Journal of Universal Computer Science, vol. 8, no. 10 (2002), 913-923
submitted: 24/4/02, accepted: 15/10/02, appeared: 28/10/02 © J.UCS

The TrailTRECer Framework: Applying Open
Hypermedia Concepts to Trails

Erich Gams
(Salzburg Research - SunTREC
Jakob Haringer Strasse 5/I11
5020 Salzburg, Austria
egams@salzburgresearch.at)

Siegfried Reich
(Salzburg Research - SunTREC
Jakob Haringer Strasse 5/I11
5020 Salzburg, Austria
sreich@salzburgresearch.at)

Abstract: Being lost in space and overloaded with information are two key problems
users are confronted with, when searching for appropriate information. Trails built
from information about the users’ browsing paths and activities, are an established
approach to assist users in navigating vast information spaces. However, existing trail-
based systems are focusing on browsers only and therefore do not fully exploit the
notion of trails. The TrailTRECer framework addresses these issues by being open to
any application and any activity. The usability of the framework and the concept of user
trails were tested by building a navigation support system with different trail-enabled
clients.

Key Words: open hypermedia, trails, trail-based system, navigation support
Category: H.3.3, H.5.4

1 Introduction

Looking for specific information or finding colleagues working on similar topics,
has been and still is an open issue. Growing numbers of documents on the World
Wide Web makes it increasingly difficult to find appropriate information. The
idea of using trails to assist users in navigation has been around since the early
days of hypertext and several navigation support systems including recommender
systems have been built (See [17, 10] for an overview). Most browsing advisor
tools offer some kind of history mode of recently accessed web pages, however,
they do not take into account the different types of activity or the types of
documents [17, 18]. By activity we refer to the action performed on a document,
rather than hypertext activity [16]. This type of activity is important for the
documents’ relevance and therefore has to be traced, too. Different types of
activity also imply that trails can be generated by any application, i.e., mail
clients, word processors, etc. not just Web browsers.

914 GamsE., Reich S: The Trail TRECer Framework ...

Based on these findings we introduce a data model and the architecture of
TrailTRECer, an open framework that enables the development of trail-enabled
applications, for assisting users in navigation or searching for appropriate in-
formation. Its name indicates that, similar to the way “Trackers” follow trails
in nature, “TrailTRECers” make their way through digital information spaces.
Furthermore, we will describe different attempts of third party tool integration
into open hypermedia systems. Finally, we will demonstrate the applicability of
our framework to arbitrary applications by integrating a client watching print
jobs, a browser client and an office client, that are able of acquiring application
specific activities and visualizing recommended documents.

2 A Data Model based on FOHM

Whereas most systems simply do some analysis on browsing behaviour, we in-
troduce trails as objects, which can be edited, deleted, copied or exchanged (i.e.
so called “first-class” objects). Trails can be defined as vectors of so called trail
marks. A trail mark can be anything (e.g. document, website) that can be clearly
identified by a URI. For the basic entities that a trailmark and trail are built of
and we also call trail-data see [14].

Based on this core trail definition and the fact that any application can
produce trails, we developed a trail data model and the architecture of the
TrailTRECer framework. The basic requirements of trail-based systems were
introduced in [6]. According to the OHSWG’s (Open Hypermedia Working
Group [15]) reference architecture, trail functionality could simply be imple-
mented as another middleware service. To promote interoperability to e.g. other
link servers (as suggested by the OHSWG), our framework integrates trails as
another hypertext application domain such as the navigational, taxonomic or
spatial domain. Mapping trails into an Open Hypertext Model, offers the pos-
sibility to interoperate with other link servers and thus different ways of navi-
gation. In our approach, we followed the fundamental open hypermedia model
(FOHM [11]), a common data model capable of representing structures and im-
plementing operations from any of the three domains, and we have expressed
trail data using that model.

The basic items of the data model are associations holding vectors of bindings,
a relationship type, and a structural type. Following that definition, trails can be
defined as associations. In order to allow time dependent ordering, an ordered list
will be added to the structural types. Bindings hold data references and feature
vectors together. Trail marks resemble bindings, i.e., they relate nodes (which

GamsE., Reich S: The Trail TRECer Framework ... 915

are references to the actual documents) and trails together.

A=B xTxS§ (Associations)
S = {heap, list, stack, orderedlist, . . .} (Structural Types)
B=1I"xF (Bindings)

N = {direction, shape, activity, ranking, date, ...} (Features Spaces)

The feature space vector enumerates the different properties that must be defined
in a feature vector of each binding. With respect to retrieving relevant trail
marks, we extended the feature space with the trail mark properties activity,
ranking and date. Summarizing, FOHM could be adapted with some simple
modifications to hold trail data. We argue that these modifications are useful for
other domains as well. For example, in the navigational domain, a ranking feature
could be used for prominently displaying those bindings with high ranking values.

3 Framework Architecture

By framework we stick to the definition of Bernstein [3], who argues that “a
framework is a software environment that is designed to simplify application
development and system management for a specialized application domain.”
The framework is a kind of reuseable design of a system that decomposed into
a set of interacting components. Thus, the framework and its components are
cooperating technologies [9]. An open trail-based framework has to provide a set
of services for recording, storing, processing and navigating trails.

The distributed management of trail information and the dynamically in-
teracting components (e.g. different trail processing components need to re-use
results provided by other components) makes a trail-based system and frame-
work well suited to be based on an multi-agent architecture [5].

SoFAR [12], the Southampton Framework for Agent Research, is a multi-
agent framework in Java that addresses the problem domain of distributed in-
formation processing and acts as a basis framework TrailTRECer. Users can
combine an arbitrary number of agents, solving different tasks by processing
trail data (e.g. recommendation of related items [6]). Users have the possibil-
ity to compose their individual workspaces. In order to communicate with each
other, the agents have to agree on a common ontology as the topology of the
exchanged messages. By representing the trail extended FOHM in an ontology,
we want the framework to be open to any agent, that supports hypermedia
functionality.

In order to facilitate information sharing, SOFAR provides a registry to help
agents advertise and find information. Every agent of the system has to sub-
scribe to a registry agent to inform about the own functionality and to find
certain capabilities supported by other agents. To communicate and exchange
information, agents use ontologies to define the content of messages.

916 GamsE., Reich S: The Trail TRECer Framework ...

<term name="Trailmark" extends="Predicate">
<field type="String" name="node"/>
<field type="String" name="activity"/>
<field type="String" name="date"/>
<field type="String" name="duration"/>
<field type="String" name="user"/>
<field type="String" name="rating"/>

</term>

<vector name="Trail" type="Trailmark"/>
<vector name="Trailvector" type="Trail"/>
<vector name="Personvector" type="String"/>

<term name="Related" extends="Predicate">
<field type="Trailmark" name="trailmark"/>
</term>

<term name="RelatedPersons" extends="Related">
<field type="Personvector" name="personvector"/>
</term>

<term name="RelatedDocuments" extends="Related">
<field type="Trail" name="trail"/>
</term>

<term name="RelatedTrails" extends="Related">
<field type="Trailvector" name="trail"/>
</term>

The root of the SOFAR ontology hierachy is an abstract term and a predicate,
a term that can be queried about. As our framework aims at building trail based
recommender systems, the basic term Related of the trail ontology enables the
exchange of related documents, trails or persons. Any agent, that wants to receive
related documents, can query for that Related predicate.

Figure 1 shows the basic parts of the framework that can be adapted to the
users’ needs. All the agents are connected to the Registry Agent and they are
able to communicate with each other via the registry.

The architecture of the framework contains two main platforms, on which
the agents reside. All the tasks, such as collecting data, or visualization are dis-
tributed on different agents. Each user holds an individual user platform, that

GamsE., Reich S: The Trail TRECer Framework ... 917

User Platform

Core Component
Group Platform

Client Agent Proxy Class Filter Class
Registry Agent Storage Agent

ANN Agent Simple Trail-Based Agent

Socket Component

User Agent

Socket Agent

Figure 1: Framework architecture

contains the trail acquisition (Socket Agent, Client Agent) and trail visualiza-
tion agents (User Agent). The group platform, holding the processing agents,
is responsible for trail processing and storing. Our framework basically aims at
supporting: trail visualization and trail acquiring.

4 Integration Scenarios

In this section we give examples of integrating different applications or function-
alities into our framework to enable trail functionality. According to our trail
data model [14] the document URL and the activity performed on the document
are the two basic entities that we want to acquire. Our aims is to envisage how
people handle documents, to later on use this acquired information for support-
ing their navigational and information seeking tasks. More precisely handling
documents stands for how people, communicate and search for and leave infor-
mation about documents. These activities correspond to functionalities provided
by different groups of systems and applications. Basic activities (e.g. print) are
enabled by functionalities provided by the operating system. Communication
and exchange of information take place, when documents are sent over the Web
(e.g. mail, newsgroups). Finally most of the documents are created or edited by
some third party applications (e.g. Office). Visualization integration is useful in
application providing an API for adding new functionality and providing control
over presentation of trail data. The user can then make use of recommendations
provided by the TrailTRECer system related to the document in work.

918 GamsE., Reich S: The Trail TRECer Framework ...

Efforts of integrating open hypermedia functionality into third-party applica-
tions are also relevant for our work (see [19, 4, 1] for remarkable examples). [19]
promotes an architectural model which allows the characteristics of an applica-
tion, relevant to its integration with an open hypermedia system, to be modeled.
The initial state of an application’s communication ability can be described as
being either native, non-native or non-communicative. While an native appli-
cation fully understands the communications protocol of an open hypermedia
system, a non-communicative application does not have any API. A non-native
application has an external application programming interface (API), differing
from the open hypermedia system protocol. Considering the applications initial
state application integration architectures fall into three categories:

1. The launch-only integration architecture only provides link traversals ending
at the application. The possibility to mere start up an application is not
relevant to a trail-based system.

2. A wrapper (or shim) is an integration containing a separate element, acting
as an intermediary between the application and the hypermedia system.
Translating unstructured information into trail data is main task in the
trail-based framework.

3. Finally, the custom integration architecture is implemented by modifying
the source code or writing code in the application’s customization language.

Our approach also assumes that the TrailTRECer system and the trail-
enabled process or application are independent processes and are run indepen-
dently.

Our approach differs from the above models as we do not only need to inte-
grate applications, but are mainly interested in different activities performed on
documents. Based on these assumptions the framework offers three possibilities
for a new applications to be integrated. In the following integration descriptions
we also differ between application developer, who is the person adapting the
framework for personal needs and the user, recording trails and customizing the
recommendations.

4.1 Integration of Core Activities

Trail-related information is accessable via operations of the operation system.
The Client Agent of our framework is able to retrieve trail data and forward it
to the Storage Agent. The application developer is responsible for the retrieval
of data of any application and convertion to trail data. A core template class
(Filter Class) offered by the framework can be adapted to a users needs by im-
plementing so called hook methods [13]. The hook method is an empty abstract

GamsE., Reich S: The Trail TRECer Framework ... 919

class, providing an empty default implementation and parameterizing the tem-
plate class. According to the integration architectures this type of integration is
equivalent to a pure wrapper integration.

Example: Printed Documents One measure of importance of a document is,
whether documents have been printed. Hence, we try to capture all documents
printed. However, if you want an applications independent way of detecting
whether a document is being printed, one possible way is pooling the print
spooler. E.g. a C++ component enumerates all the printers (local and network)
on the machine and dumps the information of any current job. The Client Agent
of our framework instantiates a Java wrapper hosting this component. Whenever
a print job is executed, trail data (the document name and the activity) is
dumped and an event triggered.

4.2 Integration of Communication Activities

Many applications enable users to communicate with each other and thus ex-
change information over networks (e.g. attach a document to an email) The
framework offers some functionality that considers capturing of trail-related in-
formation that is exchanged over a network. Like browsing advisors (e.g. [8], [7])
use proxies to retrieve and provide additional link information, we implemented
a generic proxy (Proxy Class)for our framework being able to process every port
by an own function and filter the trail relevant information. The application de-
veloper benefits from the fact that standardized protocols use well known port
numbers. The developer has to maintain which port to watch and to implement
the component responsible for filtering trail relevant data out of the protocol
used.

Example: Mailed Documents A document mailed to a friend, may be an indi-
cation for importance of the document to the sender. Thus we record all docu-
ments mailed to someone. The User is not affected, but by just initially changing
the proxy settings of the mail tool and can then continue using the favourite mail
client. All mails are filtered and the name of the attached document is captured.

4.3 Integration of Third Party Applications

The third and last integration type is most independent from the TrailTRECer
system. All the event functionality can be implemented in the third party ap-
plication completely individual from the framework. Mostly applications offer
some kind of API or internal customization language such as Visual Basic for
(Windows) Applications. This integration is corresponding to the custom inte-
gration type introduced in [19]. Due to the large degree of manipulation control,
it has the advantage of providing trail-data on a very fine grained level. These
applications have to provide the ability to communicate either via a network

920 GamsE., Reich S: The Trail TRECer Framework ...

socket connection or via a text stream to a captive process. The documents and
activities that should be added to a current trail have to be converted to a fixed
with the framework commited format. The trails have to be sent to the Storage
Agent which holds a a server socket on the local machine. The framework runs
a process retrieving the messages and processing them.

Microsalt Word - snmil l_proj_0Zsmar e arming doc Il =8lx
%] Qutei pewberen ookt Enflgen Fomal Edras Tatele Femster T =leix]
DERE@RY TR d- - a® BOEMS T 0 = -|0]|6]]Smmes|

rescraitt 2 = Trebuthes M5 .15 FAU EEAMEEEED-2-A-) o AR |

k] =

Syalem {welservices 7, HET)

11 Soenariensat s (4| mmm———
i ah"m’ﬂu TralTRECEr Dffice Chent
bty

12, Testen tn Traivirgs Avneii
el [porcaisrenl_sec|_sessient7)aned_peoj O2anarthearing doc ,u.upnml
Technlsche Ziele des Frojek

SimpleTrailnased Agant
Stand der Techndk - Houhedt | | o =
Fienbpeavstrrt st s Porr_ye Jlmatebi 3o [s._ (85303
patk 1N daz fecit [egems
[wven Tearnigial de/deutich/projekte/elana faml_ view [egams

Teckmische Probleme und B

Schutz der Projektides
D Projekserpebiniase sued olSs
Grober Zeitplan flir das Gess

Detaibte ebatpen i | O]

4l

i Bzt

——
Frjeefhudpt

L0 CEE
[F2 m1 @ 6w % T

Hstart]|| () @ g B * | c] o] el E1] wia| ae| e o |] E0e e @] 2] B35 0] ELT-AEry - L

Figure 2: Office Client Screenshot

Ezxample: Edited Documents For the integration of a third party integration
we chose MS Office. MS Office allows the creation of custom user menus and
the ability to add user defined functionality with Visual Basic for Applications
(VBA). We decided to add a document to a trail, whenever it was changed (e.g.
create a new document or making additions to an existing one). An internal event
will be triggered and handled by our personally implemented macro functions.
These functions communicate with the Socket Agent via a socket connection
and send the required data in a fixed format. If recommendations to the current
opened document are needed, the user can press the “Related Documents” but-
ton and the name and path of the actual active document is sent to the User
Agent and processed by the individual agents. The result is returned and visual-
ized with an integrated webbrowser control in the Winword dialog (Figure 2). To
execute the macro it has to be imported in the currently used Winword template
(Normal.dot).

GamsE., Reich S: The Trail TRECer Framework ... o921

4.4 Sample Navigation Assistance Scenario

In order to promote the feasability of trails for recommendation and to test the
applicability of our framework, we integrated two trail recommending agents,
one simply recommending the next neighbour node and the other one based
on processing an artificial neuronal network, in the system. (For details on the
implementation see [6, 2]). The recording of trails and the types of processing
agents involved in the recommendation process can be controlled via a user in-
terface component. The system searches for all agents available to deliver related
documents and the user can decide which agents to use. The user can access the
delivered recommendations and through a User Agent, connected to a sidebar in
Netscape 6.2. and menu command in Winword. Users testing the system in first
experiments gave positive feedback regarding the quality of the recommendation
results, extracted from trail processing.

5 Experiences with the Integration

Summarizing, the effort of integration is highly depending on the type of data
source filtered for trail data. Often simple core processes e.g polling the printer
spooler, are not directly accessable via the Java API. Thus, implementing a
component supporting low level operating system functionality can be very time
consuming. For this integration of core activities the framework provides support
through the Filter Class and a trail persistence mechanism, responsible for the
storage of trails.

The most convenient way and less expensive way of integrating an application
into our framework is to gather data that is communicated over a TCP/IP port.
Supporting this case the framework provides additionally port scanning and
filtering functionality. The application developer only needs to assign the port
and the destination server in a simple text file, and to implement a function that
structures the protocol and filters the relevant trail data. Knowledge only about
the Filter Class and about the trail data model is required, when integrating
core and communication activities.

The easiest and most independent way to integrate an application and is
to use the Socket Component. Although no knowledge about the framework is
needed, the effort to do this so-called custom integration can be high, depending
on the degree of knowledge about the application customization language. How-
ever, if fine-grained activities (e.g. activities only associated with a particular
application) and data are desired, custom integration provides the best results.

Trail visualization integration is mostly needed on application level and can
easily be done if the applications supports HTTP access. The HTML data, sent
back from the User Agent running a web server, can be visualized either via some

922 GamsE., Reich S: The Trail TRECer Framework ...

HTML viewer or can be interpreted and translated into an application specific
format.

Finally we can say that all the integration examples need some kind of wrap-
per to convert the application data gathered into trail data according to the
framework’s data model.

6 Summary and Perspectives

In this paper we argued how open hypermedia concepts including the OHSWG’s
reference architecture, the FOHM data model and the openness with respect to
applications, can be applied to trail-based systems. We presented the data model
and the architecture of the TrailTRECer framework, an agent based platform
for integrating trail processing components. The framework is adaptable for the
integration of different processes and applications. We described three example
integrations.

Future work will focus on capturing trails in an Intranet scenarios, e.g. shared
project directories, and developing additional processing agents for more fine-
grained recommendations. Further research will include analysing the user navi-
gation and exploiting the results for trail similarity algorithms and topic extrac-
tion.

Acknowledgments

The TraillTRECer framework is part of the Trailist project which is supported
by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung (FWF)
under grant No. P14006-INF.

References

1. Kenneth M. Anderson. Integrating open hypermedia systems with the world wide
web. In Proceedings of the '97 ACM Conference on Hypertext, April 6-11, 1997,
Southampton, UK, pages 157-166, April 1997.

2. Tobias Berka, Werner Behrendt, Erich Gams, and Siegfried Reich. Recommend-
ing internet-domains using trails and neuronal networks. Int. Conf. on Adaptive
Hypermedia and Adaptive Web Based Systems, Malaga, pages 201-202, May 2002.

3. Philip A. Bernstein. Middleware: A model for distributed system services. Com-
munications of the ACM, 39(2):86-98, February 1996.

4. Hugh C. Davis, Simon Knight, and Wendy Hall. Light hypermedia link services:
A study of third party application integration. In ECHT ’9/. Proceedings of the
ACM European conference on Hypermedia technology, Sept. 18-23, 199/, Edin-
burgh, Scotland, UK, pages 41-50, 1994.

5. David C. DeRoure, Wendy Hall, Siegfried Reich, Aggelos Pikrakis, Gary J. Hill,
and Mark Stairmand. An open framework for collaborative distributed information
management. Seventh International World Wide Web Conference (WWW7), 14
- 18 April 1998, Brisbane, Australia, 30:624—625, 1998. Published in Computer
Networks and ISDN Systems.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

GamsE., Reich S: The Trail TRECer Framework ... 923

FErich Gams, Tobias Berka, and Siegfried Reich. The TrailTRECer Framework: A
platform for trail-enabled recommender applications. In Conference on Database
and Ezpert Systems DEXA 02, Aiz-en-Provence, France (Berlin/Heidelberg/New
York), Sept. 2002, pages 638-647, September 2002.

Michel Jaczynski and Brigitte Trousse. Broadway: A case-based system for co-
operative information browsing on the world-wide-web. In Collaboration between
Human and Artificial Societies, pages 264—283, 1999.

Roger James, Alastair Hotchkiss, and Steve Loades. D 2.2 report on prototype
test and evaluation programme. Technical Report UIC/MEMOIR/D2.2, ESPRIT
Programme, MEMOIR Project (22153), February 1997.

Ralph E. Johnson. Frameworks = (components + patterns). Communications of
the ACM, 40(10):39-42, October 1997.

Unmil P. Karadkar, Luis Francisco-Revilla, Richard Furuta, Haowei Hsieh, and
Frank M. Shipman III. Evolution of the walden’s paths authoring tools. In Webnet
2000, San Antonio, TX, pages 299-304, October 2000.

David E. Millard, Luc Moreau, Hugh C. Davis, and Siegfried Reich. FOHM: A
fundamental open hypertext model for investigating interoperability between hy-
pertext domains. In Procs. of the 00 ACM Conference on Hypertext, 2000, pages
93-102, 2000.

Luc Moreau, Nick Gibbins, David DeRoure, Samhaa El-Beltagy, Wendy Hall,
Gareth Hughes, Dan Joyce, Sanghee Kim, Danius Michaelides, Dave Millard, Sigi
Reich, Robert Tansley, and Mark Weal. SoFAR with DIM agents. An agent frame-
work for distributed information management. In Int. Conf. on The Practical
Application of Intelligent Agents and Multi-Agents. PAAM 2000, pages 369-388,
2000.

Wolfgang Pree. Framework Development and Reuse Support. Ed.: M. Burnett, A.
Goldberg, T. Lewis, Prentice-Hall, 1994.

Siegfried Reich and Erich Gams. Trailist - focusing on document activity for
assisting navigation. In Procs. of the Twelfth ACM Conference of Hypertext and
Hypermedia, pages 29-30, 2001.

Siegfried Reich, Uffe K. Wiil, Peter J. Niirnberg, Hugh C. Davis, Kaj Grgnbek,
Kenneth M. Anderson, David E. Millard, and Jérg M. Haake. Addressing interop-
erability in open hypermedia: The design of the open hypermedia protocol. New
Review of Hypermedia and Multimedia, 5:207-248, 1999.

Jim Rosenberg. The structure of hypertext activity. In Procs. of the 96 ACM
Conference on Hypertext, 1996, pages 22—29, 1996.

D. De Roure, W. Hall, S. Reich, G. Hill, A. Pikrakis, and M. Stairmand. Memoir -
an open distributed framework for enhanced navigation of distributed information.
Information Processing and Management, 37:53-74, 2001.

Alan Wexelblat and Pattie Maes. Footprints: History-rich tools for information
foraging. In Conf. on Human Factors in Computing Systems, pages 270-277, 1999.
James E. Whitehead. An architectural model for application integration in open
hypermedia environments. In Proceedings of the 97 ACM Conference on Hyper-
text, April 6-11, 1997, Southampton, UK, pages 1-12, 1997.

