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Abstract: This article addresses the relations between ontology-based knowledge management 
implemented by logic-oriented knowledge representation/retrieval approaches and knowledge 
management using case-based reasoning. We argue that knowledge management with CBR 
does not only very much resemble but indeed is a kind of ontology-based knowledge 
management since it is based on closely related ideas and a similar development methodology, 
although the reasoning paradigms are different. Therefore, we conclude by proposing to merge 
logic-oriented and case-based retrieval and also to extend the current view of the semantic web 
architecture respectively. 
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1 Motivation  

Structural Case-based Reasoning (SCBR) and ontology-based knowledge 
management (OBKM) are widely discussed as technologies for building 
organizational memory information systems (OMIS) to support knowledge 
management [Althoff 00], [Bergmann 02], [Staab 02], [Abecker 02]. When applying 
SCBR, the knowledge items (e.g., documents) are described by a characterization 
constructed from a previously developed domain vocabulary. The collection of all 
characterizations of the knowledge items constitutes the case base. In the traditional 
CBR view, the characterization can be considered as the problem description with the 
knowledge item itself (or a reference to it) as the solution. Queries to the OMIS are 
formulated in terms of the domain vocabulary and the similarity measure is used 
during retrieval to assess the utility [Bergmann 01] of knowledge items. 

When applying OBKM, a domain ontology is constructed as a conceptual model 
for knowledge items described by metadata annotations. The domain ontology is 
represented using some logic formalism (e.g. F-Logic [Kifer 95]) that facilitates the 
specification of relevant domain relations axiomatically. The metadata annotations of 
the documents are considered as facts and build, together with the ontology, a 
knowledge base that is the foundation of the OMIS. A dedicated inference mechanism 
is used to answer queries conforming to the logic formalism and the terms defined in 
the ontology. 
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By comparing these two approaches, it becomes obvious that both are based on 
the same principle: knowledge items are abstracted to a characterization by metadata 
descriptions, which are used for further processing. This characterization is based on 
some vocabulary/ontology that is a shared conceptualisation of the domain among the 
computer agents and users of the OMIS. Despite of these similarities, there is 
currently not much cross-citation in papers addressing the one or the other approach. 
Although some of the relations between both approaches might be implicitly clear, 
they have never been analysed systematically and explicitly stated before. With this 
article we want to unveil those relationships and break the borders between both 
approaches by claiming that KM by SCBR is a kind of OBKM. The difference lies 
mainly in the inference mechanism used: logic vs. utility-based reasoning. 

2 Structural CBR for KM 

The basic idea of CBR is to solve new problems by comparing them to problems 
already solved [Aamodt, Plaza 94], [Leake 96], [Bergmann 99]. The key assumption 
is that if two problems are similar, then their solutions are probably also similar. This 
approach can be successfully applied for building OMIS that retrieve knowledge 
items based on a particular notion of similarity. In CBR there are three main 
approaches that differ in the sources, materials, and knowledge they use [Bergmann 
99].  

The textual CBR approach is similar to traditional information retrieval in that it 
works directly on the text documents. There is no a-priori domain model, but 
similarity measures can be introduced between the words occurring in the documents. 
Therefore, retrieval is very similar to keyword matching, but considers the similarity 
for document scoring.  

Conversational CBR captures the knowledge contained in customer/agent 
conversations. A case is represented through a list of questions that varies from one 
case to the other. There is no domain model and no standardized structure for all the 
cases. This approach is very useful for domains where a high volume of simple 
problems must be solved again and again.  

The structural CBR approach is the third approach and relies on cases that are 
described with attributes and values that are pre-defined. In different SCBR systems, 
attributes may be organized as flat tables, or as sets of tables with relations, or they 
may be structured in an object-oriented manner. The SCBR approach is useful in 
domains where additional knowledge, beside cases, must be used in order to produce 
good results. In the following we focus on the SCBR approach. 

2.1 Knowledge Containers 

In the SCBR approach, knowledge is distributed among the four knowledge 
containers (see Figure 1): the vocabulary used, the similarity measure, the solution 
transformation, and the case-base [Richter 95]. In principle, each container is able to 
carry all the available knowledge, but this does not mean that this is advisable. The 
first three containers include compiled knowledge (with “compile time“ we mean the 
development time before actual problem solving, and “compilation“ is taken in a very 
general sense including human coding activities), while the case-base consists of 
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case-specific knowledge that is interpreted at run time, i.e. during actual problem 
solving. In our opinion, a main attractiveness of CBR comes from the flexibility to 
decide pragmatically which container includes which knowledge.  
 

Case Base
Similarity
Measure

Solution
Trans-

formation

Vocabulary (Representation)
 

Figure 1: CBR Knowledge Containers 

When applying SCBR to knowledge management, the characterizations of the 
knowledge items are stored as cases in the case base (see Figure 2). Each 
characterization contains a link to the knowledge item itself. Ideally, the vocabulary 
used to represent the cases is developed a-priori for the domain at hand and is 
considered as stable. The vocabulary shall contain the relevant concepts of the domain 
that occur in the knowledge items.  
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Figure 2: CBR Knowledge Containers 

2.2 Vocabulary Representation in CBR 

State-of-the-art CBR systems make use of an object-oriented vocabulary 
representation [Manago 94], [Arcos, Plaza 95]. Object-oriented case representations 
can be seen as an extension of the attribute-value representation. They make use of 
the data modeling approach of the object-oriented paradigm including is-a and other 
arbitrary binary relations as well as the inheritance principle. Such representations are 
particularly suitable for complex domains in which cases with different structures 
occur.  

The structure of an object is described by an object class that defines the set of 
attributes together with a type (set of possible values or sub-objects) for each 
attribute. Object classes are arranged in a class hierarchy that is usually an n-ary tree 
in which sub-classes inherit attributes as well as their definition from the parent class. 
Moreover, we distinguish between simple attributes, which have a simple type like 
Integer or Symbol, and so-called relational attributes. Relational attributes hold 
complete objects of some (arbitrary) class from the class hierarchy. They represent a 
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directed binary relation, e.g., a part-of relation, between the object that defines the 
relational attribute and the object to which it refers. Relational attributes are used to 
represent complex case structures. The ability to relate an object to another object of 
an arbitrary class (or an arbitrary sub-class from a specified parent class) enables the 
representation of cases with different structures in an appropriate way. Several 
representation languages for the vocabulary have been developed such as CASUEL 
[Manago 94] and the XML-based Orenge Model Markup language [Schumacher, 
Traphöner 00] used in the commercial CBR tool orenge from empolis. 

For KM applications based on structural CBR, the development of the vocabulary 
is a crucial issue and the following must be considered: 

Utility Distinguishability: The vocabulary must be complete in the following 
sense: it must be possible to decide based on the selected classes and attribute values 
whether it is possible to make use of the knowledge item in a new situation. If it is not 
possible to distinguish two knowledge items that must be distinguished based on the 
attributes in the characterization, new attributes or classes must be added to enable the 
differentiation between the two. This criterion has been formalized in [Bergmann 02].  

Common Understanding: There must be a common understanding of the use of 
the vocabulary items (and the entire representation language) among the persons or 
agents in charge of characterizing knowledge items and the users formulating a query 
to the OMIS. That is, all people involved should characterize a knowledge item the 
same way and should characterize their queries the same way. In many KM projects 
that involve CBR technology, it has been recognized that the development of such a 
shared vocabulary is a very difficult task explicitly addressed in development 
methodologies for CBR applications, such as the INRECA methodology [Bergmann 
99].  

Besides these criteria, one usually aims at achieving a vocabulary in which the 
attributes are independent from each other (i.e., there is no functional dependency) 
and the set of attributes is minimal (i.e., there is no redundant attribute). Although 
these criteria help in the engineering of appropriate similarity measures, they are not 
mandatory and are often ignored if there is not one single clearly defined task to be 
supported with the OMIS. 

Figure 3 gives an example of a fragment of a vocabulary, modelled in an object-
oriented manner, which could be used in a OMIS for managing a company’s 
experience about resolving problems with certain computer hardware. This figure 
shows a class hierarchy with 13 classes, some of which have simple and/or relational 
attributes. The PC class, for example, has three relational attributes (printed in italics) 
that hold objects to represent the main board, the hard disk and the optional storage 
as well as a simple attribute that describes the case (e.g. ATX case type for a PC). The 
example shows some more detail in the modelling of different kinds of storage 
devices. Please note that in this model simple as well as relational attributes are 
inherited to all subclasses. Not shown, but also part of the vocabulary, are the 
definitions of different Symbol types, each of which enumerates the range of possible 
values for each symbolic attribute.  
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2.3 Characterizations 

When applying CBR for KM, the cases to be stored in the case base usually consist of 
a characterization part and a lesson part. The characterization part is represented using 
the vocabulary and consists of a collection of objects instances from the classes of the 
vocabulary. The lesson part just consists of a link to the knowledge item that is 
characterized. 

 
  

Storage Device 

manufacturer: Symbol 
capacity: Real 
access time: Real 

Optical Storage  Dev . 
read-speed: Integer Magnetic Storage Device 

build-in-size: {3.5 ; 5.25} 
type-of-magnetic-surface: Symbol 

Streamer Floppy Disk Hard Disk 

CD-ROM 

CD-Writer CD-RW 

Writeable  O. S. D. 
write-speed: Integer 

Technical Object 

price: Real 

PC 

main board:  Main Board   
hard disk:  Hard Disk   

case : Symbol 
optional storage:  Storage Device   

Main Board 

manufacturer: Symbol 
CPU socket: Symbol 
HD interface: Set of Symbol 

interface: Symbol 

transfer rate: Real 

 

Figure 3: Example Object-Oriented Vocabulary  

For a given set of knowledge items, these characterizations must be constructed 
either manually, i.e., the documents must be annotated with their characterization, or 
by applying text-mining techniques. In the latter case, syntactic text analysis rules can 
be applied to map certain text patterns to attribute values or object instances of the 
characterization. 

The example given in Figure 4 shows four characterizations that could have been 
derived from four exemplary knowledge items, each of which describes a certain 
faulty behaviour of some hardware component. Please note that due to the limitations 
of this example we omit the vocabulary fragment for modelling the failure type itself. 
The first three knowledge items C1-C3 shown, describe a failure with a certain 
hardware component (a Hard Disk, a CD-ROM a CD-RW). Knowledge item C4, 
however, describes a general failure that could occur with all optical IDE storage 
devices with a read speed of 56x, such as problems caused by the high rotation speed 
of the CD. Suppose that each of these characterizations include a link to a particular 
document (e.g. a Web document in a company’s intranet) that describes the failure 
and possible remedies in detail.  
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Hard Disk

manufacturer: Samsung
capacity: 20.0
access time: 9.5
interface: IDE

Hard Disk
manufacturer: Samsung
capacity: 20.0
access time: 9.5
interface: IDE

CD-ROM
manufacturer: Sony
interface: IDE
read-speed: 48

CD-ROM
manufacturer: Sony
interface: IDE
read-speed: 48

CD-RW
manufacturer: Teac
interface: IDE
read-speed: 40
write-speed: 16

CD-RW
manufacturer: Teac
interface: IDE
read-speed: 40
write-speed: 16

Optical Storage Device
interface: IDE
read-speed: 56

Optical Storage Device
interface: IDE
read-speed: 56

C1 C2

C3 C4

 

Figure 4: Example Characterizations  

2.4 Similarity and Utility 

The similarity measures used in CBR are of critical importance during the retrieval of 
knowledge items for a given query. Today it is common to measure the similarity by a 
real value within the interval [0..1]. In contrast to early CBR approaches, similarity is 
no longer considered as an arbitrary distance measure, but a function that 
approximately measures utility. More precisely, the similarity measure assesses the 
utility of a knowledge item only based on the characterization. The knowledge 
container view made clear that the similarity measure itself contains (compiled) 
knowledge. This is knowledge about the utility of a knowledge item re-applied in a 
new context [Bergmann 01]. Connected with this observation was the need to model 
similarity knowledge explicitly for an application domain, as it is done with other 
kinds of knowledge too.  

Current similarity modeling approaches are tightly integrated with object-oriented 
vocabulary representations [Bergmann 02]. Similarity measures are often defined by 
the following general scheme (see Figure 5). The goal is to determine the similarity 
between two objects, i.e., one object representing the characterization (or a part of it) 
and one object representing the query. We call this object similarity. It is determined 
recursively in a bottom up fashion, i.e., for each simple attribute, a local similarity 
measure determines the similarity between the two attribute values, and for each 
relational attribute an object similarity measure recursively compares the two related 
sub-objects. Then, the similarity values from the local similarity measures and the 
object similarity measures, respectively, are aggregated by an aggregation function to 
the object similarity between the objects being compared.  
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local similarity

object similarity

object similarity

object similarity
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local similarity
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CharacterizationQuery
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object 
ref.

 

Figure 5: Sketch of the similarity computation  

When comparing objects of different classes, the comparison of attributes must be 
restricted to those attributes that occur in the most specific common subclass both 
classes belong to. Additionally, one must consider that there is a general difference 
due to the fact that the objects do belong to different classes. To take this fact into 
consideration, one introduces a particular similarity measure for comparing classes, 
called inter-class similarity measure. Such an inter-class similarity measure might 
state that an object of class CD-RW is closer to any object of class CDROM than to 
any object of class Hard Disk.  

In summary, the knowledge encoded in similarity measures for object-oriented 
representation is structured into: 

• one specific local similarity measure for each attribute in each class 
• one aggregation function of each class 
• one inter-class similarity measure for the class hierarchy.  
For the example introduced in Figure 3 and Figure 4, we need to model an 

individual local similarity measure for each simple attribute, one for manufacturers, 
one for comparing the read speed, etc. For the read-speed one would usually have a 
measure that indicates a higher similarity if the difference of the speed values is small 
and vice versa. For the manufacturer attribute we could have a similarity table with 
entries for each pair of manufacturers that represent to what degree the components of 
different manufactures are designed in a similar way (and hence show similar 
failures). For each individual class in the class hierarchy we need to model an 
aggregation function (for example a weighted sum) that takes care of the influence of 
different attributes on the overall similarity of the object. For example, for the purpose 
of failure diagnosis, the price attribute could be of less importance than the 
manufacturer attribute. Finally, we need one inter-class similarity measure that might 
state that an object of class CD-RW is closer to any object of class CDROM than to 
any object of class Hard Disk. 

2.5 Similarity-based Retrieval 

When searching for knowledge items, the knowledge need of a user of the OMIS is 
expressed in a query formalized as a set of related objects. The similarity measure 
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allows the retrieval of knowledge items that do not exactly match the query, but 
which can differ in many ways. For this purpose the similarity between the query and 
all characterizations must be assessed. Research in CBR came up with plenty of 
different retrieval algorithms that help to improve the retrieval efficiency [Bergmann 
02], for example by using index structures.  

The similarity value determined for each characterization imposes a partial 
ordering on the knowledge items according to their relevance for the current query. 
This ranking is an important feedback to the user of an OMIS. Imagine, for example, 
the user states the following query shown in Figure 6, which describes a problem with 
a certain CD-ROM. 
 

CD-ROM
manufacturer: Sony
interface: IDE
read-speed: 24

CD-ROM
manufacturer: Sony
interface: IDE
read-speed: 24

Query:

 

Figure 6: A sample query  

Given this query, the similarity measure might induce the following ordering on 
the four knowledge items from Figure 4: C2 > C4 > C3 > C1. Although the order 
depends on the particular weighting of the attributes in the aggregation functions, the 
inter-class similarity for the class hierarchy should at least give a rough direction. C2 
should be the most similar knowledge item, because it belongs to the same class as 
the query. From the class membership point of view C4 is also a perfect match, 
because C4 describes a failure situation that holds for all kinds of optical storage 
devices, i.e. for all subclasses. Whether the ordering is C2 > C4 or C4 > C2 certainly 
depends on how the similarity measure weights the particular differences in read 
speed attribute. C3 will be rated with a lower similarity than C2 and C4 because the 
failure refers to a different type of component. However, both are optical storage 
devices. C1 should be rated worse by the inter-class similarity measure since it is 
most distant in terms of the class hierarchy. This example demonstrates the kind of 
reasoning by similarity that is performed in a CBR approach. 

2.6 Integration of Rules into CBR 

Beside the use of similarity measures, CBR research also came up with approaches 
for integrating rule-based background knowledge [Aamodt 91], [Bergmann 96], 
[Bergmann 02]. For example with completion rules, it is possible to derive deductive, 
logical conclusions from the characterization of knowledge items. These conclusions 
are stored as part of the characterization for each knowledge item, i.e., for each 
knowledge item, the deductive closure (which must of course be guaranteed to be 
finite) is determined and stored as part of the case in the case base. During retrieval 
the deductive closure is also computed for the query and the similarity is determined 
between the extended representations. The most common use of this approach is for 
determining derived (or also called virtual) attributes that are computed from the 
given representation for the means of similarity assessment. 
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3 Ontology-based Knowledge Management 

The notion of Ontology-based Knowledge Management (OBKM) refers to activities 
concerning the creation, accumulation, sharing, reuse and further development of 
knowledge in an organization within the context of explicitly defined conceptual 
models. The term ontology stands for the representation of a conceptual model and is 
the core of OBKM. Its philosophical origin goes back to Aristotle who is supposed to 
be the founder of meta-physics as a separate discipline. According to [Burkhardt, 
Smith 01], metaphysic and ontology coincide partially and can be regarded from two 
different points of view: a) with respect to its object, e.g. thing, Ding, being etc., b) in 
relation to other philosophical and non-philosophical disciplines. Within this article 
we will emphasize only the technical aspects of OBKM and from this perspective we 
consider ontologies as formal descriptions of the entities, relationships, and 
constraints that make the conceptual model. Depending on the expressiveness and the 
degree of formality of the underlying representation language, ontologies can range 
from a simple taxonomic hierarchy of classes to a logic program utilizing first-order 
predicate logic, modal logic, or even higher order logics with probabilities. In contrast 
to classical expert systems, ontology-based systems typically distinguish between 
multiple levels of knowledge from common sense knowledge to highly specific 
domain knowledge. 

3.1 Ontological Engineering 

As a relatively new sub-discipline of knowledge engineering, ontological engineering 
focuses on the systematic development of ontologies in a reusable and modular 
fashion and their maintenance. Ontological engineering has probably its origins in the 
CYC project [Lenat, Guha 90], which first addressed the issue of reusability and 
modularity of large knowledge bases, and the development of the knowledge 
representation language KL-ONE [Brachmann, Schmolze 85], which was the first 
logical formalization of a frame-based semantic network. KL-ONE inspired an entire 
new discipline in logical frame-based languages called terminological logics or 
description logics. It distinguishes between a T-Box, which is a subsumption 
hierarchy called the axioms or ontology of the knowledge base, and the A-Box that 
comprises the instance level knowledge (facts etc.). The T-Box is somewhat similar to 
a schema in relational database theory, while the A-Box particularly corresponds to 
tuples of a database. 

Other approaches for developing knowledge-based systems include contexts 
respective microtheories, compositional modelling, or knowledge composition and 
merging [Guha 91], [Falkenheimer, Forbus 91], [Clark, Porter 97], [Noy, Musen 00]. 
Nowadays, research in OBKM focuses on methodologies for introducing and 
maintaining OBKM systems and addresses important issues like the integration of 
knowledge processes and knowledge meta-processes into the organizational process 
[Sure, Studer 03]. 

Although engineering principles for ontologies emphasize modularity and 
reusability, this is still very difficult to achieve for systems beyond research 
prototypes. It requires formal and declarative representation languages that have a 
standardized syntax, a well founded semantic, and the sufficient expressiveness for 
real world applications. Consequently, the most important advances in ontological 
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engineering currently come from the research and standardization efforts for 
representation languages and models for the semantic web, which are developed on 
top of XML. A variety of languages compete to be the language of choice like the 
XML Ontology Exchange Language (XOL) [Karp 99], the Web Ontology Language 
(OWL) [Dean, Schreiber 03], the Resource Description Framework (RDF) [Lassila, 
Swick 99] and the corresponding RDF Schema Specification [Brickley, Guha 03], or 
XML Topic Maps (XMT) [Pepper, Moore 01].  

In the following we will briefly characterize two approaches, RDF(S) and OWL, 
that already have reached a certain level of maturity. 

3.2 RDF(S) 

The Resource Description Framework (RDF) [Lassila, Swick 99] is a W3C 
recommendation for encoding, exchange, and reuse of structured metadata and uses 
XML as underlying language. The RDF Data Model is based on resources and 
properties. A resource is everything that can be uniquely identified by a Uniform 
Resource Identifier (URI).  

<Resource> <Property> <Property value>

 

Figure 7: RDF Simple Node and Arc Diagram 

A property denotes a named relationship between resources and other objects as 
property values. It can be visualized as in Figure 7. RDF defines a set of atomic types 
for property values like strings or integers. Furthermore, an object may be another 
property enabling the specification of directly labeled graphs, which can be 
interpreted as a semantic network, or a collection of values. RDF is an easy to use 
formalism that resembles very much an entity relationship diagram. Meanwhile, it has 
become the foundation of higher-level standardizations and many ontology-based 
systems allow using RDF for metadata (A-Box) but keep a proprietary formalism for 
the ontology itself. An approach to close this gap led to the development of RDF 
Schema [Brickley, Guha 03] that denotes some special associations, for instance a 
“subClassOf” relation, and thereby provides mechanisms to define classes of 
resources, to restrict possible combinations of classes and relationships, and detect 
violations of those restrictions. 

3.3 OWL 

Although current efforts of the W3C aim to supply a model-theoretic semantic for 
RDF and RDF Schema [Hayes 03] in order to enable a unique interpretation for 
automatic reasoning, RDF(S) still lacks the necessary expressive power for many 
applications. The language OWL [Dean, Schreiber 03] has been developed as a 
vocabulary extension of RDF and realizes description logics encoded in RDF. OWL 
is derived from the DARPA Agent Markup Language (DAML) [DARPA 02] and the 
Ontology Inference Layer (OIL) [Fensel 02], which had been merged into 
DAML/OIL [Harmelen 01] because of their similarity. As a successor of DAML/OIL, 
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OWL provides the ability to express the equivalence or disjointness of classes, 
additional restrictions like cardinality, or to build new classes as intersections or 
complements of other classes. Furthermore, OWL makes use of XML Schema 
providing a rich set of data types, which are still missing in RDF(S). 

3.4 On the Usage of Ontologies in OBKM 

Gruber [Gruber 93] defines an ontology as “an explicit specification of a 
conceptualization” committed by a set of agents “so that they can communicate about 
a domain of discourse”. This definition proposes ontologies as a formal representation 
of background knowledge in a multi-agent environment enabling, for instance, 
distributed reasoning across multiple knowledge bases. By assuming any problem or 
task specific knowledge being implemented by the agents, it implies also an important 
design principle for ontology-based systems with respect to modularity and 
reusability.  

A more focused use for ontologies, especially for OBKM, is the systematic 
creation and storage of knowledge assets based on the characterization of knowledge 
items [Fensel 98]. Here, ontology and characterization are the key for content-based 
access (filter, retrieve, render, etc.) to knowledge items [Guarino 99]. Furthermore, 
the ontology itself can serve as a communication base about the products and 
processes e.g. for generating explanations to users.  

In the following, we will revisit the example from section 2 and start with the 
formal model of the object-oriented vocabulary depicted in Figure 3. Because XML-
based ontology representation languages are cumbersome to read without appropriate 
graphical editors, we have chosen an F-Logic like syntax [Kifer 95] for this example. 
In contrast to KL-ONE, F-Logic does not distinguish between A-Box and T-Box 
knowledge. Instead, it introduces data-F-atoms for expressing information about 
objects and signature-F-atoms for expressing information about classes. Both can be 
combined into F-molecules. Hence, the example ontology shown in Table 1 consists 
of F-molecules containing only signature-F-atoms as schema for the corresponding 
objects. 

Please note that the property HD Interface of class Mainboard is a multi-valued 
method indicated by “=>>” instead of “=>” for single valued methods. Modern main 
boards often have interfaces of different types (e.g. IDE, SCSI) for hard drives. 
However, if the main board is assembled in a PC with a connected hard drive, we can 
infer that the list of possible interface types on the main board at least consists of the 
interface type of the hard drive. This can be formalized in F-Logic be the following 
rule: 

M ,I ,P,H

M:Mainboard[hd interface -> I]  P:PC[main board->M; hard disk->H]  H:HardDisk[interface->I]← ∧∀  

Defined within the ontology, the rule acts as an axiom that defines a criterion for 
consistency required by objects of the knowledge base corresponding to the particular 
classes. Defined outside the ontology, e.g. as part of the problem knowledge of an 
agent, the rule provides a strategy for resolving missing information for a Mainboard 
object. 
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Technical Object[

price => Real;

]

 
 
PC::Technical Object[

main board => MainBoard;

hard disk => Hard Disk;

optional storage => Storage Device;

case => Symbol;

]

 

 
 
Storage Device::Technical Object[

manufacturer => Symbol;

capacity => Real;

access time => Real;

interface => Symbol;

]

 

 

 
Mainboard::Technical Object[

manufacturer => Symbol;

CPU Socket => Symbol;

HD Interface =>> Symbol;

]

 

 

 
Magnetic Storage Device::Storage Device[

built-in size => Disc Size;

type of magnetic surface => Symbol;

]

 

 

 
Optical Storage Device::Storage Device[

read speed => Integer;

transfer rate => Real;

]

 

 
Writeable OSD::Optical Storage Device[

write speed => Integer;

]

 
 
Streamer::Magnetic Storage Device

Floppy Disk::Magnetic Storage Device

Hard Disk::Magnetic Storage Device

CD-ROM::Optical Storage Device

CD-Writer::Writeable OSD

CD-RW::Writeable OSD

3,5 inch::Disk Size

5,25 inch::Disk Size

 

 

Table 1: Example  in F-Logic 

3.5 Metadata Characterizations 

The link to knowledge items, e.g. PDF-files containing experiences about resolving 
problems with computer hardware, is now established by a meta-data characterization 
that somehow conforms to the ontology in Table 1. Such a characterization does not 
require an expressive underlying formalism but must allow identifying the concepts 
and associated entities of the ontology in a unique and unambiguous way. For 
instance, Figure 8 illustrates the usage of RDF for characterizing the examples of 
Figure 4.  The properties of the RDF description are labelled as the slots of the 
corresponding F-Logic molecules and assign resources as values. 
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REF1

manufacturer

capacity

subClassOf
interface

access time

Hard Disk

Samsung

20,0

IDE

9,5

 
 

REF2

manufacturer

interface

subClassOf
read-speed

CD-ROM

Sony

48

IDE

 

 

REF3

manufacturer

interface

subClassOf
write-speed

read-speed

CD-RW 18

40

IDE

Teac

 
 

REF4

interface

subClassOf
read-speed

Optical Storage
Device

IDE

56

 

Figure 8: RDF Example Characterizations 

From a theoretical point of view, it does not matter if such a characterization is 
part of the knowledge itself or provided separately. Furthermore, depending on the 
ontology-based system, conformance requirements are more or less strict. Typically, 
even a simple and weakly typed entity-relationship representation like RDF is 
sufficient. Some ontology representation languages like OWL extend RDF by own 
constructs that allow interpreting the ontology itself as a kind of schema for the 
characterization. In addition to traditional database schemes, ontologies provide an 
axiomatic base of the stored knowledge items. 

 
3.6 Retrieval based on Deductive Inference 

The search for knowledge items in OBKM is usually based on deductive 
inference. The OBKM application answers queries by proving if it is a consequence 
from the ontology and the set of characterizations (considered as facts) and thereby 
finding characterizations that represent the requested documents. A query 
corresponding to the sample query shown in Figure 6 could be formulated like: 

C

  C:CD-ROM[manufacturer->Sony; interface->IDE; read speed->24]←∀  

Unfortunately, none of the characterizations in Figure 8 matches the query 
exactly and, consequently, the set of possible substitutions for the variable C is empty. 
The strictness of deductive reasoning approaches has been recognized as one of the 
major problems in weakly structured environments, e.g. the semantic web, and can be 
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tackled by query relaxation techniques as described in [Stuckenschmidt 03]. For 
instance, a relaxation of the query above would be: 

C,R

  C:Optical Storage Device[interface->IDE; read speed->R] R 24← ∧ >=∀  

In this query, C is no longer required to be an instance of the class CD-ROM but 
of the more general class Optical Storage Device. Furthermore, no specific 
manufacturer has been specified and the read speed attribute has been weakened to be 
at least 24. The evaluation of the reformulated query would return all 
characterizations of Figure 8 with the exception of the Samsung Hard Drive. 
However, the result set has no specific order as shown by the SCBR example. Finally, 
we would like to mention that using the ontology as an axiomatic base for a logic 
calculus, derivation is, of course, restricted to the deductive closure of the axioms. 

4 Relations between SCBR and OBKM 

From the previous analysis of knowledge management by SCBR and OBKM it 
should have become clear that both rely on metadata annotations that serve the 
purpose of characterizing instead of formalizing knowledge items. In CBR these 
characterizations are called cases and, basically, it does not matter where the 
representation of the characterization is physically located. It may be stored together 
with the knowledge item itself (e.g. by using a structured XML-based format) or, as 
with CBR, in a case base. A more important relationship is given by the SCBR 
vocabulary that very much resembles the ontology in OBKM. Both are formal models 
for restricting the possible interpretations of metadata annotations thereby providing 
the necessary background knowledge for semantic-based access to knowledge items. 
It is obvious that the fundamental types of knowledge of SCBR and OBKM are 
strongly related as shown in Figure 9. Hence, from these relationships follows that 
design principles for SCBR and OBKM are closely related, too. Several CBR 
development and maintenance approaches have been researched, for instance the 
INRECA methodology [Bergmann 99], [Tautz 01], and they are at least partially 
structured according to the CBR knowledge containers and do address the vocabulary 
development as well. For OBKM, [Staab 02] and [Sure, Studer 03] follow a KADS 
oriented methodology and present a meta-process for systematic ontology 
development. 
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Figure 9: Ontology vs. SCBR Knowledge Containers 

An important difference between both approaches results from the fact that 
SCBR-systems are often isolated and closed in the sense that they are not developed 
with respect to cooperation with other systems. For that reason, although research of 
vocabulary representation languages led to expressive languages [Manago 94], 
[Arcos, Plaza 95], standardization was not a big issue in past CBR research. Most 
SCBR-based systems rely on proprietary, sometimes even XML compliant, languages 
for the vocabulary and the cases but do not facilitate the exchange of knowledge. 
However, current research for distributed CBR [Leake, Sooriamurthi 02] shows how 
CBR can benefit from systems that are able the search across multiple-case bases. Of 
course, this is only possible if a standardized, shared knowledge representation 
language enables unambiguous interpretation of cases stored in the different case 
bases. 

The coincidence of an SCBR vocabulary and an ontology becomes even more 
prevalent if we compare vocabulary representation approaches to ontology 
representation languages mentioned earlier in this article. As we have also 
demonstrated with the example, they provide nearly the same expressiveness by 
utilizing object-oriented technology allowing the specification of concept hierarchies, 
arbitrary binary relations, types, and rules e.g. like definite clauses in horn logic. 
Neglecting the fact that an ontology typically serves many purposes one can say that a 
SCBR vocabulary is an ontology of the domain of discourse underlying the SCBR 
application. 

The major difference between the SCBR and OBKM approach results from 
different reasoning strategies. As mentioned before, most ontology-based systems 
utilize logic-based deductive inference, while SCBR systems provide a search 
functionality that makes use of similarity measures for ranking results according to 
their utility with respect to a given query. In our opinion, both reasoning strategies 
complement each other very well. On the one hand, logic deduction produces only 
correct and provable results, which are consequences of the ontology and metadata. 
Computer agents normally require this for further processing. On the other hand, 
SCBR retrieval suggests results even in the case that no exactly matching answers can 
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be found. This has been proven as highly efficient in many real-world applications 
[Bergmann 99]. For realizing the utility-oriented search, SCBR systems introduce an 
additional kind of knowledge that is the similarity model. Although the similarity 
model is part of the problem knowledge, it is a first-class citizen of each CBR system 
in the sense that constructs required for specification are usually linked strongly with 
the vocabulary representation language. This emphasizes the more problem-oriented 
approach of SCBR.  

The major differences just discussed are finally summarized in Table 2. 
 

SCBR OBKM 
mostly isolated: not developed with 
respect to cooperation with other 
systems 

open: cooperation among agents within 
an ontology-based OMIS is very 
important 

standardization of representation 
languages not a big issue 

W3C standardizations for the semantic 
web 

systems mostly rely on proprietary 
representations, although XML-
based, no standardized semantic 

ontologies claim to provide a 
standardized conceptualization of the 
domain of discourse 

vocabularies don‘t conceptualize the 
domain of discourse per se, but on a 
task-specific manner 

ontologies should be „problem free“ 
(nearly impossible) 

Utility-based inference 
- suitable for many real world  
  applications- not exactly matching 
solutions can  
  be found 

Logic-based inference 
- correct and provable results 
- required by computer agents for 
  further processing 

Table 2: Summary of Differences between SCBR and OBKM 

5 Conclusions 

Within this article we analysed knowledge management facilitated by SCBR and 
ontologies. We showed a strong relationship between both approaches with respect to 
technological but also to methodological issues. However, we identified several 
differences, too, being a potential source for synergies. For example, OBKM comes 
up with a variety of standardized knowledge representation languages. Their 
incorporation into SCBR-based systems would enable to apply CBR technology to a 
broader range of applications. As a consequence, this makes it possible to develop 
unified modeling tools for greater flexibility. The decision between the different 
reasoning strategies supported by SCBR and OBKM may be postponed to a later 
phase of the development. Conversely, ontology engineering could take advantage of 
experiences with real-world SCBR applications that are discussed, for example, in 
[Bergmann 99]. Finally, by having a closer look at the current state of the semantic 
web, it becomes obvious that, even under the assumption of standardized knowledge 
representation languages, ontologies are often highly specific to their domain of 
discourse. Hence, interoperability can only be achieved by some kind of semantic 
unification. For that purpose, a strict, logic-oriented approach does not seem to be the 
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ultimate solution, especially when only an approximation of unification is possible. 
SCBR, beside arbitrary probabilistic approaches, seems to be a good starting point for 
further research because of its strong relationship to OBKM. It introduces the 
similarity model as another type of knowledge that recommends itself to become part 
of future extensions to knowledge representation standards. 
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