# Shuffle Decomposition of Regular Languages ${ }^{1}$ 

Masami Ito<br>(Department of Mathematics, Kyoto Sangyo University<br>Kyoto 603-8555, Japan<br>Email: ito@ksuvx0.kyoto-su.ac.jp)


#### Abstract

Let $A \subseteq X^{*}$ be a regular language. In the paper, we will provide an algorithm to decide whether there exist a nontrivial language $B \in \mathcal{I}(n, X)$ and a nontrivial regular language $C \subseteq X^{*}$ such that $A=B \diamond C$ Key Words: regular language, shuffle product, shuffle decomposition, $\mathcal{I}(n, X)$ Category: F. 1


In this paper, we will deal with shuffle decompositions of regular languages over an alphabet $X$. Regarding definitions and notations concerning formal languages and automata, not defined in this paper, refer, for instance, to [1]. Now let $\mathcal{A}=$ $\left(S, X, \delta, s_{0}, F\right)$ be a finite automaton with $\mathcal{L}(\mathcal{A})=A$ and let $\mathcal{B}=\left(T, X, \gamma, t_{0}, G\right)$ be a finite automaton with $\mathcal{L}(\mathcal{B})=B$. We will look for a regular language $C$ over $X$ such that $A=B \diamond C$. By $\bar{X}$, we denote the language $\{\bar{a} \mid a \in X\}$ with $X \cap \bar{X}=\emptyset$. Let $\overline{\mathcal{B}}=\left(T, X \cup \bar{X} \cup\{\#\}, \bar{\gamma}, t_{0}, G\right)$ where $\bar{\gamma}$ is defined as follows:

For $t \in T$ and $a \in X, \bar{\gamma}(t, a)=t, \bar{\gamma}(t, \bar{a})=\gamma(t, a)$. Moreover, $\bar{\gamma}(t, \#)=t$
if $t \in G$.
Then the following can be easily shown.
Fact 1 Let $a_{1} a_{2} \ldots a_{n} \in X^{*}$ where $a_{i} \in X, i=1,2, \ldots, n$. Then $a_{1} a_{2} \ldots a_{n} \in$ $\mathcal{L}(\mathcal{B})$ if and only if $u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots u_{n} \bar{a}_{n} u_{n+1} \# \in \mathcal{L}(\overline{\mathcal{B}})$ where $u_{1}, u_{2}, \ldots, u_{n} \in X^{*}$.
Let $\mathcal{A}_{1}=\left(\bar{S}, X \cup \bar{X} \cup\{\#\}, \bar{\delta}, s_{0},\{\alpha, \omega\}\right)$ and let $\mathcal{A}_{2}=\left(\bar{S}, X \cup \bar{X} \cup\{\#\}, \bar{\delta}, s_{0},\{\alpha\}\right)$ where $\bar{S}=\left(\cup_{a \in X \cup\{\lambda\}} S^{(a)}\right) \cup\{\alpha, \omega\}$. Here $S^{(\lambda)}$ is regarded as $S$ where $\lambda$ is the empty word. For $s \in S, t \in S \backslash F, t^{\prime} \in F, a \in X \cup\{\lambda\}, b \in X$ and $\{\#\}, \bar{\delta}$ is defined as follows:

$$
\begin{aligned}
& \bar{\delta}\left(s^{(a)}, b\right)=\delta(s, b)^{(a)}, \bar{\delta}\left(s^{(a)}, \bar{b}\right)=\delta(s, b)^{(b)}, \bar{\delta}\left(t^{(a)}, \#\right)=\{\alpha\} \text { and } \bar{\delta}\left(t^{\prime(a)}, \#\right) \\
& =\{\omega\}
\end{aligned}
$$

We consider the following two automata:

$$
\begin{aligned}
& \mathcal{C}_{1}=\left(\bar{S} \times T, X \cup \bar{X} \cup\{\#\}, \bar{\delta} \times \bar{\gamma},\left(s_{0}, t_{0}\right),\{\alpha, \omega\} \times G\right), \mathcal{C}_{2}=(\bar{S} \times T, X \cup \\
& \left.\bar{X} \cup\{\#\}, \bar{\delta} \times \bar{\gamma},\left(s_{0}, t_{0}\right),\{\alpha\} \times G\right) \text { where } \bar{\delta} \times \bar{\gamma}((\bar{s}, t), a)=(\bar{\delta}(\bar{s}, a), \bar{\gamma}(t, a)) \\
& \text { for }(\bar{s}, t) \in \bar{S} \times T \text { and } a \in X
\end{aligned}
$$

Now consider the following homomorphism $\rho$ of $(X \cup \bar{X} \cup\{\#\})^{*}$ into $X^{*}$ :

$$
\rho(a)=a \text { for } a \in X, \rho(\bar{a})=\lambda \text { for } a \in X \text { and } \rho(\#)=\lambda
$$

[^0]Lemma 1. Automata accepting the languages $\rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right)$ and $\rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)$ can be effectively constructed.

Proof. Let $i=1,2$. From $\mathcal{C}_{i}$, we can construct a regular grammar $\mathcal{G}_{i}$ such that $\mathcal{L}\left(\mathcal{G}_{i}\right)=\mathcal{L}\left(\mathcal{C}_{i}\right)$ with the production rules of the form $A \rightarrow a B(A, B$ are variables and $a \in X \cup \bar{X} \cup\{\#\}$ ). Replacing every rule of the form $A \rightarrow a B$ in $\mathcal{G}_{i}$ by $A \rightarrow$ $\rho(a) B$, we can obtain a new grammar $\mathcal{G}_{i}^{\prime}$. Then it is clear that $\rho\left(\mathcal{L}\left(\mathcal{C}_{i}\right)\right)=\mathcal{L}\left(\mathcal{G}_{i}^{\prime}\right)$. Using this grammar $\mathcal{G}_{i}^{\prime}$, we can construct an automaton $\mathcal{D}_{i}$ with $\lambda$-move such that $\mathcal{L}\left(\mathcal{D}_{i}\right)=\mathcal{L}\left(\mathcal{G}_{i}^{\prime}\right)$ i.e. $\rho\left(\mathcal{L}\left(\mathcal{C}_{i}\right)\right)=\mathcal{L}\left(\mathcal{D}_{i}\right)$. Notice that all the above procedures are effectively done. This completes the proof of the lemma.

Let $B, C \subseteq X^{*}$. By $B \diamond C$ we denote the shuffle product of $B$ and $C$, i.e. $\left\{u_{1} v_{1} u_{2} v_{2} \ldots u_{n} v_{n} \mid u=u_{1} u_{2} \ldots u_{n} \in B, v=v_{1} v_{2} \ldots v_{n} \in A\right\}$.

Proposition 2. Let $u \in X^{*}$. Then $\{u\} \diamond B \subseteq A$ if and only if $u \in \rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right) \backslash$ $\rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)$.

Proof. $(\Rightarrow)$ Let $u=u_{1} u_{2} \ldots u_{n} u_{n+1} \in X^{*}$ and let $a_{1} a_{2} \ldots a_{n} \in B$ where $u_{1}, u_{2}, \ldots, u_{n}, u_{n+1} \in X^{*}$ and $a_{1}, a_{2}, \ldots, a_{n} \in X$. Then $\bar{\delta} \times \bar{\gamma}\left(\left(s_{0}, t_{0}\right), u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots\right.$ $\left.u_{n} \bar{a}_{n} u_{n+1} \#\right)=\left(\bar{\delta}\left(s_{0}, u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots u_{n} \bar{a}_{n} u_{n+1} \#\right), \bar{\gamma}\left(t_{0}, u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots u_{n} \bar{a}_{n} u_{n+1} \#\right)\right)$ $=\left(\bar{\delta}\left(\delta\left(s_{0}, u_{1} a_{1} u_{2} a_{2} \ldots u_{n} a_{n} u_{n+1}\right)^{\left(a_{n}\right)}, \#\right), \bar{\gamma}\left(\gamma\left(s_{0}, a_{1} a_{2} \ldots a_{n}\right)^{\left(a_{n}\right)}, \#\right)\right)=(\omega, \gamma$
$\left.\left(t_{0}, a_{1} a_{2} \ldots a_{n}\right)\right) \in\{\omega\} \times G$. Therefore, $u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots u_{n} \bar{a}_{n} u_{n+1} \# \in \mathcal{L}\left(\mathcal{C}_{1}\right) \backslash \mathcal{L}\left(\mathcal{C}_{2}\right)$. Hence $u=u_{1} u_{2} \ldots u_{n} u_{n+1}=\rho\left(u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots u_{n} \bar{a}_{n} u_{n+1} \#\right) \in \rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right) \backslash \rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)$. $(\Leftarrow)$ Suppose that $u \diamond B \subseteq A$ does not hold though $u \in \rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right) \backslash \rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)$. Then there exist $u=u_{1} u_{2} \ldots u_{n} u_{n+1} \in X^{*}$ and $a_{1} a_{2} \ldots a_{n} \in B$ such that $u_{1} a_{1} u_{2} a_{2} \ldots u_{n} a_{n} u_{n+1} \notin A$. Hence $\bar{\gamma}\left(t_{0}, u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots u_{n} \bar{a}_{n} u_{n+1} \#\right)=\bar{\gamma}\left(\gamma\left(t_{0}, a_{1} a_{2}\right.\right.$ $\left.\left.\ldots a_{n}\right), \#\right)=\gamma\left(t_{0}, a_{1} a_{2} \ldots a_{n}\right) \in G$. On the other hand, since $u_{1} a_{1} u_{2} a_{2} \ldots u_{n} a_{n}$ $u_{n+1} \notin A, \bar{\delta}\left(s_{0}, u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots u_{n} \bar{a}_{n} u_{n+1} \#\right)=\bar{\delta}\left(\delta\left(s_{0}, u_{1} a_{1} u_{2} a_{2} \ldots u_{n} a_{n} u_{n+1}\right)^{\left(a_{n}\right)}\right.$, $\#)=\{\alpha\}$. Hence $\bar{\delta} \times \bar{\gamma}\left(\left(s_{0}, t_{0}\right), u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots u_{n} \bar{a}_{n} u_{n+1} \#\right) \in\{\alpha\} \times G$, i.e. $u_{1} \bar{a}_{1} u_{2} \bar{a}_{2}$ $\ldots u_{n} \bar{a}_{n} u_{n+1} \# \in \mathcal{L}\left(\mathcal{C}_{2}\right)$. Therefore, $u=\rho\left(u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots u_{n} \bar{a}_{n} u_{n+1} \#\right) \in \rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)$. On the other hand, it is obvious that $u_{1} \bar{a}_{1} u_{2} \bar{a}_{2} \ldots u_{n} \bar{a}_{n} u_{n+1} \# \in \mathcal{L}\left(\mathcal{C}_{1}\right)$. Thus $u \notin \rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right) \backslash \rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)$, a contradiction. Consequently, the proposition must hold true.

Corollary 3. In the above, $B \diamond\left(\rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right) \backslash \rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)\right) \subseteq A$.
Let $L \subseteq X^{*}$ be a regular language over $X$. By $\# L$, we denote the number $\min \left\{|S| \mid \exists \mathcal{A}=\left(S, X, \delta, s_{0}, F\right), L=\mathcal{L}(\mathcal{A})\right\}$ where $|S|$ denotes the cardinality of $S$. Moreover, $\mathcal{I}(n, X)$ denotes the class of languages $\left\{L \subseteq X^{*} \mid \# L \leq n\right\}$.

Theorem 4. Let $A \subseteq X^{*}$ and let $n$ be a positive integer. Then it is decidable whether there exist nontrivial regular languages $B \in \mathcal{I}(n, X)$ and $C \subseteq X^{*}$ such that $A=B \diamond C$. Here a language $D \subseteq X^{*}$ is said to be nontrivial if $\bar{D} \neq\{\lambda\}$.

Proof. Let $A \subseteq X^{*}$ be a regular language. Assume that there exist nontrivial regular languages $B \in \mathcal{I}(n, X)$ and $C \subseteq X^{*}$ such that $A=B \diamond C$. Then, by Proposition 2 and its corollary, $C \subseteq \rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right) \backslash \rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)$ and $B \diamond\left(\rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right) \backslash\right.$ $\left.\rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)\right) \subseteq A$. Hence $A=B \diamond\left(\rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right) \backslash \rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)\right)$. Thus we have the following algorithm: (1) Choose a nontrivial regular language $B \subseteq X^{*}$ from $\mathcal{I}(n, X)$ and construct the language $\rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right) \backslash \rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)$ (see Lemma 1). (2) Let $C=\rho\left(\mathcal{L}\left(\mathcal{C}_{1}\right)\right) \backslash$
$\rho\left(\mathcal{L}\left(\mathcal{C}_{2}\right)\right)$. (3) Compute $B \diamond C$. (4) If $A=B \diamond C$, then the output is "YES" and "NO", otherwise. (4) If the output is "NO", then choose another element in $\mathcal{I}(n, X)$ as $B$ and continue the procedures (1) - (3). (5) Since $\mathcal{I}(n, X)$ is a finite set, the above process terminates after a finite-step trial. Once one gets the output "YES", then there exist nontrivial regular languages $B \in \mathcal{I}(n, X)$ and $C \subseteq X^{*}$ such that $A=B \diamond C$. Otherwise, there are no such languages.

Let $n$ be a positive integer. By $\mathcal{F}(n, X)$, we denote the class of finite languages $\left\{L \subseteq X^{*} \mid \max \{|u| \mid u \in L\} \leq n\right\}$ where $|u|$ is the length of $u$. Then the following result by C. Câmpeanu et al. ([2]) can be obtained as a corollary of Theorem 4.

Corollary 5. For a given positive integer $n$ and a regular language $A \subseteq X^{*}$, the problem whether $A=B \diamond C$ for a nontrivial language $B \in \mathcal{F}(n, X)$ and $a$ nontrivial regular language $C \subseteq X^{*}$ is decidable.

Proof. Obvious from the fact that $\mathcal{F}(n, X) \subseteq \mathcal{I}\left(|X|^{n+1}, X\right)$.
Acknowledgement The author would like to thank Dr. Kai Salomaa for his usuful comments.

## References

1. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading MA,1979.
2. C. Câmpeanu, K. Salomaa, S. Vágvölgyi, Shuffle quotient and decompositions, Lecture Notes in Computer Science (Springer), to appear.

[^0]:    ${ }^{1}$ C. S. Calude, K. Salomaa, S. Yu (eds.). Advances and Trends in Automata and Formal Languages. A Collection of Papers in Honour of the 60th Birthday of Helmut Jürgensen.

