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Abstract: Let A C X* be a regular language. In the paper, we will provide an algo-
rithm to decide whether there exist a nontrivial language B € Z(n, X) and a nontrivial
regular language C' C X™ such that A= BoC
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In this paper, we will deal with shuffle decompositions of regular languages over
an alphabet X. Regarding definitions and notations concerning formal languages
and automata, not defined in this paper, refer, for instance, to [1]. Now let A =
(S,X,9,s0, F) be a finite automaton with £(A) = A and let B = (T, X, v, to, G)
be a finite automaton with £(B) = B. We will look for a regular language C
over X such that A = Bo C. By X, we denote the language {@ | a € X} with
XNX=0.Let B=(T,XUXUJ{#},7,t0,G) where 7 is defined as follows:
Fort € T and a € X, 7(t,a) =t, 7(t,a) = y(t,a). Moreover, J(t, #) =t
ifted.
Then the following can be easily shown.

Fact 1 Let ayas...a, € X* where a; € X,i = 1,2,...,n. Then aias...a, €

L(B) if and only if ur@iueds . . . UpGpunt1# € L(B) where uy, uz, ..., u, € X*.

Let Ay = (S, XUXU{#},0,50,{a,w}) and let Ay = (S, XUXU{#},6, 50, {a})
where S = (UanU{A}S(“)) U{a,w}. Here S is regarded as S where A is the

empty word. For s € S,t € S\ F,t' € F,a € XU{\},b € X and {#}, § is defined
as follows:

3(s(,b) = 8(5,b)(@),5(s),b) = 5(s,0)?),5(t@ #) = {a} and §(t'(@) #)
= {w}.

We consider the following two automata:
Ci=(SxT,XUXU{#},0x7,(s0,t0), {a,w} x G), C = (I x T, XU
X U{#},0 x7,(s0,t0), {a} x G) where 0 x ¥((5,t),a) = (0(5,a),75(t,a))
for (5,t) e SxT and a € X.
Now consider the following homomorphism p of (X U X U {#})* into X*:
pla) =afora e X, p(a) =X for a € X and p(#) = \.
1 C. S. Calude, K. Salomaa, S. Yu (eds.). Advances and Trends in Automata and

Formal Languages. A Collection of Papers in Honour of the 60th Birthday of Helmut
Jirgensen.
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Lemma 1. Automata accepting the languages p(L(C1)) and p(L(C3)) can be ef-
fectively constructed.

Proof. Let i = 1,2. From C;, we can construct a regular grammar G; such that
L(G;) = L(C;) with the production rules of the form A — aB (A, B are variables
and a € X U X U {#}). Replacing every rule of the form A — aB in G; by A —
p(a)B, we can obtain a new grammar G,. Then it is clear that p(L£(C;)) = L(G)).

Using this grammar G/, we can construct an automaton D; with A\-move such

that £(D;) = L(G}) i.e. p(L(C;)) = L(D;). Notice that all the above procedures
are effectively done. This completes the proof of the lemma.

Let B,C C X*. By B o C we denote the shuffle product of B and C, i.e.
{urviugvy . . upvy, | U =ujug. .. uy € B,v =viva...v, € A}

Proposition2. Let uw € X*. Then {u} o B C A if and only if u € p(L(C1)) \
p(L(C2)).

Proof. (=) Let u = wjus... upu,11 € X* and let ajas...a, € B where
UL, U, - oy Un, Unt1 € X* and ay, ag, ..., a, € X. Then 6x7((so,to), u1@1 Uzl . . .
UnTnUnt1#) = (0(S0, U1A1UE2 - - - UnTpUnt17F), T (t0, W1T1ULAD - - . UnTnUn17))
= (6(3(s0, u1a1U23 . . . Unntini1) @), ), F(V(s0, @102 . .. ay) @), #)) = (w, v
(to,a1a2 ...a,)) € {w} x G. Therefore, uiaius@s . . . updpun1# € L(C1)\ L(C2).
Hence u = uqusg . . . Uptnt1 = p(U1@1U28z . . . UnGnunt1#) € p(L(C1)) \ p(L(C2)).
(<) Suppose that u o B C A does not hold though u € p(L(C1)) \ p(L(C2)).
Then there exist v = ujus...upupy1 € X* and ajas...a, € B such that
ULAIUGA2 - . . UnGpUnt1 ¢ A. Hence ¥ (to, u1a@1u2@s . . . UnGptnt1#) = (7 (to, a1a2
cooap), #) =(to,a1az . . . a,) € G. On the other hand, since ujaiuzas ... upan,
Uni1 & A, 6(50, u1T1UTs . . . UpTpUn117) = 0(5(S0, u1a1U20as . . .unanunﬂ)(“"),
#) = {a}. Hence 6 x7((s0,t0), u1@1u2q2 - . . UnGnlni17#) € {a} X G, i.e. uiaiugas
e UG Up1# € L(C2). Therefore, u = p(ui1Giug@s . . . UnGptn+1#) € p(L(C2)).
On the other hand, it is obvious that wi@ius@s. .. unGntnt1# € L(C1). Thus
u ¢ p(L(C1)) \ p(L(C2)), a contradiction. Consequently, the proposition must
hold true.

Corollary 3. In the above, B ¢ (p(L(C1)) \ p(L(C2))) C A.

Let L € X* be a regular language over X. By #L, we denote the number
min{|S| | 3A = (5, X, 9, so, F'), L = L(A)} where |S| denotes the cardinality of
S. Moreover, Z(n, X) denotes the class of languages {L C X* | #L < n}.

Theorem4. Let A C X* and let n be a positive integer. Then it is decidable
whether there exist nontrivial reqular languages B € T(n,X) and C C X* such
that A = B o C. Here a language D C X* is said to be nontrivial if D # {\}.

Proof. Let A C X* be a regular language. Assume that there exist nontrivial
regular languages B € Z(n,X) and C C X* such that A = B o C. Then, by
Proposition 2 and its corollary, C' C p(L(C1)) \ p(£(C2)) and B o (p(L(C1)) \
p(L(C2))) € A. Hence A = Bo(p(L(C1))\ p(L(C2))). Thus we have the following
algorithm: (1) Choose a nontrivial regular language B C X* from Z(n, X ) and
construct the language p(L£(C1))\p(L(C2)) (see Lemma 1). (2) Let C' = p(L(C1))\
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p(L(C2)). (3) Compute BoC. (4) If A= BoC, then the output is "YES” and
"NO”, otherwise. (4) If the output is "NO”, then choose another element in
Z(n,X) as B and continue the procedures (1) - (3). (5) Since Z(n, X) is a finite
set, the above process terminates after a finite-step trial. Once one gets the
output ”YES”, then there exist nontrivial regular languages B € Z(n, X) and
C C X* such that A = B ¢ C. Otherwise, there are no such languages.

Let n be a positive integer. By F(n, X ), we denote the class of finite languages
{L C X*| max{|u| | u € L} < n} where |u| is the length of u. Then the following
result by C. Campeanu et al. ([2]) can be obtained as a corollary of Theorem 4.

Corollary 5. For a given positive integer n and a regular language A C X*,
the problem whether A = B ¢ C for a nontrivial language B € F(n,X) and a
nontrivial reqular language C C X* is decidable.

Proof. Obvious from the fact that F(n, X) C Z(|X|"*1, X).
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