
Descriptional Complexity of Machines with

Limited Resources 1

Jonathan Goldstine
(Department of Computer Science, Pennsylvania State University

Email: goldstin@cse.psu.edu)

Martin Kappes
(Avaya Labs, Basking Ridge, NJ
Email: mkappes@avaya.com)

Chandra M.R. Kintala
(Avaya Labs, Basking Ridge, NJ

Email: cmk@avaya.com)

Hing Leung
(Department of Computer Science, New Mexico State University

Email: hleung@nmsu.edu)

Andreas Malcher
(Department of Computer Science, University of Frankfurt

Email: malcher@psc.informatik.uni-frankfurt.de)

Detlef Wotschke2,3

(Department of Computer Science, University of Frankfurt
Email: wotschke@psc.informatik.uni-frankfurt.de)

Abstract: Over the last 30 years or so many results have appeared on the descriptional
complexity of machines with limited resources. Since these results have appeared in a
variety of different contexts, our goal here is to provide a survey of these results. Partic-
ular emphasis is put on limiting resources (e.g., nondeterminism, ambiguity, lookahead,
etc.) for various types of finite state machines, pushdown automata, parsers and cellu-
lar automata and on the effect it has on their descriptional complexity. We also address
the question of how descriptional complexity might help in the future to solve practical
issues, such as software reliability.

Key Words: Descriptional complexity, nondeterminism, ambiguity, formal languages,
finite automata, pushdown automata, parsers, cellular automata, software reliability

Category: F.1, F.4

1 Introduction

The great Greek philosopher Socrates is often cited as having said in his famous
defense speech (short version): I know that I know nothing! As true as this might
1 C. S. Calude, K. Salomaa, S. Yu (eds.). Advances and Trends in Automata and
Formal Languages. A Collection of Papers in Honour of the 60th Birthday of Helmut
Jürgensen.

2 Part of this author’s work was done while he was visiting the Network Software
Research Department in Avaya Labs, Basking Ridge, NJ.

3 Corresponding author

Journal of Universal Computer Science, vol. 8, no. 2 (2002), 193-234
submitted: 15/9/01, accepted: 31/1/02, appeared: 28/2/02  J.UCS

be—after all, what do we really know or understand?—it is just as impractical,
especially in the current knowledge-based world and environment. Just imagine
the executive of any technology company giving a presentation at a major con-
vention and, when asked a question, replying: I don’t know anything! Virtually
unthinkable!

The executive would like the presentation to be as simple or as easy as
possible and only as difficult as necessary. He does not want to be in the position
where a potential customer might say: If you can’t explain it so that I understand
it, then I am not interested and therefore I don’t want to hear about it. By the
same token, the executive would not want his customers to say: This sounds so
simple that there really cannot be anything to it, so we are not interested. Don’t
waste our time with trivia.

Creating such presentations and descriptions is not easy, especially for com-
plex engineering systems. A modern jet aircraft has hydraulic parts, electronic
monitors and software control systems, all interconnected in such a complex
fashion that it takes literally thousands of pages of detailed descriptions to show
that power to the entertainment system in the jet will automatically be turned
off in case of a low fuel level reading in one of the engines.

Similarly, current voice and data communication devices have tens of millions
of lines of code and hundreds of interfaces and features to process the signals,
activate the features and produce detailed records for billing purposes. It would
be a complex task to describe in detail how, for example, hanging up an IP phone
will terminate the session, produce the correct records and free communication
resources for later use.

This brings us to the area of descriptional complexity (often called concise-
ness, succinctness, or economy of description), that is, the science—or sometimes
the art—of making the description of objects as simple as possible and only as
complex as necessary. Modifying Socrates’ statement, we would probably say: I
don’t know what I really know. But I do know that, whatever I know, I only
know something well if I can describe it in simple terms.

But, as in the above example of a presentation by a company’s executive,
determining “as simple as possible” or “only as difficult as necessary” is in general
not that easy. In preparing the presentation for the convention it is important to
know how much the audience already knows, i.e., how many knowledge resources
or tools can be employed, which presentation resources can be used, etc. How
simple, how long or how ambiguous can the presentation be in some instances for
the sake of brevity or simplicity? How precise does it have to be? These are some
of the questions one needs to answer before the presentation can be prepared.

Depending on the particular audience, sometimes the resources for the pre-
sentation can be used to their full capacity, sometimes not at all, and in most
cases they have to be used in a limited way. This brings us to the area of De-
scriptional Complexity and Limited Resources.

Even in a more scientific or mathematical context, descriptional complexity
is a real everyday issue. Often, proofs of the same mathematical theorem differ
greatly in length and complexity, and, just as often, this difference is a direct
consequence of the mathematical theory employed or of other mathematical
results used.

Since descriptional complexity has become a large and very wide-spread area,
we would like to maintain a well-defined focus and thus, coming from a computer
science and engineering background, will apply the question of simplicity vis-à-

194 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

vis resource use to Machines, and this brings us to Descriptional Complexity of
Machines with Limited Resources. And to define the focus even more closely,
we will concentrate on scalable or gradual trade-offs with other measures or
resources which result from such limitations. In other words, we are interested,
at least whenever possible, in questions like: How much does the limitation of
one resource cost in terms of another resource, i.e., what are the upper and lower
bounds of such costs?

Therefore, we will direct our attention to such well-known and classical de-
vices as finite automata, pushdown automata, syntax parsers, cellular automata,
etc. Such formal devices are often used to describe certain aspects of the complex
engineering systems we mentioned earlier. For example, finite automata are rou-
tinely used to describe the call processing routines in switching equipment, and
message sequence charts are used for protocols in data communication equip-
ment. Pushdown automata are, among other things, used to model recursive
programs and nested procedures, and parsers are an important part in translat-
ing software code to execution code. Cellular automata are realized as hardware
implementations of a massively parallel model and they serve to model and
analyze phenomena of nature.

Of course, there are other formal devices which have been looked at from
the vantage point of descriptional complexity and limited resources, such as
Regular Expressions, Alternating and Probabilistic Finite Automata, Quantum
Automata, Formal Grammars, Regulated Rewriting Systems, Contextual Gram-
mars, Grammar Systems, Lindenmayer Systems, Rewriting Systems for DNA
Computing, Membrane Computing, Logical Formulas, Boolean Circuits, etc.

As much as this paper is meant to be a survey of existing results, just as
much, due to the desire to provide a well-defined focus, it can by no means be
a complete survey. Hence the restriction to Machines and the selection of topics
is somewhat subjective. For these reasons we apologize to authors (and their
areas) that do not feel adequately represented herein.

Since, to our knowledge, this is the first survey of its kind, we hope that it
might serve as an incentive for further surveys covering the other areas which
could not be included here. As a preliminary step in this direction we are cur-
rently constructing a database with titles of papers on descriptional complexity
which will be continuously updated. A link to this database can be found at

www.psc.cs.uni-frankfurt.de/english

Since the intricacies of many results surveyed here and of their proofs can be
fully understood only by reading the complete proofs in the original papers, we
purposely do not attempt to give a fully unified presentation here. Instead, we
would like this survey to serve as a directory or tour guide to the original litera-
ture. As a consequence, we will in the various sections of this paper partly try to
preserve the flavor, thrust and notation of the original papers, and therefore the
various sections do in part differ in style, notation and in the amount of detail
provided.

However, some concepts are common to all questions and results exhibited
here and should thus be unified. We therefore will briefly define the concepts of
descriptional complexity and of upper and lower bounds of descriptional trade-
offs.

195Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

Definition 1 A descriptional system D for a class S of languages is a set of
finite descriptors, each of them expressing a language in S. For every L ∈ S let
D(L):={D | D ∈ D ∧D describes L}.
Definition 2 A complexity measure C for a descriptional system D is a total
function C : D → IR+

0 ; C(D) for a D ∈ D is the complexity of the descriptor
D.

Let IR+
0 be the set of non-negative real numbers, let S be an infinite class of

languages, D1,D2 two descriptional systems with descriptors for languages in S,
and C1 : D1 → IR+

0 , C2 : D2 → IR+
0 two complexity measures.

So, we can ask the following natural questions:

1. Does a function F : IR+
0 → IR+

0 , F ≥ id (where id is the identity function)
exist, such that for all L ∈ S

min{C1(D) | D ∈ D1(L)} ≤ F (min{C2(D) | D ∈ D2(L)})?
In case that F exists, it is an upper bound for the increase (blow-up) in
complexity when changing from a minimal description in D2 for an arbitrary
language L ∈ S to an equivalent minimal description inD1 (or for the savings
in complexity in the reverse direction, respectively).

Notation: D2
C2,C1−→ D1

n ≤ F (n)
If C1 = C2, we will drop C2 in this notation.

Remark: As will be seen later, F does not necessarily exist!
Examples: Let D1 = DFA (Deterministic Finite Automata), D2 = NFA
(Nondeterministic Finite Automata) and s be the number of states. Then
the following holds:

NFA
s−→ DFA

n ≤ 2n (subset-construction according to [RS59])

DFA
s−→ NFA

n ≤ n (every DFA can be considered to be an NFA)

2. Does an infinite sequence (Li)∞i=0 of distinct languages exist with Li ∈ S for
all i ∈ IN and a function f : IR+

0 → IR+
0 , f ≥ id, such that for all i ∈ IN

min{C1(D) | D ∈ D1(Li)} ≥ f(min{C2(D) | D ∈ D2(Li)})?
In case that f exists, it is a lower bound for the increase in complexity
(“blow-up”) when changing from a description in D2 to an equivalent one in
D1 (or for savings in the complexity in the reverse direction) for infinitely
many languages.

Notation: D2
C2,C1−→ D1

n ≥ f(n)
If C1 = C2, we will drop C2 in this notation.

196 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

Examples:

NFA
s−→ DFA

n ≥ 2n (will be shown in Section 2)

DFA
s−→ NFA

n ≥ n (e. g. with Ln:={1n})
Definition 3 If there is no recursive function serving as an upper bound for the
trade-off between two descriptional systems D1 and D2, we say that the trade-off
is non-recursive and write D1

nonrec−→ D2.

In contrast to Definitions 1 and 2, the last definition does not mention a com-
plexity measure. This is no loss of generality: A non-recursive trade-off means
that changing from one descriptional system D1 to another system D2 implies a
blow-up which is not bounded by any recursive function. Since any reasonable
complexity measure can be assumed to be bounded by a recursive function, a
non-recursive blow-up will exceed any difference caused by applying two reason-
able complexity measures. Therefore, non-recursive trade-offs do not depend on
specific (reasonable) complexity measures.

In Section 2 we will investigate how the descriptional complexity of finite
automata varies with different amounts of nondeterminism. Specifically we will
look at the concept of the spectrum of a regular language. The spectrum of a
language indicates how “inherently nondeterministic” a language is. As a spe-
cial case of finite automata with limited nondeterminism we will look at finite
automata with up to k initial states.

Section 3 will focus on the descriptional complexity of finite automata with
limited ambiguity. In other words, we do not necessarily restrict the total number
of choices an automaton can make to process the input but do limit the number
of “successful” choices.

Section 4 will look at two-way finite automata, i.e., finite automata which are
allowed to move their reading head in two directions. Aside from the classical
trade-offs obtained when converting two-way deterministic or nondeterministic
finite automata to one-way deterministic ones, we will investigate two-way finite
automata with limited resources, e.g., with a limited number of turns of the
reading head as well as some restricted models as for instance sweeping automata
which are allowed to change the head’s direction only at either end of the input.

Section 5 will turn our attention to limiting the amount of nondeterminism in
Pushdown Automata (PDAs). In order to limit nondeterminism, one first has to
find or agree on ways of measuring it. Several ways of measuring nondeterminism
will be discussed and examined, among them the so-called minmax measure.

Section 6 will study the descriptional complexity of PDAs with limited non-
determinism (based on the minmax measure) and limited ambiguity. Rather
surprisingly, it turns out that for certain context-free languages, increasing the
degree of ambiguity of the PDA (or corresponding grammar) by just one degree
can yield a non-recursive reduction in descriptional complexity.

Section 7 will examine how an increase in the length of the lookahead for
LL(k) and LR(k) languages can reduce the size of the parser. This is especially
interesting in the LR(k) case. Although it is well known that LR(1) grammars
already characterize the entire class of LR(k) languages, this result shows that it

197Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

might be very prudent to enlarge the lookahead window for complexity reasons,
even though it is not needed.

Section 8 will investigate the descriptional complexity of a parallel computa-
tional model. The main result is that there are non-recursive trade-offs between
cellular automata and sequential automata as well as among several cellular
models. Moreover, general cellular automata turn out to be very difficult to
handle, because it can be shown that almost nothing is decidable. Putting a
natural restriction on the general model yields a cellular model which is weaker
in its generative capacity, but stronger in terms of manageability.

In Section 9 we will outline the relationship between descriptional complexity
and software reliability, an area of tremendous practical interest. Furthermore,
we will discuss how future work in descriptional complexity might help to better
understand and improve software reliability.

Section 10 will look at some other types of devices and resources through the
prism of descriptional complexity. For some of these types of devices the descrip-
tional complexity has been studied in general but not—at least not extensively
yet—from the particular aspect of gradually limiting resources.

In Section 11 we will give a short summary and a brief outlook for further
research.

Our survey of results in descriptional complexity of machines with limited
resources does not yet address the problems, for example, of proving certain
properties of jet aircraft or other technological devices based on their descrip-
tions or the complexity of their descriptions. However, we have surveyed the
fundamental results and theoretical underpinnings in an area that one day could
provide, hopefully, solutions to these problems.

2 Finite Automata with Limited Nondeterminism

2.1 Motivation

Finite automata (often also called finite state machines) are probably the most
elementary automata model and are used in virtually every area of computer
science, from process modeling in software engineering to protocol specification
in distributed systems.

Nondeterminism is a fundamental concept in automata theory, in some sense
formalizing the human behavior of guessing. For some automata models, the use
of nondeterminism allows for an increased generative power or higher efficiency
such as faster processing time or less (dynamic) space consumption. For finite
automata, deterministic and nondeterministic automata both accept the class
of regular languages and are thus equal in generative power. Furthermore, both
operate in real time and, as there is no storage medium in addition to the finite
state control, the dynamic complexity of deterministic and nondeterministic fi-
nite automata is also equal. Yet, the descriptional complexity, i.e., the size, of
minimal deterministic and nondeterministic finite automata describing the same
language may vary dramatically. In fact, the use of nondeterminism in finite
automata sometimes allows for exponentially more concise representations of
languages.

Not all nondeterministic finite automata appear to make equal use of nonde-
terminism. As first shown for other automata models in [KF80], nondeterminism

198 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

in finite automata is a resource that may be used in different amounts and that
can be accurately quantified. In this section, we will summarize results about
the descriptional complexity of finite automata with limited nondeterminism.
We will not only focus on the case in which all regular languages are considered
but will also state results about trade-offs between NFAs with limited nondeter-
minism and DFAs when the languages accepted by these automata are limited
to unary or binary alphabets, as well as when these languages are finite.

In order to precisely illustrate, describe and summarize the models and con-
cepts used and the results obtained, we would like to recall some definitions.
A nondeterministic finite automaton is a quintuple M = (Q,Σ, δ, q0, F), where
Q and Σ are non-empty finite sets of states and input symbols, respectively,
q0 ∈ Q is the initial state, F ⊆ Q is a non-empty set of final states and
δ : Q × Σ → 2Q denotes the transition function. An automaton is called a
deterministic finite automaton (DFA) if |δ(p, σ)| = 1 for all p ∈ Q, σ ∈ Σ. A
move µ is a triple µ = (p, σ, q) ∈ (Q × Σ × Q), where q ∈ δ(p, σ). This move is
called nondeterministic if |δ(p, σ)| > 1. A computation for w = σ1 . . . σn ∈ Σ∗
is a sequence of moves µ1 . . . µn, where µi = (pi−1, σi, pi) and p0 is the initial
state of M . It is called accepting if pn ∈ F . The language accepted by an FA
M is T (M) = {w ∈ Σ∗ | there is an accepting computation for w in M}. Two
automata M and M ′ are equivalent if T (M) = T (M ′). As usual, the size of an
automaton is measured by the size of its finite state control, the number of states
of the automaton.

✲✗
✖ ✕

✲✗
✖ ✕

✲✗
✖ ✕

✲✗
✖ ✕✚✙

✛✘
✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✖✕
✗✔

✲ ✲ ✲ ✲ ✲ ✲
❄

❄ ❄ ❄ ❄

✻

0 1 2 n−2 n−1· · ·1 1 1 1 1

1

0 0 0 0

0 0 0 0

Figure 1: NFA Mn with n states accepting a language for which an equivalent DFA
needs at least 2n states.

The landmark paper [MF71] raised descriptional complexity as a research
topic and addressed the economy of description by various devices. Among the
results, it proved that there is an infinite sequence of languages (Ln)n≥1 such
that there is an NFA for Ln with n states and each equivalent DFA has at
least 2n states. In other words, it shows that in general no improvements to the
subset construction are possible which converts an n-state NFA to an equivalent
DFA with 2n states as presented in [RS59]. The NFA Mn for Ln is depicted
in Figure 1. It should be noted that the same result was independently proven
by [Moo71] using another sequence of languages, and meanwhile some more
sequences (Ln)n≥1 are known such that the representation of Ln by a DFA
requires at least 2n states whereas there is an NFA for Ln with n states. Some
of these sequences also possess other features, for instance a very few number

199Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

of transitions [Leu98b]. Using the notation from the introduction, these results
can be summarized as follows:

NFA
s−→ DFA

n ≤ 2n [RS59]

NFA
s−→ DFA

n ≥ 2n [MF71], [Moo71], [Leu98b]

In order to study situations where the resource of nondeterminism is limited,
we need to measure nondeterminism. A natural candidate for quantifying the
amount of nondeterminism an automaton uses in a computation µ1 . . . µn is the
number of nondeterministic moves in that computation. Crediting the automa-
tion with its best effort, the amount of nondeterminism the automaton uses on
an accepted input w can be measured by the minimal amount of nondetermin-
ism needed in an accepting computation for w (this measure was suggested in
[KW80]). The nondeterminism used by an NFA M is considered limited (also
called finite) if there is an integer c such that for each accepted word there is an
accepting computation with at most c nondeterministic moves. In this case, c is
measuring the amount of nondeterminism M uses.

Returning to the NFAs proposed by [MF71], it can be seen that nondetermin-
ism in the NFA Mn for all n ≥ 2 is unlimited. For instance, when accepting the
input 10m, m ≥ 1 at least m nondeterministic moves are made in any accepting
computation.

So, the question arises whether the use of limited amounts of nondetermin-
ism also enables NFAs to be more concise than DFAs, even if the amount of
nondeterminism is very limited. As will be outlined in the remainder of this
section, results in [KW80] and [GKW90] prove that there are cases where even
very limited nondeterminism helps, but the extent to which limited nondeter-
minism may help is bounded. Furthermore, as results in [GKW90] show, there
are languages such that NFAs, unlimited in nondeterminism, may be exponen-
tially more concise compared to DFAs, but any NFA using a limited amount of
nondeterminism has the same size as a DFA for the language.

2.2 Towards Finite Nondeterminism

An early indication that NFAs with finite nondeterminism can be more concise
than DFAs, even if nondeterminism is limited and the described languages are
finite, was given in [Man73]. This paper proved that in the case of a binary
alphabet, each NFA with n states that accepts a finite language can be trans-
formed into a DFA having at most 2 · 2n/2 − 1 states if n is even and at most
3 · 2�n/2� − 1 states if n is odd. Furthermore, it showed that this upper bound
is the best possible in the sense that there is an infinite sequence of languages
(Ln)n≥1 such that there is an NFA with n states and each equivalent DFA has at
least 2 ·2n/2−1 states if n is even and at least 3 ·2�n/2�−1 states if n is odd. As
each NFA accepting a finite language only traverses a finite number of nondeter-
ministic moves for every accepting computation, this result already showed that
limited nondeterminism can yield (almost) exponential savings, even for finite
languages over binary alphabets (the generalized case of finite languages over

200 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

arbitrary alphabets is studied in [SY97]). Let NFA(fin,bin) denote all NFAs
accepting finite languages over binary alphabets. We have:

NFA(fin,bin) s−→ DFA

n ≤
{
2 · 2n/2 − 1 if n is even,
3 · 2�n/2� − 1 if n is odd.

[Man73]

NFA(fin,bin) s−→ DFA

n ≥
{
2 · 2n/2 − 1 if n is even,
3 · 2�n/2� − 1 if n is odd.

[Man73]

[KW80] investigated the situation when nondeterminism in NFAs is even
further restricted, to the point where the automaton is “almost” deterministic
except for a “small” nondeterministic portion. The NFAs considered make at
most a finite number of nondeterministic moves bounded by a function depend-
ing on the number of states of the automaton. The functions g(n) considered are
asymptotically smaller than logarithmic functions, g(n) � log(n) (f(n) � g(n)
means limn→∞ f(n)/g(n) = 0). Furthermore, only NFAs with at most three
choices in a nondeterministic move, |δ(p, σ)| ≤ 3 for all p ∈ Q, σ ∈ Σ were con-
sidered. This implies that, for such an NFA with n states, by applying the subset
construction only subsets of states whose cardinality is less than or equal to 3g(n)

can be reached and thus an equivalent DFA with at most
∑

0≤i≤3g(n)

(
n
i

) � 2n

states can be obtained. Hence, the trade-off achievable is less than exponential.
Restricting the number of nondeterministic moves to less than logarithmic

in the number of states is indeed a strong limitation. [Leu98a] showed that the
number of nondeterministic moves in an NFA with n states, if limited, is bounded
by 2n − 2 and also presented examples where this bound is almost reached.

[KW80] proved that for any given function g(n) � log(n), there is a sequence
of languages (Ln)n≥c for some constant c such that there is an NFA accepting
Ln having n states, making at most g(n) nondeterministic moves on all inputs,
and each DFA accepting Ln must have at least

∑
0≤i≤2g(

√
n)

(
O(

√
n)

i

)
states.

In other words, for any two functions g1(n), g2(n) with g1(n) � g2(n) �
log(n) two sequences of languages (L1

n)n≥1 and (L2
n)n≥1 can be exhibited such

that the succinctness achieved by NFAs making at most g2(n) guesses on their
input over the corresponding minimal DFAs for (L2

n)n≥1 is considerably larger
than the succinctness achieved by NFAs making at most g1(n) guesses on their
input over the corresponding minimal DFAs for (L1

n)n≥1.
To put it yet another way: Even very small amounts of nondeterminism may

lead to NFAs that are substantially smaller than equivalent DFAs, and more
nondeterminism allows for increased succinctness of the NFAs over equivalent
DFAs.

2.3 Spectra of Regular Languages

A logical extension of this idea is to study how the descriptional complexity of
finite automata varies with different amounts of nondeterminism allowed when
considering a single language. This concept of the so-called spectrum of a regular
language was studied in [GKW90].

Apart from introducing the concept of a spectrum, [GKW90] also refined the
measure used for nondeterminism in finite automata by introducing “branching”

201Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

and “guessing”. These measures allow for a much more finely grained assessment
of the amount of nondeterminism used than simply counting nondeterministic
moves.

The refinement in measuring is based on the observation that the amount of
nondeterminism used in a nondeterministic configuration (p, σ, q) is not always
equal, but varies with the cardinality |δ(p, σ)| of possible successor states. Intu-
itively, there is no difference in the amount of nondeterminism if traversing two
nondeterministic moves with two possible successor states each and traversing a
single nondeterministic move with four possible successor states.

In the following, we will present the definitions of branching and guess-
ing as given in [GKW90]. Let M = (Q,Σ, δ, q0, F) be a finite automaton.
The branching and guessing of a move (p, σ, q), βM (p, σ, q) and γM (p, σ, q), are
given by βM (p, σ, q) = |δ(p, σ)| and γM (p, σ, q) = log2(|δ(p, σ)|). The branch-
ing and guessing βM (µ1 . . . µr) and γM (µ1 . . . µr) of a computation µ1 . . . µr in
M are βM (µ1 . . . µr) = βM (µ1) · . . . · βM (µr) and γM (µ1 . . . µr) = γM (µ1) +
. . . + γM (µr). The branching and guessing βM (w) and γM (w) of a word w ∈
T (M) − {ε} are defined by βM (w) = min{βM (µ1 . . . µr) |µ1 . . . µr is an ac-
cepting computation for w} and γM (w) = min{γM (µ1 . . . µr) |µ1 . . . µr is an
accepting computation for w}, and βM (ε) = 1 if ε ∈ T (M) and γM (ε) = 0
if ε ∈ T (M). The branching and guessing βM and γM of the automaton M
are βM = sup{βM (w) |w ∈ T (M) } and γM = sup{γM (w) |w ∈ T (M) }. If
T (M) = ∅, then βM = 1 and γM = 0.

Intuitively, γM (µ) is the number of bits of information needed to single out
and record the move µ from among the other moves that the automaton could
have selected at any point in a computation where this move occurs.

Notice that for a word w and a computation µ1 . . . µr for w in an automaton
M , 1/βM (µ1 . . . µr) is the probability that M will choose this computation for
w if the probabilities for nondeterministic transitions are uniformly distributed.
Furthermore, βM (µ1 . . . µr) reflects the amount of parallelism needed for a real-
time simulation of this computation. Since acceptance of a word w can be discov-
ered by only examining computations with branching less than or equal to βM ,
for NFAs having finite nondeterminism, βM reflects the amount of parallelism
needed for a real-time simulation of M . Hence, the branching of an automaton
M is the minimal amount of nondeterminism M needs to accept all words of
T (M). In-depth details on motivations behind these measures can be found in
[GKW90].

If |δ(p, σ)| ≤ 2 for all p ∈ Q, σ ∈ Σ, the guessing as defined above counts
exactly the number of nondeterministic moves. By the same token, the measure
used in [KW80] and the above measures are strongly related. For a computation
in any NFA, the guessing is always at least equal to the number of nondeter-
ministic moves in that computation. As only NFAs with |δ(p, σ)| ≤ 3 for all
p ∈ Q, σ ∈ Σ are considered in [KW80], the guessing of a computation is at
most by a factor of log2(3) higher than the number of nondeterministic moves.

Whereas guessing seems to be the natural choice for measuring nondetermin-
ism, it may fail to be an integer. Therefore, it is technically more convenient to
use branching for nondeterminism in finite automata with limited nondetermin-
ism. Notice that (for finite values) guessing is always the binary logarithm of
branching for moves, computations, words and automata.

With the measures defined, we can now proceed to the concept of the spec-
trum of a regular language. The spectrum of a regular language captures the

202 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

size of minimal NFA descriptions for a language L for any possible finite amount
of nondeterminism and for unlimited nondeterminism as well: Let L be a regu-
lar language. The spectrum of L, σ(L), is the infinite sequence (with endpoint)
σ(L) = (σ1(L), σ2(L), . . . , σi(L), . . . ;σ∞(L)), where σi(L) is the minimal num-
ber of states of an NFA accepting L with branching of at most i.

Although a spectrum is an infinite sequence of integers, it is monotone and
bounded and its entries assume just a finite number of values. Hence the en-
tire spectrum contains just a finite amount of information. Furthermore, the
spectrum for any regular language is computable (see [GKW90], [Leu98a]).

The spectrum σ(L) of a regular language L indicates how “inherently non-
deterministic” the language is: The entry σ1(L) reflects the minimal size of an
incompletely specified DFA for L (which can be converted to a regular DFA with
at most one additional state). At the other extreme, the entry σ∞(L) shows the
minimal number of states an NFA needs for L with arbitrary amount of nonde-
terminism. The middle entries describe the situation where only limited amounts
of nondeterminism may be used.

The question is what entries are possible in the middle of a spectrum, es-
pecially in cases where unlimited nondeterminism enables exponential savings
between NFAs and DFAs, like for example in the case of the languages exhibited
in [MF71] and [Moo71].

Intuitively, two extreme cases could occur: Either no amount of limited non-
determinism helps at all, which implies that NFAs with limited nondeterminism
are just as large as a DFA for that language, or it might be that already very
small amounts of nondeterminism allow for much more concise representations
of the language by NFAs. Indeed, [GKW90] showed that both of these cases can
truly arise.

Let us first focus on the case where limited nondeterminism does not help.
Interesting in itself, the paper presents a construction converting any regular
language L to a language L′ such that limited nondeterminism does not help for
L′, i.e., all NFAs with limited nondeterminism for L′ are as large as an NFA for
L′ not using any nondeterminism at all. Applying this construction to languages
such as exhibited in [MF71] or [Moo71] yields an upper bound on spectra of
regular languages as follows:

For every regular language L, σ(L) ≤ (2n − 1, 2n − 1, . . . , 2n − 1, . . . ;n),
where n = σ∞(L). Furthermore, this bound is approximately the best possible
in the sense that, for each n ≥ 1, there is a regular language Ln with σ(Ln) =
(2n−1, 2n−1, . . . , 2n−1, . . . ;n).

Thus, indeed there are languages for which limited nondeterminism does not
lead to a reduction of the number of states necessary to describe the language,
whereas using arbitrary nondeterminism leads to exponentially more concise
automata.

On the other hand, [GKW90] also investigated how many states can be saved
at best when only limited amounts of nondeterminism are permitted and hence
how to establish a lower bound on spectra. This lower bound is obtained by a
modified version of the subset construction which is more effective in the case
of small amounts of nondeterminism. Furthermore, they exhibited a sequence
of languages proving that the presented construction cannot be significantly
improved.

For any regular language L, if σ1(L) ≥ 2n − 1 > 1 then σi(L) ≥ 2n/i for
1 < i ≤ n/ log2(n), σi(L) ≥ n for n/ log2(n) ≤ i ≤ ∞, and these lower bounds

203Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

are approximately the best possible in the sense that, for each n > 1, there is
a regular language Ln such that σ1(Ln) = 2n, σi(Ln) < 2i · 2n/i for 1 < i ≤ n,
σi(Ln) < 4n for n ≤ i < ∞, σ∞(Ln) = n+ 1.

Hence, there are cases in which already small amounts of nondeterminism
result in substantial savings. The most rapid rate at which a spectrum can
decrease is for the i-th entry to be essentially just the i-th root of the first entry
until the maximum decrease has been attained after about n/ log2(n) steps.

Using proving techniques from communication complexity as exhibited in
[Kla98], [Kla00] recently showed that there are also languages where finite non-
determinism gradually helps like above, but only after a certain “threshold”
amount of nondeterminism has been reached. So, there are indeed languages
situated between the bounds on spectra presented in [GKW90].

It should be stressed that the above results rely on the use of the refined
measurements for nondeterminism as in fact an NFA making at most a single
nondeterministic move in every accepting computation can achieve exponential
savings in the number of states compared to a DFA. In this case, however, the
number of possible successor states in this move is very high, close to all states
of the NFA (see [Kap00] for details). As the results from [KW80] show, this is
not the case if the number of successor states in all nondeterministic moves is
bounded by three (or any other finite constant).

2.4 Finite Automata with Multiple Initial States

Another possible restriction to nondeterminism is to limit the points at which
nondeterminism may occur in a computation. Allowing only a single guess be-
fore the computation actually starts, we come to MDFAs, finite automata with
multiple initial states and a deterministic transition function. This model was
studied in [Kap00] and [HSY00]. The only nondeterminism occurring in MDFA
is to guess the initial state whereas the rest of the computation proceeds deter-
ministically. Consequently, the branching of such an automaton is measured by
the number of initial states and thus is always finite.

By the subset construction, for each MDFA with n states and k initial states
there is an equivalent DFA with at most

∑
1≤i≤k

(
n
i

)
states. [HSY00] showed

that this bound is indeed the best possible by exhibiting an infinite sequence of
languages providing exactly this trade-off. Denoting the class of all MDFA with
at most k initial states by MDFA(β ≤ k), we have:

MDFA(β ≤ k) s−→ DFA
n ≤ ∑

1≤i≤k

(
n
i

)
[RS59]

MDFA(β ≤ k) s−→ DFA
n ≥ ∑

1≤i≤k

(
n
i

)
[HSY00]

Hence, in the extreme case that each state is an initial state (a special case
first considered in [GK74] and [VG79]), there are MDFA with n states and n
initial states such that every equivalent DFA needs at least 2n − 1 states. On
the other hand, using the above result by [GKW90] that there are cases where
finite nondeterminism does not help and the fact that each MDFA can easily
be converted to an equivalent NFA with finite nondeterminism and at most one
additional state, [Kap00] pointed out that there are also cases where NFAs can

204 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

achieve exponential savings over DFAs and that NFAs are also exponentially
concise over MDFAs.

NFA
s−→ MDFA

n ≥ Ω(2n) [Kap00]

In the case of finite nondeterminism however, [Kap00] proved that for each
NFA with n states and branching k there is an equivalent MDFA with kn + 1
states and k initial states. In other words, the nondeterminism in an NFA with
finite branching can be shifted from the transition function into the initial states.
Let NFA(β ≤ k) denote the class of all NFAs with branching of at most k < ∞.
We have:

NFA(β ≤ k) s−→ MDFA
n ≤ kn+ 1 [Kap00]

2.5 Unary Languages

An important special case are unary languages. [Man73] showed that for finite
unary languages NFAs are just as good (or bad) as DFAs (except for one addi-
tional state needed for completely specifying the DFA). Thus, for finite unary
languages nondeterminism does not help at all. For infinite languages, NFAs
can be more concise than DFAs, yet not as much as in the binary case. [Chr86]
proved that, in the unary case, for each NFA with n states it is possible to con-
struct a DFA with at most O(e

√
n log(n)) states and that this is the best possible

construction in the sense that for each n there is a unary NFA with n states such
that any equivalent DFA has at least Ω(e

√
n log(n)) states. Initial results indicate

that the concept of the spectrum of a regular language can also be successfully
applied to the unary case [Oet92].

3 Finite Automata with Limited Ambiguity

In the previous section, we studied the trade-offs in descriptional complexity
between NFAs with varying amounts of nondeterminism. The measure of non-
determinism is computed by considering only accepting computations that con-
sume the least amount of guessing. Another measure called ambiguity takes into
account all of the accepting computations.

An NFA is said to be k-ambiguous if every string in the language is accepted
with at most k different accepting computations. An unambiguous NFA (UFA)
is a 1-ambiguous NFA. A UFA is allowed to use nondeterminism, but, like a
DFA, it can only accept strings in a unique way.

Schmidt [Sch78] first showed that there are exponential trade-offs in succinct-
ness between DFAs, UFAs and NFAs. Stearns and Hunt [SH85] proved slightly
stronger results which we summarize as follows:

UFA
s−→ DFA

n ≥ 2cn

205Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

NFA
s−→ UFA

n ≥ 2n−1

An NFA is said to be finitely ambiguous (FNA) if the NFA is k-ambiguous
for some positive integer k. An NFA is polynomially ambiguous (PNA) if there
exists a polynomial p such that every string x in the language is accepted with
at most p(|x|) accepting computations. Given an NFA M = (Q,Σ, δ, q0, F), any
input string of length n can have at most |Q|n different accepting computations.
Therefore, every NFA is exponentially ambiguous in the sense that any string
in the language is accepted with at most exponentially that many accepting
computations.

Considering the finite language Ln = {x#y | x, y ∈ {0, 1}n, x �= y} intro-
duced by Schmidt [Sch78], the following result can be obtained:

FNA
s−→ UFA

n ≥ 2c
√

n

Leung [Leu98b] studied the language (0 + (01∗)n−10)∗ and showed that:

NFA
s−→ PNA

n ≥ 2n − 1

Using techniques from communication complexity, Hromkovič et al. [HKK+]
also proved an exponential trade-off in size between PNAs and NFAs. However,
it is an open problem whether there are exponential trade-offs in size between
FNAs and PNAs. A partial result is proved in [HKK+] which shows that there
is a family KONm of languages such that KONm can be accepted by a linearly
ambiguous PNA with size m+2, but any k-ambiguous FNA for KONm has size
at least 2(m−1)/k − 2.

Ravikumar and Ibarra [RI89] considered succinctness questions for unary lan-
guages. It is shown that there can be exponential trade-offs in size between DFAs
and UFAs, and between UFAs and FNAs. According to the result of Chrobak
[Chr86], every n-state NFA over a unary alphabet can be accepted by an O(n2)-
state FNA. That is, polynomially ambiguous (or exponentially ambiguous) NFAs
are not needed in succinct representations of unary regular languages.

A rather obvious question comes to mind, namely whether the measures of
nondeterminism and ambiguity are related. It is shown in [GLW92] that sublinear
unbounded amounts of nondeterminism are possible for NFAs, and when that
happens the degree of ambiguity must be infinite.

[HKK+] proposed studying the fine structure of languages with regard to
finite ambiguity. Similar to the spectrum concept in the previous section, we
may want to consider how the size of NFAs varies as the amount of ambiguity
increases. Specifically, one may wonder if there are exponential trade-offs in size
between k-ambiguous NFAs and (k + 1)-ambiguous NFAs.

206 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

4 Two-Way Finite Automata from the Perspective of Limited
Resources

It is well known that both two-way deterministic finite automata (2DFA) and
two-way nondeterministic finite automata (2NFA) describe regular languages.
There are a number of “simulation” results (by Rabin-Scott [RS59], Shepherdson
[She59], Vardi [Var89] and Birget [Bir93]) which showed how one model of two-
way finite automata can be simulated by other models of finite automata which
include the conversions from 2DFAs to DFAs, 2DFAs to NFAs, 2NFAs to DFAs
and 2NFAs to NFAs. However, there are only very few “separation” results.

When comparing the descriptional complexity between different formal mod-
els, we consider two models to be “separated” when one model is shown to be
exponentially more succinct than the other model for representing the same
sequence of objects.

For the problem of comparing the descriptional complexity of different mod-
els of two-way finite automata, the main problem ([Sip80]) of whether 2DFAs
and 2NFAs can be separated is still open. That is, is there a family of regular
languages Ln such that to describe Ln, a 2DFA requires an exponential number
of states whereas a 2NFA requires only a polynomial number of states?

The main problem has been open for a long time and seems to be very difficult
to resolve. An alternative approach is to compare the different models from the
perspective of limited resources. Another approach is to study restricted models
of two-way finite automata.

On the other hand, there are a few separation results between two-way finite
automata and one-way finite automata. Meyer and Fischer [MF71] showed that
there is a family of O(n)-state 2DFAs such that the smallest equivalent DFA
has at least nn states. Sakoda and Sipser [SS78] showed that there is a family
of (2n)-state 2NFAs such that the smallest equivalent DFA has at least 2(n−2)2

states. In [Dam97], it is shown that there is a family of O(n)-state 2DFAs such
that the smallest equivalent NFA has at least 2n states.

4.1 Sweeping Automata

Sweeping automata are a restricted model of 2DFAs. A sweeping automaton is a
2DFA that changes direction only at either end of the input. Sipser showed that
one-way NFAs and sweeping automata are separated. Specifically, there exists
a family of n-state NFAs over an alphabet of size 2n2

such that the equivalent
sweeping automaton has at least 2n states. With respect to the regular languages
Ln = (0+(01∗)n−10)∗ over a binary alphabet, Leung [Leu] showed a similar tight
result separating NFAs from sweeping automata. In [Mic81] and [Ber80] it is
shown that 2DFAs can be exponentially more succinct than sweeping automata.

4.2 Two-way finite automata over unary alphabets

We summarize the main results on descriptional complexity of two-way finite
automata over unary alphabets as follows:

– Any n-state 2NFA can be converted to a O(nlog n+4)-state 2DFA [GMP01].

207Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

– Any n-state 2NFA can be converted to a O(e
√

n log n)-state one-way DFA
[MP00a].

– Any n-state one-way NFA can be converted to a O(n2)-state 2DFA, and the
conversion is tight [Chr86].

4.3 Two-way Las Vegas finite automata

In [HS01b], the model of two-way Las Vegas finite (2LVFA) automata was in-
troduced. A Las Vegas finite automaton is a nondeterministic automaton where
each transition is assigned a probability. A string is accepted (rejected) if the
probability for arriving at an accepting (rejecting) state is at least 1

2 . It is further
required that a Las Vegas automaton cannot make mistakes: If there is a com-
putation that ends in an accepting (rejecting) state, then the string processed
must (not) be in the language of the automaton. This new probabilistic two-way
finite automata model is studied against 2DFAs and 2NFAs. The following re-
sults are obtained. There are languages Mk such that Mk can be accepted by
(2k+O(1))-state 2NFAs, but any 2LVFA requires at least k2−2 states to accept.
There are languages Sk such that Sk can be accepted by O(k)-state 2LVFAs, but
any 2DFA requires Ω(k2/ log k) states to accept. In both cases, the trade-offs
are quadratic, not exponential.

4.4 Two-way finite automata using limited resources

Damanik [Dam97] considered 2DFAs with the number of turns restricted. An
automaton in the class 2DFA(k) is allowed to use at most k left moves for
accepting an input. The two-way spectrum (which is similar to the spectrum
concept presented in section 2) of a regular language is studied. Klauck [Kla98]
studied k-visit 2NFAs with limited amounts of nondeterminism. Note that a
k-visit 2NFA is allowed to visit each input bit at most k times. It is shown
that for any positive integers s and k there is a language Fs,k ⊂ {0, 1}n which
can be accepted by a k-visit 2DFA with knO(s) states, whereas any equivalent
(k − 1)-visit 2NFA using s guess bits requires 2Ω(n/(s2k3 log n)) states.

4.5 Other works

Berman and Lingas [BL77] showed how the descriptional complexity question
for two-way finite automata relates to the open problem in computational com-
plexity of whether deterministic logarithmic space (L) is properly contained in
nondeterministic logarithmic space (NL).

Birget ([Bir93], [Bir96]) studied trade-off results for length-preserving homo-
morphisms and in [Bir93] also studied trade-off results with respect to two-way
alternating finite automata.

With respect to a strong equivalence concept called “positional simulation”,
Kannan [Kan83] showed that, to simulate an n-state 2NFA, a 2DFA may need
≥ 2log nlog log n

states, which is not a polynomial. Birget [Bir92b] showed that for
every 2NFA there is a 2DFA which simulates it positionally.

(Remark: Let A and B be two-way finite automata. A is said to simulate B
positionally if for every state p in B there is a state q in A such that, for all
strings u and v, A accepts uv when started in the initial configuration uqv if and
only if B accepts uv when started in the initial configuration upv.)

208 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

5 Limiting Nondeterminism in Pushdown Automata

In contrast to finite automata and Turing machines, pushdown automata (PDAs)
can recognize additional languages through the use of nondeterminism. Thus, the
first question we would ask from the perspective of descriptional complexity—
“What effect can removing nondeterminism have on the size of a PDA?”—must
include the provision, “when it is possible to do so.” As is often the case when this
additional provision is required, the answer is that the effect on size is recursively
unbounded (i.e., grows faster than any recursive function) [Val76]. To progress
past this point, we need a way to measure nondeterminism. We can then ask,
“What effect can removing a specified amount of nondeterminism have on the
size of a PDA?”

Several ways to measure nondeterminism in PDAs have appeared in the lit-
erature. Before we address questions involving the descriptional complexity of
PDAs in Section 6, we would like to discuss these different measures of nonde-
terminism. In this section, we will consider three ways to measure a pushdown
automaton’s use of nondeterminism. One of the measures is static; the other
two are dynamic. The static measurement is based only on the structure of the
automaton, whereas the dynamic measurements are based on the automaton’s
behavior.

The effect, in terms of descriptional complexity, of changing the amount of
nondeterminism in a PDA has received little attention except in the special case
of PDAs that make only a bounded number of nondeterministic moves, whatever
the length of their input. (We will say such PDAs have finite nondeterminism.)
Since the question of how to measure nondeterminism does not arise in this case,
we will compare the different measures in the context of concrete complexity
rather than descriptional complexity. Thus, the material in this section will bear
a greater resemblance to time and space hierarchies of complexity classes than
to descriptional complexity.

5.1 Measuring nondeterminism in PDAs

If we wish to measure nondeterminism in a pushdown automaton dynamically,
we must decide how to “charge” a PDA for its use of nondeterminism in han-
dling each input string. The simplest choices would be to charge a PDA for the
maximum amount of nondeterminism it ever uses while processing a particular
input string, or to charge it only for the amount of nondeterminism it uses during
its “best” computation on the string. We will consider both choices. Following
Salomaa and Yu [SY93], we call these two types of measures maxmax measures
and minmax measures, respectively. The second “max” refers to maximizing the
cost, for each value of n, over all input strings of length n.

We must also decide whether or not to take into account nondeterminism
that occurs during unsuccessful computations. We choose to ignore any “unsuc-
cessful” use of nondeterminism.

Finally, we must decide whether it should cost more to choose one of many
things (e.g., to roll dice) than to choose one of two things, that is, to make
a binary choice (e.g., to flip a coin). We will call measures that ignore this
distinction “coarse” measures, and will call those in which the cost of rolling dice
is the same as the cost of an equivalent combination of coin flips, or in which

209Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

dice are forbidden altogether (i.e., which require all guesses to be binary), “fine”
measures. Fine measures are more precise (and also, we believe, more natural);
for example, fine measures can distinguish languages that require k guesses from
those that require k + 1, while coarse measures cannot.

For time- or space-bounded Turing machines, deciding whether to use a max-
max or minmax measure of nondeterminism is of little consequence. (For a well-
behaved function f(n) and an input string w, a Turing machine could compute
f(|w|) within the available resource bound, and terminate any computation that
attempts to use more than that amount of nondeterminism. Thus, a machine
whose nondeterminism satisfies a minmax bound can be converted into a ma-
chine that satisfies the more stringent maxmax bound.) While this is also true for
PDAs that have finite nondeterminism, we will see that there is a considerable
difference between maxmax and minmax measures for PDAs in general.

The study of nondeterminism as a measurable resource was initiated by Kin-
tala and Fischer in a 1977 paper that applied the minmax measure to real-time
Turing machines [KF77]. In a paper the following year [Kin78], Kintala consid-
ered PDAs with finite nondeterminism, in effect applying a fine measure to a
restricted class of PDAs for which the max/min distinction is irrelevant. In a
1981 paper [VS81], Vermeir and Savitch extended the measurement of nondeter-
minism to PDAs having infinite amounts of nondeterminism. However, instead of
following the lead of Kintala and Fischer, they used a (coarse) maxmax measure
rather than a minmax measure. While a maxmax measure is simple to handle
technically, it tends to degenerate: within any accepting computation containing
a sufficiently large number of nondeterministic moves, we can find a pair of seg-
ments which contain at least one of the nondeterministic moves, and which can
be “pumped up” or “iterated”, as in the pumping or iteration lemma for CFLs.
Hence, in this measure, if the nondeterminism in a PDA is infinite, then it grows
linearly. Furthermore, in a coarse measure, all finite amounts of nondeterminism
are equivalent, since each can be realized by a single nondeterministic move hav-
ing a large fan-out. Thus, the maxmax measure in [VS81] assumes only three
non-equivalent values: zero (yielding the deterministic CFLs), finite (yielding
finite unions of deterministic CFLs), and linear (yielding all CFLs).

In part because of the degeneration of this dynamic measure, Vermeir and
Savitch also considered a static measure, the “(nondeterministic) depth” of a
PDA. Consider the context-free languages

L1 = {wwR | w ∈ {0, 1}∗} ,

L2 = {0i1j2 | j = i or j = 2i}∗ ,

where wR is the left-right reversal of the string w. In the maxmax measure,
both L1 and L2 require a linear number of guesses. Yet there is a sense in which
L1 appears to involve less nondeterminism than L2: L1 can be recognized by a
PDA having two deterministic pieces (one for pushing, one for popping) with a
nondeterministic jump between them. In the depth measure, this jump is counted
just once. In general, the depth of a PDA is the maximum number of jumps that
can be made in moving irreversibly from one deterministic submachine to an-
other in an optimal decomposition into deterministic submachines. Thus, L1 has
a nondeterministic depth of 1, while L2 is said to have infinite nondeterministic
depth, because a PDA that recognizes it cannot be decomposed into determinis-
tic submachines connected by irreversible jumps. Vermeir and Savitch show that

210 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

the depth measure is equivalent to counting the number of markers that must
be inserted into the strings of a CFL to make it deterministic; thus, a single
marker at the middle of each string suffices to make L1 deterministic. Unlike
the maxmax measure, the depth measure produces an infinite hierarchy of CFL
complexity classes. (See [SY94] for a corrected and extended treatment of the
depth measure.)

5.2 The minmax measure

In a 1993 paper, Salomaa and Yu [SY93] pointed out that the first hierarchy
in [VS81] collapsed not because the measure was dynamic, but because it was a
maxmax measure, and they introduced the minmax measure for PDAs. (They
used a coarse measure, but we will discuss the fine version of the minmax mea-
sure, as in [GLW97].)

There are other reasons to use a minmax measure instead of a maxmax
measure beside the desire to find a nondegenerate measure. For example, the
minmax measure is based on a nondeterministic automaton’s best rather than
worst effort, in the same way that its basic behavior (recognizing a language)
is. And the minmax measure reflects the amount of parallelism (the number of
processes running simultaneously) that is sufficient to simulate the nondeter-
minism (see [GLW97]). However, the minmax measure is much more difficult to
work with because of the fact that only a PDA’s best efforts matter. Thus, if we
take a computation that recognizes a string while using as little nondeterminism
as possible, and pump up some nondeterministic segments of it, then it is true
that we can obtain a computation that uses a linear amount of nondeterminism
to recognize a long string. However, there may be another computation that
recognizes the same long string in a completely different way using just a small
amount of nondeterminism.

Despite these technical difficulties, Salomaa and Yu were able to prove that
the recognition of a particular CFL requires more than a finite but less than a lin-
ear amount of nondeterminism in the minmax measure [SY94] (see also [SY93]),
and Salomaa, Wood and Yu were able to prove that the recognition of a partic-
ular CFL requires at least Ω(logn) nondeterminism in this measure [SWY94].

On the other hand, as long ago as 1978, Kintala asked whether every PDA
that recognizes the CFL L1 using binary guesses must infinitely often make at
least n/2 guesses on inputs of length n. Yet because of the technical difficulties
inherent in the minmax measure, this question remained open for nearly two
decades. In fact, for several years it could not be proved that the recognition of
any CFL, even L2, requires a linear amount of nondeterminism in the minmax
measure.

To see how minimization can result in complex behavior even in a PDA
as simple as a one-counter automaton (a PDA with a unary stack alphabet),
consider the CFL

L3 = { x10i1y ∈ (0 + 1)∗ | i ≤ |x| } .

The obvious way for a PDA to recognize this language is to count the length
of its input until it guesses (upon reading a 1) that it is time to count down
against consecutive 0’s. The only strings in the language that are relevant to the
calculation of the rate of consumption of nondeterminism by a PDA are those

211Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

strings whose length is minimal among all strings on which the PDA expends
the same amount of nondeterminism. In this case, these are the strings

wj = 10110310710151 · · · 102j−1−111, j ≥ 1 .

Since the PDA requires j binary guesses to recognize the string wj of length 2j ,
the rate of consumption of nondeterminism even in this simple PDA is �log2 n�,
and while we conjecture that no PDA can recognize this language using nonde-
terminism at a rate that is o(�log2 n�), we do not know how to prove it.

More recently, some further progress in handling the minmax measure was
made in [GLW97], from which the preceding example was taken. The following
results may be found there.

1. Through the use of constructions similar to but more complex than those
in L3, it can be shown that, for every unbounded monotone recursive func-
tion f(n), there is a CFL that contains an amount of nondeterminism that
is O(f(n)) but not O(1). From this it follows that the minmax measure pro-
duces an infinite hierarchy of CFL complexity classes.

2. By an argument similar to one used by Kintala (see Lemma 3.2 of [Kin78]), it
can be shown that the CFL L2 requires a linear amount of nondeterminism.
The argument is based on the fact that, for a fixed but large value of n, there
is a string of the form wε = 0n1ε1n2 · · · 0n1εkn2 in L2 for each vector of 1’s
and 2’s, ε = (ε1, . . . , εk), of length k. Since a PDA for L2 must use guesses
to distinguish these 2k strings from each other, the decision tree representing
these guesses must have at least 2k leaves. Hence, there must be a path to
a leaf that contains at least k guesses, and therefore a string wε on which
the PDA makes at least k guesses. Thus, the proof is basically a counting
argument.

3. If a CFL L has finite nondeterministic depth, then the number of guesses
made by a PDA recognizing L can be reduced by the factor 1/k for every
positive integer k. Since the language L1 has depth 1, it follows that the
answer to Kintala’s question about the number of guesses required to rec-
ognize L1 is, strictly speaking, no. However, the more informative answer
is that a PDA recognizing L1 must make a linear number of guesses. This
result is more difficult to prove than the corresponding result for L2 since
it cannot be proved by a counting argument. (A PDA for L1 must distin-
guish the prefixes of an input string, but since strings only have a linear
number of prefixes, this only shows that a decision tree must have at least
a linear number of leaves, and hence at least a logarithmic height. Thus, a
counting argument only establishes a logarithmic lower bound on the number
of guesses.) The proof in [GLW97] of a linear lower bound for L1 applies a
somewhat complicated pumping argument to the computations of the PDA.

6 Pushdown Automata with Limited Nondeterminism and
Ambiguity

Now that the various measures for nondeterminism in PDAs have been intro-
duced, we will summarize results about the descriptional complexity of PDAs
with limited nondeterminism and ambiguity. It follows from the standard con-
version techniques between PDAs and context-free grammars (CFGs) [HU79]

212 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

that the results presented here for PDAs with limited ambiguity apply to CFGs
with limited ambiguity.

All results involving limited nondeterminism mentioned in this chapter are
based on fine minmax measures as introduced in the previous section. Following
the lead set by the literature in this field, we will use two such measures, namely
“branching” for finite amounts of nondeterminism and “guessing” for infinite
amounts of nondeterminism.

The definitions of branching and guessing for PDAs are very similar to those
introduced for NFAs in Section 2. However, in order to convey the results sum-
marized in this chapter more precisely, we will present an informal definition of
these measures. A formal definition can be found in [GLW97].

The branching (guessing) degree (in short: branching or guessing) of a single
move in a PDA is the (binary logarithm of the) number of the next configura-
tions that can be entered from the given configuration. The branching (guessing)
degree of a computation is the product (sum) of the branching (guessing) of all
moves in the computation. For an accepted input w the branching (guessing)
degree is the minimal branching (guessing) among all accepting computations
for w. For any function f(n), we say that a PDA has branching (guessing) of
at most f(n) if, for all n ∈ IN, the branching (guessing) of all accepted inputs
up to length n is less than or equal to f(n). PDAs with a branching of one
(or, equivalently, with a guessing of zero) are also called deterministic PDAs
(DPDAs).

Apart from nondeterminism, we will also summarize trade-off results between
PDAs using different amounts of ambiguity as a resource. As for NFAs, a PDA is
said to be k-ambiguous if every string accepted has at most k different accepting
computations. 1-ambiguous PDAs are also called unambiguous PDAs (UPDAs).
It follows from the standard conversion techniques between PDAs and CFGs
that for every k-ambiguous PDA there is an equivalent k-ambiguous CFG and
vice versa, where, in order for a CFG to be k-ambiguous, it can have at most k
derivation trees for every word in the language.

Let us first focus on finite nondeterminism. As already mentioned in the
previous section, [Val76] showed that there is no recursive function which bounds
the savings in descriptional complexity when using nondeterministic instead of
deterministic PDAs. In other words, for any recursive function it is possible to
find a deterministic context-free language (more precisely an infinite sequence of
such languages) such that the difference between the size of the smallest PDA
for the language and the smallest DPDA cannot be bounded by this function.

In fact, the nondeterministic PDAs used in [Val76] are even unambiguous.
Hence, we have:

UPDA
nonrec−→ DPDA

Furthermore, the UPDAs used in [Val76] have a branching degree of two.
Thus, denoting an ambiguity degree of at most k by (α ≤ k), a branching degree
of at most k′ by (β ≤ k′), the class of all PDAs with ambiguity of at most k and
branching of at most k′ by PDA(α ≤ k, β ≤ k′), and omitting any of the two
parameters if they are unbounded, we have:

PDA(α ≤ 1, β ≤ 2) nonrec−→ PDA(β ≤ 1)

213Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

[Her97] considered arbitrary amounts of finite nondeterminism and proved
that the generative capacity of PDAs increases when allowing additional amounts
of nondeterminism. Moreover, he proved the interesting fact that for each k ∈ IN,
the class of all languages that can be accepted by a PDA with branching of at
most k coincides with the class of languages generated by the union of at most
k deterministic context-free languages. Apart from the increase in generative
capacity, [Her97] pointed out that the savings in size can be non-recursive when
describing a language by a PDA with branching of degree (k + 1) that actually
can be represented by a PDA with branching of degree k. This is even the case
if the PDA with higher branching is required to be unambiguous while the PDA
with lower branching may have arbitrary ambiguity. Hence, we obtain:

PDA(α ≤ 1, β ≤ k + 1) nonrec−→ PDA(β ≤ k) for all k ∈ IN

The non-recursive trade-offs between PDAs with branching of (k + 1) and k
hold even if the PDAs with higher branching are required to have only a single
state and to operate in real time (cf. [Her99]).

For infinite nondeterminism, as shown in [Her99], PDAs with linear guessing
allow for non-recursively smaller descriptions than those with sublinear growth.
Denoting all PDAs with guessing of at most f(n) by PDA(γ ≤ f(n)), we have
for all c > 0 and sublinear functions f(n):

PDA(γ ≤ cn) nonrec−→ PDA(γ ≤ f(n))

As in the finite case, the result also holds even if the PDAs with linear guessing
are required to have only a single state and to operate in real time.

Furthermore, starting from the fact that there are context-free languages
which require at least sublinear nondeterminism, [Her99] established an infinite
hierarchy of languages with respect to sublinear nondeterminism and proved that
there are also non-recursive trade-offs between classes of PDAs allowing different
sublinear degrees of nondeterminism. Along the same lines, non-recursive trade-
offs between PDAs with sublinear and finite nondeterminism were shown.

In short, in many cases increasing the amount of nondeterminism allowed
in a PDA leads to non-recursive savings in size (and to increased generative
capacity).

Let us now focus on the resource of ambiguity in PDAs. Although ambigu-
ity and nondeterminism are related, they nevertheless constitute two different
resources. The relationship between nondeterminism and ambiguity in PDAs is
not as simple as in NFAs. For more details see [Her97].

[SS77] proved that there is no recursive function bounding the savings which
can be achieved by arbitrary PDAs over unambiguous PDAs. We have:

PDA
nonrec−→ UPDA

More precisely, the PDAs used in [SS77] are ambiguous of degree two. Hence,
denoting the class of all PDAs with ambiguity degree of at most k, for some
integer k, by PDA(α ≤ k), the above result can be more precisely expressed as

PDA(α ≤ 2) nonrec−→ UPDA.

214 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

This result was generalized to arbitrary degrees of ambiguity in [Bor92] as
follows. For an arbitrary integer k, allowing PDAs to have ambiguity of degree
(k + 1) instead of degree k can yield non-recursive savings:

PDA(α ≤ k + 1) nonrec−→ PDA(α ≤ k) for all k ∈ IN

It should be noted that this result for PDAs was proven in [Bor92] using
CFGs but as an immediate consequence applies to PDAs as well.

[Her97] also studied the relationship among the resources of nondeterminism
and ambiguity with respect to the descriptional complexity of PDAs. It was
shown that allowing an additional amount of ambiguity can always yield non-
recursive savings over descriptions not having this additional amount, even if
the branching can increase from (k + 1) to unbounded:

PDA(α ≤ k + 1, β ≤ k + 1) nonrec−→ PDA(α ≤ k) for all k ∈ IN

Apart from the results in descriptional complexity mentioned above, [Her97]
also investigated the generative power of PDAs with limited nondeterminism
and limited ambiguity and established a double, infinite hierarchy of languages
with respect to nondeterminism and ambiguity. Using the union of languages
from [Mau68] and [Kin78], for each k, k′ ∈ IN ∪ {∞} with k ≤ k′ there is a
language that can be accepted by a PDA in PDA(α ≤ k, β ≤ k′) but not by any
PDA in PDA(α < k) or PDA(β < k′). In other words, for each k, k′ ∈ IN∪{∞}
with k ≤ k′, there is a language which is inherently ambiguous of degree k and
inherently nondeterministic of degree k′.

It should be mentioned that [Har80] proved some of the non-recursive trade-
offs mentioned here very elegantly by using the valid and invalid computations
of a Turing machine and a corollary to Rice’s Theorem [HU79], namely that the
set of all Turing machines accepting infinite sets is not recursively enumerable.
Moreover, [Har83] presented a meta-theorem for non-recursive trade-offs which
generalizes [Har80].

One is tempted to argue that, for example, the non-recursive trade-off be-
tween PDAs and DPDAs is a consequence of the following fact: When we are
given a deterministic PDA, we can quickly decide that the PDA is deterministic
and thus know that the language accepted is deterministic context-free. When
given a (nondeterministic) PDA accepting a deterministic language, however,
we have no way of telling whether the language is deterministic. Actually, this
problem is undecidable. Thus, the trade-off between PDAs and DPDAs might
be non-recursive because the DPDA comes essentially with a proof that the
language accepted is deterministic.

[Har80] posed the question what would happen if we consider nondeterminis-
tic PDAs which come with a proof attached (written in some appropriate formal
system) that the language accepted is deterministic if it is, indeed, deterministic.
Such PDAs are called verified PDAs. Let the class of verified PDAs be denoted
by VPDA. The following two theorems can be proven [Har80]:

PDA
nonrec−→ V PDA

V PDA
nonrec−→ DPDA

The first statement says that attaching only a proof that the language accepted
is deterministic (as opposed to actually specifying a particular DPDA) can still

215Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

cause a non-recursive blow-up in descriptional complexity over PDAs which come
without such a proof. The second statement, on the other hand, says that ac-
tually specifying a particular DPDA can still cause a non-recursive blow-up in
descriptional complexity over PDAs which come only with a proof—but no spe-
cific DPDA—that the language is deterministic.

7 Correct Prefix Parsers, LL(k) and LR(k) Parsers

Syntax parsers are an essential part in translating software or source code to
execution code. Correct prefix parsers, i.e., parsers which detect errors at the
earliest possible moment, have received special attention because of their practi-
cal importance. However, such features as, e.g., early error detection might have
their price in terms of parser size which is an important practical aspect as well.

Using the concept of scanning pushdown automata, [GHSU77] exhibited an
infinite sequence of languages for which correct prefix parsers have to be ex-
ponentially larger than the smallest deterministic parsers which do not have to
operate in correct prefix mode. This rather dramatic trade-off is achieved be-
cause the exponentially smaller deterministic parsers can delay the recognition of
an error until the very end of the input and thus, since the inputs are unbounded
in length, arbitrarily long.

Thus, one might wonder how the size of the smallest parser will be affected if
one delays the error detection “just a little bit”. More precisely, can one gradually
decrease the delay in error recognition while at the same time increasing the
parser size only gradually as well?

Based on the idea of spectra of nondeterminism (cf. Section 2.3), Füssel
[Füs92] introduced the notion of time-delay spectra. Intuitively, for a given lan-
guage L, the k-th entry in the delay spectrum contains the size of the smallest
deterministic parser which detects an error with time delay of at most k. In
short, there are languages for which gradually increasing the time delay allows
gradually decreasing the parser size.

In practice, many parsers are constructed on the basis of LL(k) and LR(k)
grammars. Such parsers seem to be generally quite large in size, and much at-
tention has focused on ways to reduce the size of such parsers, e.g., in [Blu01].

LR(1) grammars can describe all deterministic context-free languages, and
hence any increase in the length of the lookahead will not increase the expressive
power of LR(k) grammars. Therefore, at least in theory, there is no need to use
longer lookaheads for LR(k) grammars. On the other hand, the class of LL(k)
languages is properly contained in the class of LL(k + 1) languages. That is,
more languages can be described using longer lookaheads for LL grammars.

Parr and Quong [PQ96] studied the use of LL and LR grammars in practice.
They argued that programmers implement translators, not just syntactic parsers.
Using example languages of practical interest, they showed that there is a need
to use LL and LR grammars with lookahead lengths larger than one.

Leung and Wotschke [LW00] studied the relationship between the length of
the lookahead and the size of the smallest LR(k) grammar. The size of a grammar
is defined to be the total number of symbols used in all the productions of the
grammar. For example, a context-free production with 4 symbols on the right
hand side contributes a value of 5 to the size of the grammar. It is shown that
there is a sequence of languages Ln such that, as the length of the lookahead

216 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

varies, there is a gradual trade-off in the size of the LR(k) grammars describing
the same language . Specifically, it is proved that any LR(k) grammar for Ln has
size 2Θ(n−k) for 0 ≤ k ≤ n − 9 logn. That is, a linear decrease in the lookahead
length causes the grammar size to increase exponentially. The technical difficulty
lies in the lower bound proof that any LR(k) grammar for Ln has size 2Ω(n−k).

Bertsch and Nederhof [BN01] performed a similar study for LL(k) grammars
and obtained results that complement the findings in [LW00]. They found an-
other sequence of languages such that a linear decrease in the lookahead length,
whenever such decrease is possible, causes the LL grammar to increase exponen-
tially in size.

The two studies demonstrate from a theoretical perspective that using longer
lookaheads in LL and LR grammars can be practically very useful for parsing
certain languages, even though such increase in lookaheads is not necessary in
the LR(k) case.

8 Descriptional Complexity and Cellular Automata

The preceding sections studied descriptional complexity of finite automata and
pushdown automata from different points of view, using, for example, nondeter-
minism or ambiguity. Finite and pushdown automata are sequential computa-
tional models, since they have one finite state control, an input tape, a storage
medium in the case of PDAs, and since at most one input symbol is read and
processed in every time step. It is a natural generalization to consider systems
of sequential automata. Some questions immediately arising are, for example,
whether the input is processed in a parallel or sequential mode and whether
the cooperation between different automata is organized in a synchronous or
asynchronous way. One may ask in what manner the communication structures
between different automata are designed and how appropriate restrictions on the
“amount of information” communicated can be formulated. In addition, we are
very interested in the benefits of such systems with regard to their descriptional
complexity.

Some research in this direction was done for communicating finite state ma-
chines, for example in [BZ83] and [Kle96], where particular emphasis is placed
on the descriptional complexity of such systems. Results about systems of com-
municating grammars, so-called grammar systems, are summarized in [DPR97]
and [CVDKP94]. In general, such systems are very powerful in terms of their
generative capacity. For example, in [Kle96] it is shown that every recursively
enumerable language can be accepted by only two suitable communicating DFAs.

All systems just mentioned have in common that they solve their computing
task acting in a distributed way, i.e., there are several different processors and
the computing task is partitioned into several subtasks which themselves are
solved by several distinct communicating processors. In this section we turn our
attention to cellular automata (CAs), a massively parallel model of computation.
In contrast to several distinct processors, a cellular automaton consists of many
identical simple processors, namely DFAs, which are homogeneously connected
and arranged in an array and have a very restricted form of communication: The
only communication between cells is to check the current states of the right and
left neighboring cell. The system works synchronously at discrete time steps by
applying a local transition function to each automaton at the same time.

217Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

Cellular automata seem to be a very promising model considering practical as
well as theoretical aspects. First of all, cellular automata capture some features
which can be biologically motivated. For example, the growth of a plant or the
contraction of a muscle is probably not governed by global rules. Both systems
consist of many essentially identical physiological cells which can only commu-
nicate with a bounded number of neighboring cells. The cooperation between
cells is described by a local rule. Starting from some cells which get a certain
stimulus, the total system evolves according to these local rules. We can observe
that local interactions induce a global behavior, i.e., the plant grows and the
muscle contracts. Hence the theoretical model might be useful to describe and
study phenomena of the real world. Much research in this direction is underway
and there are many applications in different fields of natural and even social
sciences where “real” systems are modeled and analyzed by cellular automata.
More detailed information on these practical issues can be found in [BMS01],
[Wei97], and [Gar95].

Also, from a theoretical point of view, cellular automata are an interesting
topic, because on the one hand we can study, in addition to existing models, an-
other parallel computational model in comparison with sequential models. Where
are the advantages and limits of this form of parallelism? On the other hand, cel-
lular automata enable us to investigate a massively parallel model in contrast to
a “distributed” parallel model as described above. Yet another appealing prop-
erty of CAs is their simplicity. Since all cells are identical and homogeneously
connected through a simple mechanism, one might hope that cellular automata
are easy to realize as hardware. Much work has been done in this field of hard-
ware implementation and we refer to the summary in [BMS01]. Despite their
simplicity, when we utilize cellular automata to recognize formal languages, the
generative capacity is still rather high, since even the simplest cellular model
can recognize certain context-sensitive languages. Formal language aspects of
cellular automata will be discussed in more detail below.

Thus, cellular automata are an interesting model both from a theoretical and
practical point of view. Succinctness results, upper and lower bounds concerning
the trade-off between several systems, and the design of efficient minimization
algorithms are theoretical problems for which solutions have practical relevance.
Therefore, investigating the descriptional complexity of cellular automata is an
important topic, on which, as far as we know, not much research has been done
yet. In [GMNP97] the descriptional complexity of systolic binary tree automata
is studied. This model is likewise a massively parallel system, but in contrast to
CAs the model operates on tree structures and, to accept an input of length n,
more than n processors must be provided.

We now want to focus on formal language aspects of cellular automata, and
so we start with an informal definition of two-way and one-way cellular automata
as will be needed below. A formal definition and results on the generative ca-
pacity can be found, for example in [Kut01] and [DM99]. A two-way cellular
automaton is a set of many identical deterministic finite automata, called cells,
which are arranged in a line. Each cell is homogeneously connected with its left
and right neighbor. The next state of each cell depends on the current state of
the cell itself and the current states of its left and right neighbor. We say that a
cellular automaton is one-way (OCA) if each cell is only connected with its right
neighbor. The transition rule is applied synchronously to each cell at the same
time. Hence the automaton evolves in discrete time steps and the local transition

218 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

rule achieves a global behavior. In order to investigate the generative capacity of
CAs, we will shortly describe how formal languages can be recognized by cellular
automata: We require as many cells as the input is long and in the beginning
the input is written into the cells, each letter into one cell. The input is bounded
by a special boundary symbol at both ends. Now the automaton works as de-
scribed. We say that the input is accepted if there is a time step at which the first
cell enters an accepting state from a previously defined set of accepting states.
The language accepted by a cellular automaton A is the set of all words which
are accepted by A. We now introduce a restriction on the available time within
which the first cell must enter an accepting state: We say that an automaton has
time complexity t if all words in the language are accepted within t(|u|) many
time steps where u denotes the input. The corresponding time complexity class
is denoted by Lt(CA) and contains all languages which are accepted by a CA
with time complexity t. Some important and well-investigated language classes
are realtime (t(n) = n), lineartime (t(n) = m · n for a rational number m ≥ 1),
and arbitrary time (t is not restricted) languages. The corresponding language
classes are denoted by Lrt(CA), Llt(CA), and L(CA). In the one-way case we
replace CA by OCA. Results on the generative capacity of different types of
cellular automata and their relation to the Chomsky hierarchy are summarized
in the following diagram: (Let REG, DCFL, LCFL, CFL, DCSL denote the fam-
ilies of regular, deterministic context-free, linear context-free, context-free, and
deterministic context-sensitive languages.)

Lrt(OCA) ⊂ Llt(OCA)R = Lrt(CA) ⊆ Llt(CA) ⊆ L(OCA) ⊆ L(CA)
REG ⊂ LCFL ⊂ Lrt(OCA), DCFL ⊂ Lrt(CA)

CFL ⊂ L(OCA), DCSL = L(CA)
Some research on the descriptional complexity of cellular automata was

started in [Mal01], and the main result is that one can prove non-recursive trade-
offs between cellular automata and DFAs as well as PDAs and also among sev-
eral restricted classes of cellular automata. The phenomenon of non-recursively
bounded trade-offs was first studied in [MF71] on the basis of the trade-off be-
tween context-free grammars and DFAs. Additional trade-offs were shown by
Hartmanis in [Har80] where a simplified and elegant proof technique is pre-
sented. Because the valid and invalid computations of a Turing machine are
realtime-OCA languages, Hartmanis’ technique can be successfully applied to
prove the following non-recursive trade-offs:

realtime-OCA nonrec−→ DFA, realtime-OCA nonrec−→ PDA

realtime-CA nonrec−→ realtime-OCA, lineartime-OCA nonrec−→ realtime-OCA

Realtime-OCAs are in a way the simplest cellular model, since we have one-
way communication and realtime processing. But even this model can achieve
non-recursively bounded savings in comparison with DFAs and PDAs. More-
over, using two-way instead of one-way communication or permitting more time
than realtime would allow can lead to an enormous decrease of size. So, for
regular or context-free languages, it might be preferable to describe them by
realtime-OCAs as well as describing realtime-OCA languages by realtime-CAs
and lineartime-OCAs, respectively. But, unfortunately, one has to pay a high

219Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

price for the conciseness since the model becomes very unwieldy in terms of de-
cidable questions. Since the valid and invalid computations of a Turing machine
are realtime-OCA languages, it can simply be proven that almost all decid-
ability questions as, for example, emptiness, finiteness, inclusion, equivalence,
and regularity are undecidable and not even semidecidable. The undecidability
of emptiness implies immediately that a minimization algorithm for realtime-
OCAs, i.e., constructing an equivalent realtime-OCA with a minimal number of
states, cannot exist. Hence it is not possible to algorithmically parallelize a given
language in the CA sense. Furthermore, making use of the non-semidecidability
of infiniteness one can see that no pumping lemma exists for cellular language
classes. These results are not satisfactory from a practical perspective, because
certain tasks, such as, for example, checking whether two CAs accept the same
language, checking whether a finite or regular language is accepted or minimizing
a given CA, cannot be done algorithmically, but have to be proven ad hoc. We
can summarize that the cellular automata investigated so far are very powerful
at the expense of manageability. Hence we are motivated to look for appropriate
restrictions on CAs yielding cellular models which are easier to handle.

For the CAs considered so far we have to provide as many cells as the input
is long which is not very realistic from a practical point of view. It is therefore an
obvious restriction to introduce a cellular model which has only a fixed number of
cells. This is done in [Mal02] where the model k-cells OCA (kC-OCA) is defined
and some basic results are obtained which are summarized in the remainder of
this section. A realtime-kC-OCA is an OCA with a fixed number of k cells for
every input. The input mode is slightly modified since the input is only fed into
the rightmost cell. But all other cells behave as in the unrestricted model and
the input is accepted if the first cell enters an accepting state. Since the minimal
time to read the input and to send all information from the rightmost cell to the
leftmost cell is the length of the input plus k, realtime is defined as t(n) = n+k.

Limiting the number of cells to a fixed number k has grave consequences
with regard to the generative capacity of realtime-kC-OCAs which is reduced
to the regular languages. This deficit is due to the simple communication struc-
ture, since two different and suitable communicating DFAs can accept differ-
ent language classes ranging from regular to recursively enumerable languages
as is shown in [Kle96]. So, realtime-kC-OCAs are a parallel model for regular
languages and the comparison with finite automata becomes now particularly
interesting. It can be proven that the blow-up in the number of states, when con-
verting a realtime-kC-OCA to an equivalent DFA, is bounded by a polynomial
of degree k.

Constructing the Cartesian product of the k cells, for each realtime-kC-OCA
with n states there is a DFA which has at most n

n−1n
k = O(nk) states. This

upper bound is tight in order of magnitude, since one can find an infinite sequence
of unary languages (L(n, k))n≥1 such that a realtime-kC-OCA with n states
accepts L(n, k), but every DFA recognizing L(n, k) needs at least (n − 1)k +
(n− 1)k−1 +1 = Ω(nk) states. A consequence from this lower bound is a proper
hierarchy concerning the number of states: Each language recognized by an n-
state realtime-kC-OCA is trivially recognized by an (n + 1)-state realtime-kC-
OCA. But there is an infinite sequence of languages (Ln)n≥1 such that each Ln

is accepted by an n-state realtime-kC-OCA, but no realtime-kC-OCA having

220 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

less than n states can recognize Ln. We can summarize the results as follows:

realtime-kC-OCA s−→ DFA
n ≤ n

n−1n
k = O(nk)

n ≥ (n − 1)k + (n − 1)k−1 + 1 = Ω(nk)

Finally, we want to address the problem of minimizing a given realtime-kC-
OCA. Since every DFA can be converted to an equivalent realtime-kC-OCA, the
construction of a minimal equivalent realtime-kC-OCA implies an optimal paral-
lelization of a regular language in the CA sense with respect to the given k. The
minimization problem for finite automata is solvable in time O(n log n) for DFAs
and PSPACE-complete for NFAs [JR93]. In [Mal01] it is shown that minimiza-
tion is algorithmically unsolvable for unrestricted realtime-OCAs. For realtime-
kC-OCAs the following intermediate result can be obtained: The minimization
problem is algorithmically solvable, but it is not known whether minimization
can be done efficiently, i.e. in polynomial time. Since a minimal realtime-kC-
OCA does not have to be necessarily unique, minimization is likely to be a hard
computational problem.

9 Descriptional Complexity and Software Reliability

Whereas the previous sections described, summarized and illustrated known re-
sults about the descriptional complexity of machines with limited resources, this
section will outline how descriptional complexity could help analyze and im-
prove software reliability. Although no results linking descriptional complexity
and software reliability have been published yet, work relating these areas could
yield results not only useful in software reliability but could also lead to theo-
retical research topics that go beyond the “classical” problems.

Due to space limitations, defining what software reliability exactly is and
how it is measured cannot be addressed in this paper. An introduction to the
field and further references can be found in [Lyu95] and [Mus98]. However, it
is important to point out that the term software reliability comprises a large
variety of topics. To mention a specific one, many of todays software systems are
component-based, possibly distributed, and the individual components are not
specifically tailored to their use in a particular system, but are general purpose
(“off the shelf”) components. These components could be from different vendors.
In such a scenario, not only the reliabilities of the individual components, but
also the reliability of the overall system, influenced by the interaction between
the components, becomes crucial.

Clearly, today’s complex software components consisting of millions of lines of
code are virtually never free of faults in the code. Therefore, apart from trying to
help generate code with fewer faults, software reliability engineering has provided
techniques that prevent such faults from triggering a software system failure at
runtime or to alleviate a potential failure by methods such as checkpointing or
rejuvenation. Furthermore, models to measure and analyze software reliability
have been developed and applied. Currently, models such as Petri Nets and
Markov Chains play prominent roles in this area.

There are other important aspects that are not sufficiently addressed by the
above models, like, to name one, the algorithmical behavior of the components.

221Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

complexity
re

lia
bi

lit
y

+

+

+

+

+
+

+
++

+

+
+

Figure 2: Descriptions of a particular object in a descriptional system. Of interest is the
relationship between (one of) the simplest description providing the highest reliability
among all simplest descriptions (marked by the circle in the lower left) and (one of) the
simplest of all most reliable descriptions (marked by the circle in the upper right) as
well as the “path” between those two. The diagram shows a case where more complex
descriptions tend to be more reliable.

A first indication that automata-theoretic machine models can help to assess
software reliability was [KKK00] (extending results from [Kle96]) which showed
that the reliability of a software system comprised of several components cannot
be computed in the Turing sense, even if the reliability of each component of
such a system is known and if each component is modeled by a finite automaton.
Another aspect of software systems that could be helpful in investigating software
reliability is the hierarchical design of some systems as modeled for instance in
communicating hierarchical finite state machines (c.f. [AKY99]).

Coming back to descriptional complexity, it is clear that, from an intuitive
viewpoint, the “complexity” of a software system and its reliability are related.
The simpler I can express an object like a software system, the fewer mistakes I
am likely to make in expressing it and the easier it should be to express myself
correctly. Therefore, the use of a descriptional system allowing for easy repre-
sentations of the software under consideration could help to improve reliability.
On the other hand, for a software system, “simple” does not necessarily mean
“concise”. When using different descriptional systems, descriptions in one of the
systems may have features not present in the other system, for instance, it may
be simpler to verify or prove certain properties which cannot be easily (or even
not at all) algorithmically checked in the other descriptional system. Thus, the
descriptional system allowing for the smallest description of an object may not
always be the best choice. Different descriptional systems may be appropriate
in different situations, regardless of the tradeoffs possible when only consider-
ing “size”. Consequently, different measures for the “simplicity” of such systems
need to be found for different situations.

The descriptional complexity of software systems is loosely related to the area
of software metrics. Software metrics also measure the “complexity” of software
with respect to certain properties by means of static measures (i.e., in most
cases based on the program code). These metrics are used for assessing relevant
aspects of the software in the development or maintenance cycle. A variety of

222 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

simplest
description

description
with highest
reliability

descriptional
system A

simplest
description

description
with highest
reliability

descriptional
system B

Figure 3: Situation when studying two descriptional systems.

metrics have been proposed to address different properties under consideration.
As most of those are computationally intractable, the metrics used often capture
the properties heuristically and not in a formal sense. Furthermore, in contrast
to descriptional complexity, the focus in software metrics is on measuring the
complexity of a particular program (and maybe comparing it with other pro-
grams), not on the consideration of minimal functionally equivalent programs
when using different measures or descriptional systems and also not on obtaining
upper and lower bounds between descriptional systems.

In order to start research relating descriptional complexity and software re-
liability, first and foremost, models for software systems need to be found and
(possibly different) measures for their “simplicity” and their “reliability” have to
be identified. As already pointed out, the simplest description might not always
be identical with the most concise one. Furthermore, “simplicity” and “relia-
bility” are two properties of a description which are likely to be measured by
different means. Hence, when considering single descriptional systems, tradeoffs
between “simplicity” on one hand and “reliability” on the other are to be inves-
tigated. In particular, the relationship between (one of) the simplest description
providing the highest reliability among all simplest descriptions for that object
and (one of) the simplest of all most reliable descriptions needs to be stud-
ied as shown in Figure 2. Furthermore, the question whether reliability can be
“traded in” for simplicity and vice-versa, i.e., the path between these two ex-
tremal points, should be studied. Notice that in some cases it might be that the
simplest description of an object is also the most reliable one.

When even considering two descriptional systems, a situation as illustrated in
Figure 3 occurs, where the relation between (one of) the most reliable and (one
of) the simplest description of the object under consideration within System A
as well as their relations to (one of) the most reliable and (one of) the simplest
description of that object in System B need to be clarified. Apart from these new
dimensions to descriptional complexity, even determining which descriptions in
a particular system describe the same object (and hence are considered “equiva-
lent”) is a difficult task. Two descriptions considered equivalent in one scenario
might not be equivalent in another one since, depending on the situation, equiv-
alence of two descriptions could be defined differently.

223Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

It is not clear whether a model capable of capturing important aspects on
one hand but yet being manageable in terms of deriving results on the other can
be found immediately. Yet, it is important to take first steps in this direction
and to come up with models of descriptional systems and measures for their
complexity that allow to study some relevant aspects of software systems and to
formally prove such properties.

10 Other Types of Devices and Resources

In this section, we will consider descriptional complexity and resource trade-
offs for other types of machines. First, we will examine the trade-off between
the number of states and the number of stack symbols in pushdown automata
(PDAs), often called the state stack-symbol product.

Then we will examine some other types of machines for which interesting de-
scriptional complexity results are known, even though little is yet known about
their resource trade-offs. In particular, we shall consider alternating finite au-
tomata (AFAs), probabilistic finite automata (PFAs), quantum finite automata
(QFAs), and degree automata (DAs). Based on the example of DAs, NFAs and
DFAs, we will discuss the concept of concurrent conciseness.

We will also cite some references on the state complexity of operations on
regular languages. Although this may appear to fall outside the scope of research
in the area of limited resources, some of the results may in fact suggest interesting
research questions in that area.

Finally, we will look briefly at descriptional systems that are not machines,
such as rewriting systems and regular expressions.

10.1 The state-stack symbol product of PDAs

A natural measure of descriptional complexity for a finite automaton is the
number of states, since the next move depends on the current state as well
as the next input symbol. A natural measure of descriptional complexity for a
pushdown automaton is the product of the number of states and the number of
stack symbols, since the next move depends on the current state and the top
stack symbol, as well as the next input symbol. In practice, we might wish to
reduce the number of states in a PDA to a specified value while keeping the
increase in the number of stack symbols as small as possible, or we might wish
to reduce the number of stack symbols to a specified value while keeping the
increase in the number of states as small as possible. The interaction between
these two parameters, states and stack symbols, can be summarized as follows.

Every PDA having n states and p stack symbols can be transformed into
an equivalent PDA that has n′ states and O((n/n′)2p) stack symbols, for any
desired value of n′, 1 ≤ n′ < n [GPW82]. Furthermore, this result is optimal in
the sense that there is a PDA (for every p and n) such that any equivalent PDA
that has n′ states must have at least (n/n′)2p stack symbols.

Similarly, every PDA having n states and p stack symbols can be transformed
into an equivalent PDA that has p′ stack symbols for any desired value of p′, 2 ≤
p′ < p. If this transformation is required to preserve determinism (that is, if the
transformation is not permitted to introduce additional nondeterminism beyond
that which was present in the original PDA), then the transformed PDA will

224 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

have O(np/p′) states; if additional nondeterminism is allowed in the transformed
PDA, then only O(n

√
p/p′) states are needed [GPW93]. These results on the

cost of trading stack symbols for states are optimal in the same sense that the
bound on trading states for stack symbols was optimal.

The transformation that reduces the number of stack symbols without using
nondeterminism is straightforward. However, the transformation that uses non-
determinism to achieve greater efficiency is slightly more complex: it encodes
each symbol of the larger stack alphabet into two “halves,” u and v, over the
smaller alphabet, so that the original stack symbol can be recovered from the
combined string uv but not from either u or v alone. To decipher uv, the new
PDA pops only the first part, u, off its stack; it guesses that the second part is v
and it records its guess on the stack; and it continues its computation under the
assumption that it has seen uv on its stack. The PDA verifies its guess when it
later pops that part of the stack, and it empties its stack before accepting the
input string to ensure that it has checked all of its guesses. Since the finite-state
control only has to decipher half of uv at a time, the increase in the number of
states is only about the square root of what it is in the “deterministic” transfor-
mation. (Note that, because of the optimality of this construction, any attempt
to extend this approach—for example, by splitting the encoding into three thirds
rather than two halves—will prove fruitless.)

10.2 Other types of finite automata; concurrent conciseness

In this subsection, we will look briefly at alternating finite automata (AFAs),
probabilistic finite automata (PFAs), quantum finite automata (QFAs), and de-
gree automata (DAs), and we will discuss the concept of concurrent conciseness.

The extent to which alternation can produce succinct descriptions of certain
regular languages was studied by Leiss in [Lei81] and [Lei85]. Each AFA can be
converted to a DFA with a doubly exponential blow-up in size, and this upper
bound is tight. On the other hand, there is an infinite sequence of languages
(Ln)n≥1 for which alternation does not help: each Ln is recognized by an n-
state DFA, while recognizing Ln with an AFA also requires n states.

Probabilistic finite automata were investigated in [Rab63] and [Paz71], where
it was shown that PFAs with isolated cutpoints describe precisely the class of
all regular languages. The upper bound obtained there on the cost of converting
such PFAs to DFAs is the following: each n-state PFA with an ε-isolated cutpoint
can be converted to a DFA having at most (1 + (1/2ε))n−1 states. Whether this
upper bound can be improved or whether it is in fact tight has proved to be a
difficult question, despite the attention it has attracted from various researchers:
see the survey in [Fre91]. The most recent result is due to Ambainis [Amb96],
who presents an infinite sequence (Ln)n≥1 of languages such that there is, for
each n, a PFA with isolated cutpoint that accepts Ln using just n states, al-
though recognizing Ln with a DFA requires Ω(2n/ log n) states.

A thorough discussion of the effects of adding probabilistic moves to fi-
nite automata can be found in [Fre91], where PFAs, two-way PFAs, multi-head
PFAs, multi-counter PFAs, and probabilistic Turing machines are compared to
their deterministic counterparts. Additional information on these topics may be
found in [Fre81] and [KF91]. Probabilistic transitions are studied in the con-
text of one-way and two-way Las Vegas finite automata in [HS01a] and [HS01b]

225Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

(cf. Section 4.3). Milani and Pighizzini obtain an interesting result on PFAs with
unary alphabets in [MP00b]: the upper bound in this case can be reduced to
O(e

√
n log n), and this bound is tight. This result is particularly interesting since

O(e
√

n log n) is also a tight upper bound for the conversion of unary NFAs, of
two-way DFAs, and of two-way NFAs to unary DFAs: see [Chr86] and [MP00a].
Thus, the maximal savings in the size of the set of states that can be achieved
through the use of nondeterminism, of two-way motion, and of probabilistic
transitions, all differ by no more than a constant factor in the unary case.

Next, we look briefly at the descriptional complexity of QFAs. An intro-
duction to quantum computing can be found in [Gru99], and results related to
descriptional complexity may be found in the detailed survey in [Gru00]. Be-
cause this field of research is still in an early stage of development, it is not yet
clear how to construct an appropriate model of a QFA, and several models have
appeared in the literature. For one model, the so-called measure-many QFAs, it
is known that QFAs can achieve exponential savings compared with DFAs and
PFAs [AF98]. On the other hand, it is shown in [AF98] and [Nay99] that there
exists an infinite sequence of regular languages that require exponentially larger
QFAs than DFAs.

We turn now to a surprisingly simple extension of NFAs that can sometimes
achieve an exponential savings in the number of states required to accept a
language, the degree automaton [KPW93]. A degree automaton is an NFA that
accepts a word in a way that depends on the entire set of states that it might
be in after processing the word: it accepts if the fraction of states in this set
that are accepting states exceeds a preset cutpoint λ. More formally, we have
the following definition.

Definition 4 Let M = (Q,Σ, δ, q0, F) be an NFA and, for x ∈ Σ∗, let

tM (x):={ q | q ∈ δ(q0, x) } and fM (x):=tM (x) ∩ F.

The acceptance degree dM (x) of x is defined to be

dM (x):=
{
#fM (x)/#tM (x) if #tM (x) > 0;
0 if #tM (x) = 0.

The degree-language DL over M for some λ ∈ [0, 1) is defined to be

DL(M,λ):={ x | x ∈ Σ∗, dM (x) > λ }.
The pair (M,λ) is called a degree automaton (DA).

In [KPW93], an infinite sequence of regular languages Ln is exhibited such
that each Ln can be accepted by a DA Mn with cutpoint 1

2 , i.e., Ln = DL(Mn,
1
2),

using just 4n+ 7 states, although an NFA requires 2n states to accept Ln. (Note
that the reduction in the number of states does not occur at the expense of
the cutpoint, which remains constant, independent of n. Thus, the descriptional
complexity of the DAs really does grow at a rate proportional to the number of
states, 4n+ 7.)

We conclude this subsection with a brief discussion of concurrent concise-
ness (see [KW86] and [KPW93]), which involves trade-offs based on comparing

226 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

three or more different descriptions. We explain this concept by using the ex-
ample of DAs, NFAs and DFAs. As we have just seen, there is an exponential
trade-off between DAs and NFAs, and we know from Section 2 that there is an
exponential trade-off between NFAs and DFAs as well. In studying concurrent
conciseness, we consider questions such as this. Are there sequences of languages
for which NFAs yield some preselected savings S1 over DFAs (not exceeding expo-
nential savings, of course), and for which DAs yield savings S2 over NFAs, such
that the combined savings resulting from S1 and S2 is exponential (the maximum
possible savings between DAs and DFAs)? This question can be answered in the
affirmative for DAs, NFAs, and DFAs, as well as for some other collections of
three or more different devices.

10.3 State complexity of operations on regular languages

Many results may be found in [Bir92a], [YZS94], [CSY00], [Yu01] and [CCSY01]
concerning the effect that various language operations can have on the number
of states required to recognize a regular language. These results may appear
to fall outside the scope of research on the consequences of limiting resources.
However, they have the potential to lead to some interesting questions about
limited resources, as in the following example.

Communication networks usually consist of many finite-state machines that
are interconnected in ways that can be modeled by operations on the languages
characterized by these machines. The question that then arises is, would it be
preferable to describe the entire network in terms of one large machine or in
terms of many small machines? The former approach corresponds to actually
performing the operations on the component languages or machines so as to
combine them into a single complex entity. The latter approach seeks to decom-
pose the entire network into many small components, and this may require a
decision about whether to use a large number of simple operations, or to use a
smaller number of more complex operations each of which may produce a larger
explosion in the size of the state set than would the simpler operations. Thus,
when dealing with interconnected finite-state machines, we may wish to under-
stand the trade-offs that relate the number of machines used, their individual
complexity, the number of operations connecting these machines, and the com-
plexity of these operations, so that we can obtain a “balanced” characterization
of the network which minimizes its descriptional complexity.

10.4 Non-machine devices: rewriting systems, regular expressions

In addition to the machine models that we have discussed, one can also investi-
gate the descriptional complexity of other kinds of models, such as grammars or
rewriting systems. Many studies of this sort have been undertaken, and we would
exceed the scope of this survey were we to attempt to cite individual papers in
this area. Instead, we will confine ourselves to mentioning some topics that have
been covered in textbooks or monographs.

Grammars with controlled derivations are context-free grammars that are
equipped with a control mechanism, such as one that requires that the derivation
rules be applied in some prescribed order. The generative capacity of such sys-
tems is studied in [DP89], along with the relative succinctness of these systems.

227Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

In [DPR97] and [CVDKP94], systems of communicating context-free grammars,
called grammar systems, are studied from several perspectives. In particular, the
descriptional complexity of systems of communicating context-free grammars is
compared with that of a single context-free grammar.

Just as quantum computing is influenced by the laws of physics, the field of
DNA computing is guided by discoveries in the life sciences. For an introduction
to this rapidly growing area, see [PRS98] and [Pău00].

Since it is often convenient to use regular expressions to describe regular
languages, it is natural to investigate the trade-offs between regular expressions
and DFAs or NFAs. Descriptional complexity measures for regular expressions
were introduced in [EZ76]. Converting an NFA to a regular expression can result
in an exponential increase in size. On the other hand, the increase in size required
to convert a regular expression of size n to an NFA is bounded by O(n(log n)2),
and this upper bound is nearly tight [HSW01].

Some additional perspectives on the issue of limiting resources may be ob-
tained by studying the effect of constraining the size of alphabets [Fro92], or
of constraining regular expressions to be deterministic or unambiguous [BK93].
Similarly, one can investigate the impact of other constraints and extensions on
regular expressions, such as limitations or extensions on the number or type of
operators occurring in the expressions as, e.g., in [Abr87].

11 Conclusion and Outlook

In the previous sections, we presented many of the known results on the descrip-
tional complexity of machines with limited resources. To maintain a well-defined
focus, we concentrated on the scalable or gradual trade-offs among various re-
sources that result when some of these resources are limited. Thus, we were
primarily interested in questions such as: How much does limiting one resource
cost in terms of another resource; specifically, what are the upper and lower
bounds on these costs?

In some cases, we discussed results that do not precisely fit this scheme of
trade-offs among resources, because we believe they have the potential of leading
to results of this kind in the future.

We also presented several ideas in Section 9 concerning the potential rele-
vance of descriptional complexity to practical issues. One of these was software
reliability, but we believe that this is only one of several possible applications of
descriptional complexity.

We would like to conclude with the following question: Where can descrip-
tional complexity (or at least, descriptional complexity for machines with limited
resources) go from here? Possibly in several directions, but one direction that
we believe is important is the following.

Interesting as it might be to know that a resource such as the number of
states in a probabilistic finite automaton can sometimes be reduced to some
minimal value, this fact actually reveals little about the inherent descriptional
complexity of a particular probabilistic finite automaton. To understand fully
the descriptional complexity of an object, we ought to parameterize all of the
resources needed to describe the object and then measure the trade-offs among
them as we reduce some at the expense of others.

228 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

Thus, for example, if we consider probabilistic automata, we ought to measure
all of the following resources: the number of states and of accepting states, and
the representation sizes of the initial distribution, the probabilistic transition
matrix, and the cutpoint, where size is some appropriate measure reflecting the
costs of these representations.

How to define the joint or overall descriptional complexity of an object in
terms of its individual parameters—for example, how to measure the overall
descriptional complexity of a probabilistic finite automaton in terms of the de-
scriptional complexity of its state set, its initial distribution, its probabilistic
transition matrix, and its cutpoint—may be a cause for debate. Some may ar-
gue that one should measure the cost of writing out these parameters as strings or
in some other appropriate form. Others may argue that these parameters should
be weighted according to their importance in a particular setting. Yet whatever
position one takes on this issue, it will always be important to understand how
these various parameters relate to each other in the first place.

Because results on the descriptional complexity of machines with limited
resources are widely scattered and are embedded in many different contexts, it
would be nearly impossible to survey all of the results and references in this
area. In addition, many of these results lie near the borderlines of this area, so
that it is often unclear whether a particular result fits within the scope of our
survey. Nonetheless, we have tried to present a reasonably comprehensive and
balanced survey of this area.

As we said in the introduction, we hope that our effort will serve as an
impetus for further surveys that cover results which we could not include here
or which we inadvertently omitted. As a preliminary step in this direction, we are
currently constructing a database of titles of papers on descriptional complexity
which will be continuously updated. A link to this database can be found at

www.psc.cs.uni-franfurt.de/english

References

[Abr87] Karl R. Abrahamson. Succinct representation of regular sets using gotos
and Boolean variables. J. Comput. System Sci., 34(1):129–148, 1987.

[AF98] Andris Ambainis and Rūsi
’
nš Freivalds. 1-way quantum finite automata:

Strengths, weaknesses and generalizations. In Annual Symposium on
Foundations of Computer Science (Palo Alto, California, USA, 1998),
pages 332–341. IEEE, Los Alamitos, CA, 1998.

[AKY99] Rajeev Alur, Sampath Kannan, and Mihalis Yannakakis. Communicating
hierarchical state machines. In Automata, languages and programming
(Prague, 1999), volume 1644 of LNCS, pages 169–178. Springer-Verlag,
Berlin, 1999.

[Amb96] Andris Ambainis. The complexity of probabilistic versus deterministic
finite automata. In Algorithms and computation (Osaka, 1996), volume
1178 of LNCS, pages 233–238. Springer-Verlag, Berlin, 1996.

[Ber80] Piotr Berman. A note on sweeping automata. In Automata, languages and
programming (Proc. Seventh Internat. Colloq., Noordwijkerhout, 1980),
volume 85 of LNCS, pages 91–97. Springer-Verlag, Berlin, 1980.

[Bir92a] Jean-Camille Birget. Intersection and union of regular languages and state
complexity. Inform. Process. Lett., 43(4):185–190, 1992.

229Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

[Bir92b] Jean-Camille Birget. Positional simulation of two-way automata: Proof of
a conjecture of R. Kannan and generalizations. J. Comput. System Sci.,
45(2):154–179, 1992.

[Bir93] Jean-Camille Birget. State-complexity of finite-state devices, state com-
pressibility and incompressibility. Math. Systems Theory, 26(3):237–269,
1993.

[Bir96] Jean-Camille Birget. Two-way automata and length-preserving homomor-
phisms. Math. Systems Theory, 29(3):191–226, 1996.

[BK93] Anne Brüggemann-Klein. Regular expressions into finite automata. The-
oret. Comput. Sci., 120(2):197–213, 1993.

[BL77] Piotr Berman and Andrzej Lingas. On complexity of regular languages in
terms of finite automata. Technical report, Institute of Computer Science,
Polish Academy of Sciences, Warsaw, 1977.

[Blu01] Norbert Blum. On parsing LL-languages. Theoret. Comput. Sci., 267(1-
2):49–59, 2001.

[BMS01] Stefania Bandini, Giancarlo Mauri, and Roberto Serra. Cellular automata:
From a theoretical parallel computational model to its application to com-
plex systems. Parallel Comput., 27(5):539–553, 2001.

[BN01] Eberhard Bertsch and Mark-Jan Nederhof. Size/lookahead tradeoff for
LL(k)-grammars. Inform. Process. Lett., 80(3):125–129, 2001.

[Bor92] Ingo Borchardt. Nichtrekursive Tradeoffs bei kontextfreien Grammatiken
mit verschiedener konstanter Mehrdeutigkeit. Master’s thesis, J.W.
Goethe-Universität Frankfurt, 1992.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state ma-
chines. J. Assoc. Comput. Mach., 30(2):323–342, 1983.

[CCSY01] Cezar Câmpeanu, Karel Culik, II, Kai Salomaa, and Sheng Yu. State
complexity of basic operations on finite languages. In 4th International
Workshop on Implementing Automata (Potsdam, 1999), volume 2214 of
LNCS, pages 60–70. Springer-Verlag, Berlin, 2001.

[Chr86] Marek Chrobak. Finite automata and unary languages. Theoret. Comput.
Sci., 47(2):149–158, 1986.

[CSY00] Cezar Câmpeanu, Kai Salomaa, and Sheng Yu. State complexity of regular
languages: finite versus infinite. In Finite versus infinite, pages 53–73.
Springer-Verlag, London, 2000.

[CVDKP94] Erzsébet Csuhaj-Varjú, Jürgen Dassow, Jozef Kelemen, and Gheorghe
Păun. Grammar systems. Gordon and Breach Science Publishers, Yver-
don, 1994.

[Dam97] David Damanik. Finite automata with restricted two-way motion. Mas-
ter’s thesis, J.W. Goethe-Universität Frankfurt, 1997.

[DM99] Marianne Delorme and Jacques Mazoyer, editors. Cellular automata.
Kluwer Academic Publishers, Dordrecht, 1999.

[DP89] Jürgen Dassow and Gheorghe Păun. Regulated rewriting in formal lan-
guage theory. Springer-Verlag, Berlin, 1989.

[DPR97] Jürgen Dassow, Gheorghe Păun, and Grzegorz Rozenberg. Grammar sys-
tems. In Handbook of formal languages, Vol. 2, pages 155–213. Springer-
Verlag, Berlin, 1997.

[EZ76] Andrzej Ehrenfeucht and Paul Zeiger. Complexity measures for regular
expressions. J. Comput. System Sci., 12(2):134–146, 1976.

[Fre81] Rūsi
’
nš Freivalds. Probabilistic two-way machines. In Mathematical foun-

dations of computer science, 1981 (Štrbské Pleso, 1981), volume 118 of
LNCS, pages 33–45. Springer-Verlag, Berlin, 1981.

[Fre91] Rūsi
’
nš Freivalds. Complexity of probabilistic versus deterministic au-

tomata. In Baltic computer science, volume 502 of LNCS, pages 565–613.
Springer-Verlag, Berlin, 1991.

230 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

[Fro92] Matthias Frommknecht. Untere Schranken für die Größe von regulären
Ausdrücken. Master’s thesis, J.W. Goethe-Universität Frankfurt, 1992.

[Füs92] Hans-Martin Füssel. Komplexität einer frühen Fehlererkennung beim
Parsen von deterministisch kontextfreien Sprachen. Master’s thesis, J.W.
Goethe-Universität Frankfurt, 1992.

[Gar95] Max Garzon. Models of massive parallelism. Springer-Verlag, Berlin,
1995.

[GHSU77] Matthew M. Geller, Harry B. Hunt, III, Thomas G. Szymanski, and Jef-
frey D. Ullman. Economy of description of parsers, DPDA’s, and PDA’s.
Theoret. Comput. Sci., 4(2):143–153, 1977.

[GK74] Arthur Gill and Lawrence T. Kou. Multiple-entry finite automata. J.
Comput. System Sci., 9:1–19, 1974.

[GKW90] Jonathan Goldstine, Chandra M. R. Kintala, and Detlef Wotschke. On
measuring nondeterminism in regular languages. Inform. and Comput.,
86(2):179–194, 1990.

[GLW92] Jonathan Goldstine, Hing Leung, and Detlef Wotschke. On the relation
between ambiguity and nondeterminism in finite automata. Inform. and
Comput., 100(2):261–270, 1992.

[GLW97] Jonathan Goldstine, Hing Leung, and Detlef Wotschke. Measuring non-
determinism in pushdown automata. In STACS 97 (Lübeck), volume 1200
of LNCS, pages 295–306. Springer-Verlag, Berlin, 1997.

[GMNP97] Jozef Gruska, Angelo Monti, Margherita Napoli, and Domenico Parente.
Succinctness of descriptions of SBTA-languages. Theoret. Comput. Sci.,
179(1-2):251–271, 1997.

[GMP01] Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Converting
two-way nondeterministic unary automata into simpler automata. In
Mathematical foundations of computer science 2001 (Marianske Lazne),
volume 2136 of LNCS, pages 398–407. Springer-Verlag, Berlin, 2001.

[GPW82] Jonathan Goldstine, John K. Price, and Detlef Wotschke. On reducing
the number of states in a PDA. Math. Systems Theory, 15(4):315–321,
1982.

[GPW93] Jonathan Goldstine, John K. Price, and Detlef Wotschke. On reducing the
number of stack symbols in a PDA. Math. Systems Theory, 26(4):313–326,
1993.

[Gru99] Jozef Gruska. Quantum computing. McGraw-Hill Publishing Company,
Maidenhead, 1999.

[Gru00] Jozef Gruska. Descriptional complexity issues in quantum computing. J.
Autom. Lang. Comb., 5(3):191–218, 2000.

[Har80] Juris Hartmanis. On the succinctness of different representations of lan-
guages. SIAM J. Comput., 9(1):114–120, 1980.

[Har83] Juris Hartmanis. On Gödel speed-up and succinctness of language repre-
sentations. Theoret. Comput. Sci., 26(3):335–342, 1983.

[Her97] Christian Herzog. Pushdown automata with bounded nondeterminism
and bounded ambiguity. Theoret. Comput. Sci., 181(1):141–157, 1997.

[Her99] Christian Herzog. Die Rolle des Nichtdeterminismus in kontextfreien
Sprachen. PhD thesis, J.W. Goethe-Universität Frankfurt, 1999.

[HKK+] Juraj Hromkovič, Juhani Karhumäki, Hartmut Klauck, Georg Schnitger,
and Sebastian Seibert. Communication complexity method for measuring
nondeterminism in finite automata. Inform. and Comput., to appear.

[HS01a] Juraj Hromkovič and Georg Schnitger. On the power of Las Vegas for one-
way communication complexity, OBDDs, and finite automata. Inform.
and Comput., 169(2):284–296, 2001.

[HS01b] Juraj Hromkovič and Georg Schnitger. On the power of Las Vegas. II.
Two-way finite automata. Theoret. Comput. Sci., 262(1-2):1–24, 2001.

231Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

[HSW01] Juraj Hromkovič, Sebastian Seibert, and Thomas Wilke. Translating reg-
ular expressions into small ε-free nondeterministic finite automata. J.
Comput. System Sci., 62(4):565–588, 2001.

[HSY00] Markus Holzer, Kai Salomaa, and Sheng Yu. On the state complexity of k-
entry deterministic finite automata. In Second International Workshop on
Descriptional Complexity of Automata, Grammars and Related Structures
(DCAGRS 2000). University of Western Ontario, London, Ontario, 2000.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation. Addison-Wesley Publishing Co., Reading,
Mass., 1979.

[JR93] Tao Jiang and Bala Ravikumar. Minimal NFA problems are hard. SIAM
J. Comput., 22(6):1117–1141, 1993.

[Kan83] Ravi Kannan. Alternation and the power of nondeterminism. In Proceed-
ings of the Fifteenth Annual ACM Symposium on Theory of Computing
(Boston, Massachusetts, 1983), pages 344–346. ACM, New York, 1983.

[Kap00] Martin Kappes. Descriptional complexity of deterministic finite automata
with multiple initial states. J. Autom. Lang. Comb., 5(3):269–278, 2000.

[KF77] Chandra M. R. Kintala and Patrick C. Fischer. Computations with a
restricted number of nondeterministic steps (extended abstract). In Con-
ference Record of the Ninth Annual ACM Symposium on Theory of Com-
puting (Boulder, Colo., 1977), pages 178–185. ACM, New York, 1977.

[KF80] Chandra M. R. Kintala and Patrick C. Fischer. Refining nondeterminism
in relativized polynomial-time bounded computations. SIAM J. Comput.,
9(1):46–53, 1980.

[KF91] Jānis Ka
’
neps and Rūsi

’
nš Freivalds. Running time to recognize nonregu-

lar languages by 2-way probabilistic automata. In Automata, languages
and programming (Madrid, 1991), volume 510 of LNCS, pages 174–185.
Springer-Verlag, Berlin, 1991.

[Kin78] Chandra M. R. Kintala. Refining nondeterminism in context-free lan-
guages. Math. Systems Theory, 12(1):1–8, 1978.

[KKK00] Martin Kappes, Reinhard Klemm, and Chandra M. R. Kintala. For-
mal limits on determining reliabilities of component-based software. In
Eleventh International Symposium on Software Reliability Engineering
(San Jose, 2000), pages 356–364. IEEE, Los Alamitos, CA, 2000.

[Kla98] Hartmut Klauck. Lower bounds for computation with limited nondeter-
minism. In Thirteenth Annual IEEE Conference on Computational Com-
plexity (Buffalo, NY, 1998), pages 141–152. IEEE, Los Alamitos, CA,
1998.

[Kla00] Hartmut Klauck. Über beschränkte Interaktion in der Kommunikations-
komplexität. PhD thesis, J.W. Goethe-Universität Frankfurt, 2000.

[Kle96] Reinhard Klemm. Systems of communicating finite state machines as a
distributed alternative to finite state machines. PhD thesis, The Pennsyl-
vania State University, 1996.

[KPW93] Chandra M. R. Kintala, Kong-Yee Pun, and Detlef Wotschke. Concise
representations of regular languages by degree and probabilistic finite au-
tomata. Math. Systems Theory, 26(4):379–395, 1993.

[Kut01] Martin Kutrib. Automata arrays and context-free languages. In Where
Mathematics, Computer Science, Linguistics and Biology Meet, pages 139–
148. Kluwer Academic Publishers, Dordrecht, 2001.

[KW80] Chandra M. R. Kintala and Detlef Wotschke. Amounts of nondeterminism
in finite automata. Acta Inform., 13(2):199–204, 1980.

[KW86] Chandra M. R. Kintala and Detlef Wotschke. Concurrent conciseness of
degree, probabilistic, nondeterministic and deterministic finite automata
(extended abstract). In STACS 86 (Orsay, 1986), volume 210 of LNCS,
pages 291–305. Springer-Verlag, Berlin, 1986.

232 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

[Lei81] Ernst Leiss. Succinct representation of regular languages by Boolean au-
tomata. Theoret. Comput. Sci., 13(3):323–330, 1981.

[Lei85] Ernst Leiss. Succinct representation of regular languages by Boolean au-
tomata II. Theoret. Comput. Sci., 38(1):133–136, 1985.

[Leu] Hing Leung. Tight lower bounds on the size of sweeping automata. J.
Comput. System Sci., to appear.

[Leu98a] Hing Leung. On finite automata with limited nondeterminism. Acta In-
form., 35(7):595–624, 1998.

[Leu98b] Hing Leung. Separating exponentially ambiguous finite automata from
polynomially ambiguous finite automata. SIAM J. Comput., 27(4):1073–
1082, 1998.

[LW00] Hing Leung and Detlef Wotschke. On the size of parsers and LR(k)-
grammars. Theoret. Comput. Sci., 242(1-2):59–69, 2000.

[Lyu95] Michael R. Lyu, editor. Handbook of software reliability engineering.
McGraw-Hill, New York, 1995.

[Mal01] Andreas Malcher. Descriptional complexity of cellular automata and de-
cidability questions. In Third International Workshop on Descriptional
Complexity of Automata, Grammars and Related Structures (DCAGRS
2001), pages 123–132. Otto-von-Guericke-Universität Magdeburg, Magde-
burg, 2001.

[Mal02] Andreas Malcher. On one-way cellular automata with a fixed number of
cells. To be submitted, 2002.

[Man73] Robert Mandl. Precise bounds associated with the subset construction on
various classes of nondeterministic finite automata. Princeton Conference
on System Sciences, 1973.

[Mau68] Hermann Maurer. The existence of context-free languages which are in-
herently ambiguous of any degree. Technical report, Department of Math-
ematics, University of Calgary, 1968.

[MF71] Albert R. Meyer and Michael J. Fischer. Economy of description by au-
tomata, grammars, and formal systems. In IEEE Twelfth Annual Sympo-
sium on Switching and Automata Theory, pages 188–191. IEEE, 1971.

[Mic81] Silvio Micali. Two-way deterministic finite automata are exponentially
more succinct than sweeping automata. Inform. Process. Lett., 12(2):103–
105, 1981.

[Moo71] Frank R. Moore. On the bounds for state-set size in the proofs of equiv-
alence between deterministic, nondeterministic, and two-way finite au-
tomata. IEEE Trans. Comput., C-20:1211–1219, 1971.

[MP00a] Carlo Mereghetti and Giovanni Pighizzini. Optimal simulations between
unary automata. SIAM J. Comput., 30(6):1976–1992, 2000.

[MP00b] Massimiliano Milani and Giovanni Pighizzini. Tight bounds on the simu-
lation of unary probabilistic automata by deterministic automata. In Sec-
ond International Workshop on Descriptional Complexity of Automata,
Grammars and Related Structures (DCAGRS 2000). University of West-
ern Ontario, London, Ontario, 2000.

[Mus98] John D. Musa. Software reliability engineered testing (Software develop-
ment). McGraw-Hill, New York, 1998.

[Nay99] Ashwin Nayak. Optimal lower bounds for quantum automata and random
access codes. In Annual Symposium on Foundations of Computer Science
(New York, USA, 1999), pages 369–377. IEEE, Los Alamitos, CA, 1999.

[Oet92] Stefan Oetken. Beschreibungskomplexität bei regulären Sprachen über
unärem Alphabet. Master’s thesis, J.W. Goethe-Universität Frankfurt,
1992.

[Pău00] Gheorghe Păun. Computing with membranes. J. Comput. System Sci.,
61(1):108–143, 2000.

233Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

[Paz71] Azaria Paz. Introduction to probabilistic automata. Academic Press, New
York, 1971.

[PQ96] Terence J. Parr and Russell W. Quong. LL and LR translators need k > 1
lookahead. ACM SIGPLAN Notices, 31(2):27–34, 1996.

[PRS98] Gheorge Păun, Grzegorz Rozenberg, and Arto Salomaa. DNA computing.
Springer-Verlag, Berlin, 1998.

[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control,
6(3):230–245, 1963.

[RI89] Bala Ravikumar and Oscar H. Ibarra. Relating the type of ambiguity
of finite automata to the succinctness of their representation. SIAM J.
Comput., 18(6):1263–1282, 1989.

[RS59] Michael O. Rabin and Dana Scott. Finite automata and their decision
problems. IBM J. Res. Develop., 3:114–125, 1959.

[Sch78] Erik M. Schmidt. Succinctness of descriptions of context-free, regular and
finite languages. PhD thesis, Cornell University, Ithaca, NY, 1978.

[SH85] Richard E. Stearns and Harry B. Hunt, III. On the equivalence and con-
tainment problems for unambiguous regular expressions, regular grammars
and finite automata. SIAM J. Comput., 14(3):598–611, 1985.

[She59] John C. Shepherdson. The reduction of two-way automata to one-way
automata. IBM J. Res. Develop., 3:198–200, 1959.

[Sip80] Michael Sipser. Lower bounds on the size of sweeping automata. J. Com-
put. System Sci., 21(2):195–202, 1980.

[SS77] Erik M. Schmidt and Thomas G. Szymanski. Succinctness of descriptions
of unambiguous context-free languages. SIAM J. Comput., 6(3):547–553,
1977.

[SS78] William J. Sakoda and Michael Sipser. Nondeterminism and the size of
two-way finite automata. In Conference Record of the Tenth Annual ACM
Symposium on Theory of Computing (San Diego, Calif., 1978), pages 275–
286. ACM, New York, 1978.

[SWY94] Kai Salomaa, Derick Wood, and Sheng Yu. Pumping and pushdown ma-
chines. RAIRO Inform. Théor. Appl., 28(3-4):221–232, 1994.

[SY93] Kai Salomaa and Sheng Yu. Limited nondeterminism for pushdown au-
tomata. Bulletin of the EATCS, 50:186–193, 1993.

[SY94] Kai Salomaa and Sheng Yu. Measures of nondeterminism for pushdown
automata. J. Comput. System Sci., 49(2):362–374, 1994.

[SY97] Kai Salomaa and Sheng Yu. NFA to DFA transformation for finite lan-
guages over arbitrary alphabets. J. Autom. Lang. Comb., 2(3):177–186,
1997.

[Val76] Leslie G. Valiant. A note on the succinctness of descriptions of determin-
istic languages. Information and Control, 32(2):139–145, 1976.

[Var89] Moshe Y. Vardi. A note on the reduction of two-way automata to one-way
automata. Inform. Process. Lett., 30(5):261–264, 1989.

[VG79] Paulo A. S. Veloso and Arthur Gill. Some remarks on multiple-entry finite
automata. J. Comput. System Sci., 18(3):304–306, 1979.

[VS81] Dirk Vermeir and Walter J. Savitch. On the amount of nondeterminism
in pushdown automata. Fund. Inform. (4), 4(2):401–418, 1981.

[Wei97] Jörg R. Weimar. Simulation with cellular automata. Logos-Verlag, Berlin,
1997.

[Yu01] Sheng Yu. State complexity of regular languages. J. Autom. Lang. Comb.,
6(2):221–234, 2001.

[YZS94] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities
of some basic operations on regular languages. Theoret. Comput. Sci.,
125(2):315–328, 1994.

234 Goldstine J., Kappes M., Kintala C.M.R., Leung H., Malcher A., Wotschke D.

