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Abstract: Let b ≥ 2 be an integer. A real number is called simply normal to base b if
in its representation to base b every digit appears with the same asymptotic frequency.
We answer the following question for arbitrary integers a, b ≥ 2: if a real number is
simply normal to base a, does this imply that it is also simply normal to base b? It
turns out that the answer is different from the well–known answers to the corresponding
questions for the related properties “normality”, “disjunctiveness”, and “randomness”.
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1 Introduction and Statement of the Result

For any property of infinite sequences over a finite alphabet and any pair of
integers a, b ≥ 2 one can ask the following question: if the base a representation
of a real number has this property, does this imply that also the base b represen-
tation has this property? In this paper we answer this question for the property
“simple normality”.

The answer is well–known for several other prominent properties of infinite
sequences over a finite alphabet, which are related to simple normality. Let us
introduce some notation. We denote by IN the set of all nonnegative integers,
that is, IN = {0, 1, 2, . . .}. Furthermore, an alphabet is always a finite nonempty
set. For an arbitrary alphabet Σ, we denote by Σ∗ the set of all finite strings
over Σ, and by Σω := {p | p : IN → Σ} the set of all one–way infinite sequences
over Σ. Such sequences will often be called ω–words. For an alphabet Σ, a
string w = w(0) . . . w(|w| − 1) = w0 . . . w|w|−1 ∈ Σ∗ with w(i) = wi ∈ Σ and
a string v = v(0) . . . v(|v| − 1) = v0 . . . v|v|−1 ∈ Σ∗, we denote by #v(w) the
number of occurrences of the string v in w, that is, the number of i such that
w(i) . . . w(i + |v| − 1) = v. If for an ω-word p = p0p1p2 . . . ∈ Σω and a string
v ∈ Σ∗ the limit

A(v, p) := lim
n−→∞

#v(p0 . . . pn−1)
n

exists, we call it the asymptotic frequency of v in p.

Definition 1. Let Σ be an alphabet. An ω-word p ∈ Σω is said to be

1. disjunctive or rich if every finite string in Σ∗ appears as a substring in p,
2. simply normal if every digit in Σ appears with the asymptotic frequency

1/|Σ| in p,

1 C. S. Calude, K. Salomaa, S. Yu (eds.). Advances and Trends in Automata and
Formal Languages. A Collection of Papers in Honour of the 60th Birthday of Helmut
Jürgensen.

Journal of Universal Computer Science, vol. 8, no. 2 (2002), 235-242
submitted: 15/9/01, accepted: 29/1/02, appeared: 28/2/02  J.UCS



3. normal if every finite string w ∈ Σ∗ appears with the asymptotic frequency
|Σ|−|w| in p,

4. random if there is no randomness test (Un)n∈IN with p ∈ ⋂
n∈IN Un. Here,

a randomness test according to [Martin–Löf 1966] is a sequence (Un)n∈IN of
subsets Un of Σω with the following two properties: (1) µ(Un) ≤ 2−n for all
n, where µ is the usual product measure on Σω, given by µ(wΣω) = 2−|w|
for w ∈ Σ∗, (2) there exists a computably enumerable set A ⊆ IN ×Σ∗ with
Un =

⋃
(n,w)∈A wΣω, for all n.

The relation between these notions is given by the following diagram:
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Figure 1: Properties of ω–words.

That means, any random sequence is normal but not vice versa, any normal
sequence is disjunctive but not vice versa, any normal sequence is simply normal
but not vice versa, there are simply normal sequences that are not disjunctive,
and there are disjunctive sequences that are not simply normal. Furthermore,
there are also sequences that are disjunctive and simply normal but not normal.

Normality and simple normality were introduced in [Borel 1909],[Borel 1914].
For an overview see [Kuipers and Niederreiter 1974]. Rich or disjunctive ω–words
have been analyzed for example in [Compton 1983]. Disjunctive ω–words are
also special cases of disjunctive ω–languages [Jürgensen, Shyr, Thierrin 1983].
Results concerning disjunctiveness of base representations of real numbers can
be found e.g. in [Jürgensen and Thierrin 1988], [El-Zanati and Transue 1990],
and in [Hertling 1996]. The notion of randomness above has been introduced in
[Martin–Löf 1966]; for an overview see [Calude 1994] or [Li and Vitányi 1997].

Let b ≥ 2 be an integer. The expansion νb(x) to base b of a real number x in
the interval [0, 1) is the unique ω-word p = p0p1p2 . . . ∈ Σω

b over the alphabet
Σb := {0, . . . , b − 1} containing infinitely many digits �= b − 1 such that x =∑∞

i=0 pi·b−(i+1). A real number x ∈ [0, 1) is said to be simply normal (disjunctive,
normal, random) to base b if νb(x) ∈ Σω

b is simply normal (disjunctive, normal,
random). We come back to the question stated in the beginning. Assume that
integers a, b ≥ 2 and some property of ω–words —let us call it “Property A”—
are given. Is {x ∈ [0, 1) | νa(x) has Property A} ⊆ {x ∈ [0, 1) | νb(x) has
Property A} true? Or, less formal: does Property A for νa(x) imply Property A
for νb(x)? For the properties “randomness”, “normality”, and “disjunctiveness”
the answer is as follows.
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– Randomness to base a implies randomness to base b, for any a, b ≥ 2. That
means, randomness is a base–invariant property of real numbers. This was
first shown in [Calude and Jürgensen 1994]. Other proofs can be found in
[Li and Vitányi 1997], p. 219., and in [Hertling and Weihrauch 1998].

– Normality to base a implies normality to base b if and only if a and b are
equivalent, i.e., there are positive integers m and n such that am = bn. This
was shown in the famous paper [Schmidt 1960]. A special case had been
obtained independently in [Cassels 1959].

– Disjunctiveness to base a implies disjunctiveness to base b if and only if a and
b are equivalent; see e.g. [El-Zanati and Transue 1990] or [Hertling 1996].
The negative part of this statement, for nonequivalent a and b, is already
contained in [Schmidt 1960].

In this paper we give the answer to the above question for the property
“simple normality”.

Theorem 2. Let a, b ≥ 2 be integers. If there is a positive integer n with a = bn,
then any number simply normal to base a is also simply normal to base b. If
there is no such n, then the cardinality of the set of real numbers that are simply
normal to base a but not to base b is equal to the cardinality of the continuum.

Short:

simple normality to base a implies simple normality to base b if and only
if a is a power of b.

To the best of my knowledge this statement is not contained in the literature
prior to [Hertling 1995]. In the following section we give a simplified presentation
of the proof presented ibid.

It is interesting that the situation in the case of simple normality differs from
the situation in the case of normality and of disjunctiveness. In fact, the (nega-
tive) statement of Theorem 2 for non–equivalent a and b is already contained in
[Schmidt 1960]. Thus, for the negative part of the statement of Theorem 2 we
only have to treat the case that a and b are equivalent, but a is not a power of b.
This is exactly the case in which the situation for simple normality is different
from the situation for normality or disjunctiveness. In this case we are even able
to construct rational numbers which are simply normal to base a but not to
base b. Note that rational numbers cannot be disjunctive and, hence, also not
be normal or random to any base. This is due to the fact that the base repre-
sentations of rational numbers are exactly those ω–words which are ultimately
periodic. Ultimately periodic ω–words can be considered as the simplest possible
ω–words.

2 The Proof

In this section we prove Theorem 2. Let a, b ≥ 2 be fixed integers. We distinguish
the following three cases.

I The base a is a power of the base b, i.e., there is some positive integer n with
a = bn.

237Hertling P.: Simply Normal Numbers to Different Bases



II The base a is not a power of b, but a and b are equivalent, as defined above.
III The bases a and b are not equivalent.

We shall not treat Case III, since the statement of Theorem 2 for Case III
is already contained in [Schmidt 1960]. In fact, Schmidt’s result even implies
that for non–equivalent a and b there are continuum many real numbers in [0, 1)
which are normal to base a but neither disjunctive nor simply normal to base b.

We come to Case I. We fix integers b ≥ 2 and n ≥ 1. We wish to show that if
a real number x ∈ [0, 1) is simply normal to base bn then it is also simply normal
to base b.

We define a bijection f : Σn
b −→ Σbn by f(b0 . . . bn−1) :=

∑n−1
i=0 bi · bn−1−i.

It is easy to see that for a real number x ∈ [0, 1) with νb(x) = b0b1b2 . . . and
νbn(x) = a0a1a2 . . . one has ak = f(bk·n . . . bk·n+n−1) for any k. Let us assume
that x is simply normal to base bn, i.e.

A(d′, νbn(x)) =
1
bn

for all d′ ∈ Σbn . We obtain for any d ∈ Σb

A(d, νb(x)) =
1
n

∑
d′∈Σbn

A(d′, νbn(x)) ·#d(f−1(d′))

=
1
n
· 1
bn

·
∑

d′∈Σbn

#d(f−1(d′))

=
1
n
· 1
bn

·
∑

w∈Σn
b

#d(w)

=
1
n
· 1
bn

· n · bn−1

=
1
b
.

Hence, x is simply normal to base b. This ends the proof of the statement of
Theorem 2 in Case I.

It remains to treat Case II. We need the following simple lemma.

Lemma3. Two integers a, b ≥ 2 are equivalent if and only if there are positive
integers m,n with (m,n) = 1 and an integer c ≥ 2 such that a = cn and b = cm.

Proof. The if–part is trivial. Assume that a and b are equivalent. Then there
are positive integers m̃ and ñ such that am̃ = bñ. Let k be the gcd of m̃ and
ñ, and set m := m̃/k and n := ñ/k. Then (am)k = am̃ = bñ = (bn)k, hence,
also am = bn. Note that (m,n) = 1. There are integers x, y with mx + ny = 1.
The rational number c := aybx satisfies cn = anybnx = any+mx = a and cm = b.
Hence it must be an integer ≥ 2. 
�

Let a, b ≥ 2 be equivalent integers. By Lemma 3 there are positive integers
m and n with (m,n) = 1 and an integer c ≥ 2 such that a = cn and b = cm.
Additionally we assume that a is not a power of b. That means m ≥ 2.
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We define a bijective homomorphism g : (Σn
c )

∗ −→ Σ∗
a by g(c0 . . . cn−1) :=∑n−1

i=0 ci · cn−1−i, for ci ∈ Σc, and by g(w(1) . . . w(k)) := g(w(1)) . . . g(w(k)) for
w(1), . . . , w(k) ∈ Σn

c , and analogously a bijective homomorphism h : (Σm
c )∗ −→

Σ∗
b . Note that for a real number x ∈ [0, 1) with

νa(x) = a0a1a2 . . . , νb(x) = b0b1b2 . . . , νc(x) = c0c1c2 . . .

one has
g(ckn . . . c(k+1)n−1) = ak, h(ckm . . . c(k+1)m−1) = bk,

and hence
hg−1(akm . . . a(k+1)m−1) = bkn . . . b(k+1)n−1

for all k ∈ IN .

Lemma4. There is a set M ⊆ Σm
a containing a elements such that

∑
w∈M

#d(w) = m for each d ∈ Σa (1)

and ∑
w∈M

#0(hg−1(w)) �= n · a
b
. (2)

Proof. We distinguish the cases n < m and n > m.
For n < m we set

M := {0m, 1m, . . . , (a− 1)m}.
Then, obviously

∑
w∈M #d(w) = m for each d ∈ Σa, and

∑
w∈M

#0(hg−1(w)) ≥ #0(hg−1(0m)) = #0(0n) = n > n · cn−m = n · a
b
.

Now let us assume n > m. We shall construct a set M ⊆ Σm
a such that

{w(0) | w ∈ M} = Σa, (3)

and such that for all j ∈ {1, . . . ,m−1} the following two conditions are satisfied:

{w(j) | w ∈ M} = Σa, (4)

and
for all w ∈ M ,
the rightmost digit of g−1(w(j − 1)) is not equal to zero or
the leftmost digit of g−1(w(j)) is not equal to zero.

(5)

We construct the a strings w(0), . . . , w(a−1) in M in parallel, digit by digit, from
the left. First, we set w(i)(0) := i, for all i ∈ Σa. Then, clearly, Condition (3) is
satisfied. Now, we assume that w(i)(j− 1) is defined for some j ∈ {1, . . . ,m− 1}
and all i ∈ Σa, satisfying {w(j−1) | w ∈ M} = Σa. We wish to define the digits
w(i)(j) ∈ Σa for all i ∈ Σa in such a way that (4) and (5) are satisfied. Thus, we
have to distribute the digits in Σa onto the w(i)(j) in such a way that whenever
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the rightmost digit of g−1(w(i)(j − 1)) is equal to zero, the leftmost digit of
g−1(w(i)(j)) is not equal to zero. But, there are exactly cn − cn−1 strings in Σn

c
whose rightmost digit is not equal to zero, hence, there are exactly cn − cn−1

indices i ∈ Σa such that the rightmost digit of g−1(w(i)(j − 1)) is not equal to
zero. On the other hand, there are exactly cn−1 strings in Σn

c whose leftmost
digit is equal to zero. Since g is a bijection between Σn

c and Σa, and since
cn−1 ≤ cn − cn−1, we can choose the digits w(i)(j) for i ∈ Σa appropriately.
Thus, we can construct a set M ⊆ Σm

a satisfying (3), and (4) and (5) for all
j ∈ {1, . . . ,m− 1}.

We still have to show that M satisfies also (1) und (2). Indeed, (1) follows
directly from (3) and the validity of (4) for all j ∈ {1, . . . ,m− 1}. For deriving
(2), let us consider some string w ∈ Σm

a . Via the bijection hg−1|Σm
a

from Σm
a to

Σn
b , the string w corresponds to some string v := hg−1(w) ∈ Σn

b . Each digit in
v corresponds via h−1 to a substring of length m of g−1(w) ∈ Σmn

c . The digits
of v fall into two classes:

1. the class of all digits in v that correspond to a substring of the string
g−1(w(j)) corresponding to the digit w(j) of w, for some j,

2. the class of all digits in v that correspond to a substring of g−1(w) which
contains digits of two different substrings g−1(w(j − 1)) and g−1(w(j)), for
some j ∈ {1, . . . ,m− 1}.

n = 13, m = 5

g−1(w(�im
n
�))

h−1(v(i))

g−1(w(j − 1)) g−1(w(j))

h−1(v(
⌊
j n

m

⌋
))

Figure 2: Substrings corresponding to digits in base c13 and in base c5.

In fact, a simple calculation shows that for any i ∈ {0, . . . , n− 1} \ I with

I :=
{⌊

j
n

m

⌋ ∣∣∣ j ∈ {1, . . .m− 1}
}
.

the string h−1(v(i)) corresponding to the digit v(i) is a substring of the string
g−1(w(�im

n �)) corresponding to the digit w(�im
n �), that is, the digit v(i) belongs

into the first class. All digits v(i) for i ∈ I belong into the second class.

Claim 5. For any digit d ∈ Σb and any i ∈ {0, . . . , n− 1} \ I,

|{w ∈ M | (hg−1(w))(i) = d}| = a

b
.

That means: every digit in hg−1(w) in the first class runs through all digits
in Σb the same number of times if w runs through all strings in M .
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Proof. Fix an i ∈ {0, . . . , n−1}\I and let w run throughM . Then by Condition
(3) or by Condition (4), w(�im

n �) runs through each digit in Σa once. Hence
g−1(w(�im

n �)) runs through each string in Σn
c once. As h−1((hg−1(w))(i)) is a

substring of length m of g−1(w(�im
n �)) it runs through all the strings in Σm

c

exactly cn/cm = a
b times. Hence, (hg−1(w))(i) runs through all digits in Σb

exactly a
b times. 
�

Claim 6. For any i ∈ I and w ∈ M , (hg−1(w))(i) �= 0.

That means: any digit in hg−1(w) in the second class is never equal to zero,
for any string w ∈ M .

Proof. Fix a string w ∈ M and a j ∈ {1, . . . ,m − 1}, and consider i :=
�j n

m� ∈ I. Then the string h−1((hg−1(w))(i)) in Σm
c corresponding to the digit

(hg−1(w))(i) contains the rightmost digit of g−1(w(j−1)) and the leftmost digit
of g−1(w(j)). Since at least one of these two digits in Σc is not equal to zero
according to Condition (5), also the digit (hg−1(w))(i) in Σb cannot be equal to
zero. 
�

By the previous two claims we obtain∑
w∈M

#0(hg−1(w)) = |{0, . . . , n− 1} \ I| · a
b
= (n−m+ 1) · a

b
< n · a

b
,

hence we obtain (2). Note that here we needed the assumption m ≥ 2, i.e., that
a is not a power of b: it implies that the set I, respectively the second class of
digits of hg−1(w) for w ∈ Σn

a , is nonempty. This ends the proof of Lemma 4. 
�
Finally we have to show that Lemma 4 implies the assertion of Theorem 2

in Case II. For a set M = {w(0), . . . , w(a−1)} satisfying Conditions (1) and (2)
we define

V (M) := {w(π(0)) . . . w(π(a−1)) |π is a permutation of Σa} ⊆ Σm·a
a .

For any v ∈ V (M), Condition (1) implies #d(v)/|v| = 1
a for any d ∈ Σa. Hence

any p ∈ V (M)ω is simply normal, i.e. the number ν−1
a (p) is simply normal to

base a. But we shall see that it is not simply normal to base b. If p = v0v1v2 . . .
with vj ∈ V (M) then νbν

−1
a (p) = hg−1(v0)hg−1(v1)hg−1(v2) . . .. Since for any

v ∈ V (M) and d ∈ Σb one has

#d(hg−1(v))
|hg−1(v)| =

∑
w∈M #d(hg−1(w))

a · n
the asymptotic frequency of 0 in νbν

−1
a (p) is

A(0, νbν
−1
a (p)) =

∑
w∈M #0(hg−1(w))

a · n .

By Condition (2) this is not equal to 1
b . Hence ν−1

a (p) is simply normal to base
a but not simply normal to base b for any p ∈ V (M)ω. Since the set V (M)ω
has the cardinality of the continuum the assertion follows. This ends the proof
of Theorem 2.

We conclude this section with the following corollary of the proof.
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Corollary 7. If a, b ≥ 2 are equivalent bases, but a is not a power of b, then
there are rational numbers which are simply normal to base a but not to base b.

Proof. We have seen above that any sequence p ∈ V (M)ω is simply normal, i.e.,
the number ν−1

a (p) is simply normal to base a. But this number is not simply
normal to base b. Thus, for any string v ∈ V (M), the number ν−1

a (vω) is simply
normal to base a but not to base b. This number is rational since its expansion
to base a is (ultimately) periodic; compare e.g. [Bundschuh 1992]. 
�
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