphically complete.

Lemma1. Let R be a rank type with 0 �∈ R. If a class K of algebras of rank type
R is homomorphically complete, then there exist an algebra A = (A,Σ) ∈ K,
an element a0 ∈ A, a natural number l ∈ R, two operational symbols σ1, σ2 ∈
Σl, and two completely balanced trees p, q ∈ T̂Σ(Ξ1) such that σ1(a0, . . . , a0) �=
σ2(a0, . . . , a0) and p(σ1(a0, . . . , a0)) = q(σ2(a0, . . . , a0)) = a0.

Proof. Let B = (B,Σ) be an algebra with Σ = Σl = {σ1, σ2} for an l ∈ R,
where B = {0, 1}, σB1 (0, . . . , 0) = 1, σB1 (1, . . . , 1) = 0, σB2 (0, . . . , 0) = 0 and
σB2 (1, . . . , 1) = 1, and in all other cases σBi (b1, . . . , bl) (i = 1, 2, b1, . . . , bl ∈ B) is
given arbitrarily. Let A = (A,Σ) ∈ K be an algebra such that a subalgebra A′ =
(A′, Σ) of A can be mapped homomorphically onto B under a homomorphism
τ . Let a′0 be a counter image of 0 under τ . Now consider the following subsets
Ai (i = 1, 2, . . .). Set A1 = {p(a′0) | p ∈ T̂Σ(Ξ1), h(p) > 0}. Assume that Ai−1

(i > 1) has been defined. Then let Ai = {p(a) | p ∈ T̂Σ(Ξ1), h(p) > 0}, for
an arbitrarily chosen a ∈ Ai−1 if {p(a) | p ∈ T̂Σ(Ξ1), h(p) > 0} is a proper
subset of Ai−1. If there is no such ai ∈ Ai−1, then Ai = Ai−1. Since Ai+1 ⊆ Ai

(i = 1, 2, . . .), there is a j such that Aj = Aj+1. This j has the property that
Aj = {p(a) | p ∈ T̂Σ(Ξ1), h(p) > 0} for each a ∈ Aj . Furthermore, by the
choice of B, τ(Aj) = B. Let a0 ∈ τ−1(0) ∩Aj be arbitrary. Since σB1 (0, . . . , 0) �=
σB2 (0, . . . , 0), thus σA1 (a0, . . . , a0) �= σA2 (a0, . . . , a0), and both σA1 (a0, . . . , a0) and
σA2 (a0, . . . , a0) are in Aj . Therefore, by the above property of Aj , there are
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p, q ∈ T̂Σ(Ξ1) with pA(σA1 (a0, . . . , a0)) = qA(σA2 (a0, . . . , a0)) = a0, which ends
the proof of the lemma.

A class K of algebras of rank type R is called homomorphically complete for
R with respect to the quasi-product if the class of all quasi-products of algebras
from K is homomorphically complete.

The following result is from [Letičevskĭı1961] (see, also [Gécseg 1986]).

Theorem 2. Let R = {1}. A set K of algebras of rank type R is homomorphi-
cally complete for R with respect to the quasi-product if and only if there are an
A = (A,Σ) ∈ K, an element a0 ∈ A, two operational symbols σ1, σ2 ∈ Σ(= Σ1),
and two trees p1, p2 ∈ FΣ(Ξ1) such that σ1(a0) �= σ2(a0) and p1(σ1(a0)) =
p2(σ2(a0)) = a0.

¿From this theorem we directly obtain

Lemma3. Let R be a rank type with R �= {0}. Moreover, let K be a set
of algebras of rank type R such that there are an algebra A = (A,Σ) ∈ K,
an element a0 ∈ A, two natural numbers l1, l2 ∈ R, two operational symbols
σ1 ∈ Σl1 , σ′1 ∈ Σl2 , and two completely balanced trees p, q ∈ T̂Σ(Ξ1) satisfying
σ1(a0, . . . , a0) �= σ′1(a0, . . . , a0) and p(σ1(a0, . . . , a0)) = q(σ′1(a0, . . . , a0)) = a0.
Take the algebra B = ({0, 1}, Σ) with Σ′ = Σ′

1 = {σ, σ′} defined by

σ(a) =
{

0, if a = 0,
1, if a = 1

and

σ′(a) =
{

1, if a = 0,
0, if a = 1

for all a ∈ {0, 1}. Then B is a homomorphic image of a subalgebra of a quasi-
power of A.

Lemma4. Let B be the algebra given in Lemma 3. Then for every algebra A =
(A,Σ) of rank type R with 0 �∈ R there is a quasi-power C = (C,Σ) of B such
that A is isomorphic to a subalgebra of C.

Proof. Let k ≥ log2 |A| be a natural number and take an arbitrarily fixed one-
to-one mapping τ of A into the Cartesian power {0, 1}k. Form the quasi-power
C = (C,Σ) = Bk[Σ,ϕ], where ϕ is given in the following way. Take a σ̄ ∈ Σm

(m ∈ R) and a1, . . . , am ∈ A. Let τ(ai) = (ci1, . . . , cik) (i = 1, . . . ,m) and
τ(σ̄(a1, . . . , am)) = (c1, . . . , ck). Then

πi(ϕm(τ(a1), . . . , τ(am), σ̄)) =



σ(ξ1) if c1i = ci = 0 or

c1i = ci = 1,
σ′(ξ1) if c1i = 0&ci = 1 or

c1i = 1&ci = 0

for all i(= 1, . . . , k). In all other cases ϕ is given arbitrarily. It is clear that τ(A)
forms a subalgebra of C which is isomorphic to A under τ .

The following example will be needed later.
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Example 1. Let R = {0, 1} be a rank type. Take the algebra

B = ({0, 1}, Σ′)

with Σ′ = Σ′
0 ∪Σ′

1, Σ′
0 = {σ0, σ

′
0}, Σ′

1 = {σ, σ′} defined by σB0 = 0, σ′0
B = 1,

σ(a) =
{

0, if a = 0,
1, if a = 1

and
σ′(a) =

{
1, if a = 0,
0, if a = 1.

Then B is homomorphically complete for R with respect to the quasi-product.
For this it is enough to show that for every algebra A = (A,Σ) of rank type R
there is a quasi- power C = (C,Σ) of B such that A is isomorphic to a subalgebra
of C. This can be shown in the same way as in the proof of Lemma 4 with the
additional condition that if σ̄ ∈ Σ0 and τ(σ̄A) = (c1, . . . , ck), then

πi(ϕ0(σ̄)) =
{
σ0 if ci = 0,
σ′0 if ci = 1.

Next we give necessary and sufficient conditions for a set of algebras of rank
type R to be homomorphically complete for R with respect to the quasi-product,
under the condition that 0 �∈ R.

Theorem 5. Let R be a rank type with 0 �∈ R. A set K of algebras of rank type R
is homomorphically complete for R with respect to the quasi-product if and only if
there exist an algebra B = (B,Σ′) ∈ K, an element b0 ∈ B, two operational sym-
bols σ1 ∈ Σ′

l1
, σ2 ∈ Σ′

l2
and two completely balanced trees p′, q′ ∈ T̂Σ′(Ξ1) such

that σ′1(b0, . . . , b0) �= σ′2(b0, . . . , b0) and p′(σ′1(b0, . . . , b0)) = q′(σ′2(b0, . . . , b0)) =
b0.

Proof. Assume that K is homomorphically complete for R with respect to the
quasi-product. Then, by Lemma 1, there exist a quasi-product

A = (A,Σ) =
k∏

i=1

Bi[Σ,ϕ]

with Bi = (Bi, Σ
(i)) ∈ K (i = 1, . . . , k), an element a0 ∈ A, an l ∈ R,

two operational symbols σ1, σ2 ∈ Σl and two trees p, q ∈ T̂Σ(Ξ1) such that
σ1(a0, . . . ,a0) �= σ2(a0, . . . ,a0) and p(σ1(a0, . . . ,a0)) = q(σ2(a0, . . . ,a0)) = a0.
Let ϕl(a0, . . . ,a0, σj) = (σ1j(ξ1j1, . . . , ξ1jl1j

), . . . , σkj(ξkj1, . . . , ξkjlkj
)) (j = 1, 2),

a0 = (b01, . . . , b0k), and σj(a0, . . . ,a0) = aj = (bj1, . . . , bjk) (j = 1, 2). Moreover,
let ϕ1(a1, p) = (p1, . . . , pk) and ϕ1(a2, q) = (q1, . . . , qk). Since a1 �= a2, there is
an i (1 ≤ i ≤ k) such that b1i �= b2i. It can be easily seen that Bi with b0i, σi1,
σi2, pi(ξ1, . . . , ξ1) and qi(ξ1, . . . , ξ1) satisfies the conditions of our theorem.

Conversely, assume that K satisfies the conditions of the theorem. Since the
formation of the quasi-product is transitive, by Lemmas 3 and 4, K is homomor-
phically complete for R with respect to the quasi-product.

¿From Theorem 5 we directly obtain
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Corollary 6. Let R be a rank type with 0 �∈ R. If a set K of algebras of rank
type R is homomorphically complete for R with respect to the quasi-product, then
K contains an algebra A such that A itself is homomorphically complete for R
with respect to the quasi product.

Furthermore, by the proof of Theorem 5, we also have

Corollary 7. Let R and R′ be rank types such that R ⊆ R′ and ∅ �∈ R′. If a
set K of algebras of rank type R is homomorphically complete for R with respect
to the quasi-product, then K is homomorphically complete for R′ with respect to
the quasi-product.

The next example shows that Corollary 6 is not valid if R contains 0.

Example 2. Let R = {0, 1}. Consider the algebras A1 = ({0, 1}, Σ(1)) and A2 =
({0, 1, 2}, Σ(2)) with Σ(1) = Σ

(1)
0 ∪ Σ(1)

1 , Σ(1)
0 = {σ0, σ

′
0}, Σ(1)

1 = {σ}, and
Σ(2) = Σ(2)

0 ∪Σ(2)
1 ,Σ(2)

0 = {σ0, σ
′
0},Σ(2)

1 = {σ, σ′}. Moreover, σA1
0 = 0, σ′

A1

0 = 1,
σA1(0) = 0, σA1(1) = 1 and σA2

0 = σ′
A2

0 = 2, σ′A2 (2) = 0, σA2 (2) = 1,
σ′A2(0) = 1, σ′A2(1) = 0, σA2(0) = 0, σA2 (1) = 1.

Take the product A = (A,Σ) = A1 × A2[Σ,ϕ], where Σ = Σ0 ∪ Σ1, Σ0 =
{σ0, σ

′
0}, Σ1 = {σ, σ′} and ϕ is given in the following way: ϕ0(σ0) = (σ0, σ0),

ϕ0(σ′0) = (σ′0, σ
′
0), ϕ1(0, 2, σ) = (σ, σ′), ϕ1(0, 0, σ) = ϕ1(1, 0, σ) = ϕ1(1, 2, σ) =

ϕ1(1, 1, σ) = ϕ1(0, 1, σ) = ϕ1(0, 2, σ′) = (σ, σ), ϕ1(0, 0, σ′) = ϕ1(1, 0, σ′) =
ϕ1(1, 2, σ′) = ϕ1(1, 1, σ′) = ϕ1(0, 1, σ′) = (σ, σ′).

Finally, consider the mapping τ : A→ {0, 1} given by τ((0, 2)) = τ((0, 0)) =
τ((1, 0)) = 0 and τ((1, 2)) = τ((1, 1)) = τ((0, 1)) = 1. A straightforward com-
putation shows that the algebra B of Example 1 is a homomorphic image of A
under τ . Therefore, {A1,A2} is homomorphically complete for R with respect
to the quasi-product.

The algebra A1 itself does not form a homomorphically complete set for R
with respect to the quasi-product since each unary operation in every quasi-
power of A1 is idempotent. The algebra A2 is not homomorphically complete
for R with respect to the quasi-product either, since different 0-ary operational
symbols have the same realization in each quasi-power of A2. Therefore, {A1,A2}
is minimal.

Let us call a quasi-product A = (A,Σ) =
∏k

i=1 Ai[Σ,ϕ] a unification product
if for ϕm(a1, . . . ,am, σ) = (p1, . . . , pk) (a1, . . . ,am ∈ A1×. . .×Ak, σ ∈ Σm, m ≥
0) we have pi = σi(ξi′ , . . . , ξi′) (1 ≤ i′ ≤ mi) and σi ∈ Σ

(i)
mi (i = 1, . . . , k),

i.e. the rank of σi is arbitrary and all variables coincide in pi (i = 1, . . . , k).
Moreover, let us say that a quasi-product A = (A,Σ) =

∏k
i=1 Ai[Σ,ϕ] is a

permutation product if for ϕm(a1, . . . ,am, σ) = (p1, . . . , pk) (a1, . . . ,am ∈ A1 ×
. . . × Ak, σ ∈ Σm, m ≥ 0) we have pi = σi(ξi1 , . . . , ξim) (1 ≤ i1, . . . , im ≤ m),
σi ∈ Σ(i)

m (i = 1, . . . , k), and i1, . . . , im is a permutation of 1, . . . ,m. The concept
of the permutation power is defined in a natural way. Moreover, a rank type R is
homogeneous if R = {m} for some m > 0. Let Q1-product and Q2-product mean
any of the quasi-product, unification product, permutation product or general
product. We say that for a rank type R the Q1-product is homomorphically more
general than the Q2-product with respect to the homomorphic completeness, if
the following two conditions are satisfied:
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(1) If a set K of algebras of rank type R is homomorphically complete for R
with respect to the Q2-product then K is homomorphically complete for R
with respect to the Q1-product.

(2) There is a set K of algebras of rank type R which is homomorphically com-
plete for R with respect to the Q1-product and K is not homomorphically
complete for R with respect to the Q2-product.

The Q1-product is homomorphically equivalent to the Q2-product for a rank
type R, if for any set K of algebras of rank type R, K is homomorphically com-
plete for R with respect to the Q1-product if and only if K is homomorphically
complete for R with respect to the Q2-product.

By the proof of Theorem 5 we have

Theorem 8. For arbitrary rank type R with 0 �∈ R the quasi-product is homo-
morphically equivalent to the unification product.

Finally, we show that even for homogeneous rank types the unification prod-
uct is homomorphically more general than the permutation product and the
latter one is homomorphically more general than the product.

Theorem 9. For all rank types R = {m} with m > 1 the quasi-product is
homomorphically more general than the permutation product.

Proof. Take the algebra A = (A,Σ′), where A = {0, 1}, Σ′ = Σ′
m = {σ′1, σ′2},

σ′1(0, . . . , 0) = σ′1(1, . . . , 1) = σ′2(1, . . . , 1) = 0, σ′2(0, . . . , 0) = 1 and for all
a1, . . . , am ∈ A, σ′i(a1, . . . , am) = 1 (i = 1, 2) if there are indices 1 ≤ k < l ≤ m
such that ak �= al. By Theorem 5, {A} is homomorphically complete for R with
respect to the quasi-product. Moreover, let I = (I,Σ) be the algebra, where
I = {0, 1}, and σ1(a1, . . . , am) = 1 and σ2(a1, . . . , am) = 0 for all a1, . . . , am ∈ I.
Assume that a subalgebra C = (C,Σ) of a permutation-power B = An[Σ,ϕ]
can be mapped homomorphically onto I. Let a ∈ C be an arbitrary element
with maximal, say k, numbers of occurrences of 1. It is clear that k > 0. By
the choice of I, σ1(σ1(a, . . . ,a), a, . . . ,a) �= σ2(σ1(a, . . . ,a), a, . . . ,a). Therefore,
since σ′1(1, . . . , 1) = σ′2(1, . . . , 1) = 0 and σ′1(0, 1, . . . , 1) = σ′2(0, 1, . . . , 1) = 1, one
of the vectors σ1(σ1(a, . . . ,a),a, . . . ,a) or σ2(σ1(a, . . . ,a), a, . . . ,a) must have at
least k + 1 occurrences of 1, which is a contradiction. Consequently, A is not
homomorphically complete for R with respect to the permutation product.

Theorem 10. For all rank types R = {m} with m > 1 the permutation product
is homomorphically more general than the product.

Proof. Take the algebra A = (A,Σ′), where A = {0, 1}, Σ′ = Σ′
m = {σ′1, σ′2},

σ′1(0, . . . , 0) = σ′2(1, . . . , 1) = 0, σ′1(1, . . . , 1) = σ′2(0, . . . , 0) = 1, and finally,
σ′1(a1, . . . , am) = σ′2(a1, . . . , am) = a1 if there are indices 1 ≤ k < l ≤ m with
ak �= al. It can be easily shown that every algebra of rank type R is isomorphic to
a subalgebra of a permutation power of A. Therefore, {A} is homomorphically
complete for R with respect to the permutation product. Assume that a sub-
algebra C = (C,Σ) of a power B = An[Σ,ϕ] can be mapped homomorphically
onto the algebra I given in the proof of the previous theorem. Let a,b ∈ C be
a pair such that they are different in maximal, say k, numbers of their compo-
nents. By the construction of I, σ1(a,b, . . . ,b) and σ2(a,b, . . . ,b) are different.
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Moreover, they and a are equal in those components in which a and b differ.
Therefore, b and σ1(a,b, . . . ,b) or b and σ2(a,b, . . . ,b) are different at least in
k+1 components, which is a contradiction. Therefore, A is not homomorphically
complete for R with respect to the product.
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[Virágh 1983] Virágh, J.: ”Deterministic ascending tree automata II”; Acta Cybernet.,
6 (1983), 291-301.

192 Gecseg F.: On Quasi-Products of Tree Automata


