
Experience Base Schema Building Blocks of the
PLEASERS Library

Raimund L. Feldmann
(University of Kaiserslautern, Germany

r.feldmann@computer.org)

Ralf Carbon
(University of Kaiserslautern, Germany

carbon@informatik.uni-kl.de)

Abstract: Quality and process improvement programs usually require organizations to run a
repository such as an experience base. However, setting up the schema of an experience base
requires expert knowledge. But schema experts are not always available to support the setup of
a new experience base. One promising solution is to capture their knowledge in patterns or
building blocks. An initial collection of such building blocks is systematically documented in
the PLEASERS (Product Line Approach for Software Engineering Repositories) library. In this
article we describe the underlying conceptual model of the PLEASERS schema building
blocks. Schema experts can use the introduced model to create sets of schema building blocks
representing their knowledge.

Keywords: Experience Base Schemata, Schema Building Blocks, Repository Schema Reuse,
Knowledge & Experience Management
Categories: H.2.1, D.2.2, D.2.11, D.2.13, H.2.3

1 Motivation

Organizational learning –often based on quality and process improvement programs–
usually focuses on experience gained in past projects. Thus, reusing successfully
applied (code) components and other means of knowledge is widely accepted in
research and industry. As a result, patterns and frameworks [Gamma, 95], for
instance, are being developed to capture the gained experience of software that has
already been developed. To support the underlying idea of comprehensive reuse (e.g.,
[Basili, 91]), repositories are usually installed and operated as a core system of a
Learning Software Organization [Bomarius, 98]. Such a software engineering
repository (SE Repository) is used for storing the knowledge and experience of an
organization, and providing it to new projects upon request. The often applied
Experience Factory concept by Basili et. al. [Basili, 94] suggests the implementation
of a comprehensive organizational SE Repository denoted as Experience Base (EB).
Publications on how to (technically) install an EB do exist (e.g., [Basili, 91],
[Tautz, 99], [Broomé, 00]), as do publications discussing the challenges and pitfalls in
designing and tailoring an EB for organizational needs (e.g., [Koennecker, 99],
[Lindvall, 01], [Schneider, 02]). However, setting up a suitable schema for a new EB
remains a difficult and arduous task that requires expert knowledge. But schema

Journal of Universal Computer Science, vol. 9, no. 7 (2003), 659-669
submitted: 3/2/03, accepted: 21/7/03, appeared: 28/7/03  J.UCS

experts are not always available for a company to support the setup of a new EB with
their experience.

Let us consider the following situation: A company, let us say ITS+M
(IT Solutions + More), wants to install an EB as part of their improvement program.
Our company primarily does consulting for small and medium-sized enterprises that
need to optimize their software processes. Therefore, the new EB should
systematically store process patterns (e.g., [Gnatz, 99]) that are often employed by
ITS+M to optimize their customers’ SW processes. ITS+M has never run an EB
before, and does not employ an expert who knows how to implement and run such an
EB.

For ITS+M it would be helpful if they were able to access an archive with
standardized EB schema elements –similar to their own process patterns– that
represent schema expert knowledge on how to store process models or process
patterns in an EB. As part of the Product Line Approach for Software Engineering
Repositories (PLEASERS), such a schema library has been developed. So-called
schema building blocks (schema BBs) are used for documenting and consolidating the
schema knowledge in the PLEASERS library. The conceptual model for these schema
building blocks is detailed in this article. Schema experts can thereby record their
knowledge and provide (i.e., transfer) it to organizations that are currently building up
their own EB, without being present in person.

The remainder of this article is organized as follows: [Section 2] describes the
context in which the schema BBs are used. Next, the structure of our schema BBs is
introduced [section 3]. Different types of schema BBs are distinguished. Then, in
[section 4], we give an example of how the introduced schema BB types can be used
for capturing schema expert knowledge. A tool environment supporting the creation
of sets of schema BBs in accordance with our model is presented in [section 5].
Finally, we summarize our results and conclude with future directions in [section 6].

2 PLEASERS and the PLEASERS Schema Library

Currently, PLEASERS is being developed at the University of Kaiserslautern.
PLEASERS supports the reuse-based development of schemata for new SE
Repository systems without having an expert at hand. The approach is based on the
product line idea [Weiss, 99]. From a predefined scope, users can precisely
characterize the SE Repository to be build (i.e., fix the repository requirements), and,
thereby, retrieve documented solutions from schema experts stored in the PLEASERS
library.

Fixing the requirements of the new SE Repository schema is achieved by
answering a questionnaire. The questionnaire can be compared to the decision model
[Clements, 01] in product lines. With the given answers one can automatically select
the appropriate solutions of schema experts from the PLEASERS library. The
PLEASERS library itself stores best practices and well-tried schema solutions in the
form of the schema building blocks described in the next [section 3].

Based on the idea of a modular SE Repository structure [Feldmann, 00],
PLEASERS suggest an initial set of schema BBs for constructing new EB schemata
with PLEASERS. The initial set of schema BBs was derived from the author’s own

660 Feldmann R.L., Carbon R.: Experience Base Schema Building Blocks ...

experience with developing the SFB-EB, the comprehensive Experience Base of the
Sonderforschungsbereich 501 (SFB 501) [Avenhaus, 98].

PLEASERS is supported by the tool suite illustrated in [Fig. 1]. The tool suite
automates the PLEASERS process to a large extent. Users applying PLEASERS must
first fill in a simple-to-use electronic questionnaire [Trapp, 02]. These questions are
stored together with each BB. Based on the answers provided, applicable schema
BBs are selected from the PLEASERS library. A schema integrator then
automatically combines the retrieved schema BBs and displays the constructed
schema in a graphical editor. With the help of this editor, users can adapt and tailor
the constructed PLEASERS schema to their specific needs. Since the whole process
employs no specific technology, schemata developed with PLEASERS and the
PLEASERS tool suite are technology independent. Only at the very end of the
development process, the user chooses a certain export function to generate an
instance of the developed schema. This export function then uses a specific
technology depending on the intended implementation platforms for the new SE
Repository system. Therefore, the final schema is generated in the form of SQL-
Scripts, XML descriptions, or HTML representations.

After this brief introduction of the context, we will now focus on the conceptual
model of the PLEASERS schema BBs.

3 A Conceptual Model for Schema Building Blocks

Different types of content are stored in an EB. According to [Aamodt, 95] these are
data (e.g., measurement data), information (e.g., effort distribution models), and
knowledge (e.g., process patterns). For an EB we add experience (e.g., lessons learned
in a specific project) as a fourth type. The schema of an EB must support the storage
of all four types of content. Consequently, schema BBs must capture structures for
different EB entries.

EB
Schema Building Block

Repository

Questionnaire
(for characterization)

Schema Integrator

Generator /
Editor

SQL-Script (e.g., for DBMS based installations)

XML (e.g., for CBR based installations)

HTML (e.g., for web-based prototypes)
export functions

Figure 1: Outline of the PLEASERS tool suite

661Feldmann R.L., Carbon R.: Experience Base Schema Building Blocks ...

Our conceptual model [Carbon, 02] describes such schema BBs and classifies
them in a UML-like notation as illustrated in [Fig. 2]. A schema BB captures all
information regarding attributes, relations, and constraints, that is necessary to
describe an existing solution, and needed for generating a new schema by reusing
these information in another context. Currently, we distinguish three types of schema
BBs: Root Building Block (RBB), Element Specific Root Building Block (ESRBB), and
Add On Building Block (Add On). Components common to all BB types are attributes,
relations, and constraints.

• An RBB encapsulates common attributes and relations applicable to all

entries in an EB, regardless of their content type. Examples for attributes of
an RBB are: "name", "creation_date", or "short_description"; a
possible relation of an RBB could be "also_known_as". RBB attributes
and relations can be regarded as a basis for storing all kinds of data,
information, knowledge, or experience in an EB. Once defined, a RBB can
be reused in all new EB schemas.

• An ESRBB contains attributes and relations necessary to represent
characteristics of specific EB entries. ESRBBs can be compared to classes
that help in structuring and categorizing the EB schema. An initial set of
ESRBBs can be defined by studying the modular repository structure found
in [Feldmann, 00]. This leads, for example, to ESRBBs for process patterns
(e.g., "�������������	" in [Fig. 4]) or lessons learned (e.g., "
����	
���	��" in
[Fig. 4]). Attributes specific to a process pattern could be
"application_domain" and "lifecycle_model"; a possible relation is
"see_also", which allows pointers to similar process patterns. The ESRBB
for lessons learned could consist of the attributes "situation", "problem",
and "solution". These examples illustrate that ESRBBs can contain
attributes and relations to store context information. The storage of such
context information is required, in particular, for the content types
knowledge and experience. According to [Basili, 91], such context attributes
are essential for identifying adequate reuse candidates in an EB. But an
ESRBB can also be used to store EB entries of the content type information.
Such an ESRBB then only contains attributes and relations to represent
context independent information. An ESRBB "�����	", for instance, could
capture information about employees (e.g., with the attributes
"employee_name" and "phone#").

���������	�
�
����

��
�����
��������
���������

�����
���������������
����	�
������

���������

�		
�

Figure 2: Conceptual schema building block model

662 Feldmann R.L., Carbon R.: Experience Base Schema Building Blocks ...

• An Add On, being the third type of schema BBs in our conceptual model,
allows the flexible adaptation of EB schemas to special requirements. Let us
suppose a schema expert wants to express that for some organizations, it may
be useful to store ownership information for EB entries (e.g., process
pattern) in the schema. An "owns/owned_by" relation between the ESRBB
"Person" and the corresponding ESRBB "ProcessPattern" could model this.
However, by simply adding an "owns/owned_by" relation to the ESRBBs,
this relation would always be included in all schemas that make use of these
ESRBBs. To avoid such problems in our conceptual model, a schema expert
would use an Add On "�
	����". This Add On would capture the relation to
the ESRBB "�����	" and would only be selected if ownership needs to be
documented in the EB schema. Note that an Add On cannot stand alone. It
always depends on the definition of at least one ESRBB.

Dependencies between schema BBs (i.e., the RBB, ESRBBs, and Add Ons) are

specified in our conceptual model by constraints. They guarantee the correct
composition of BBs to create an EB schema. Our constraints for schema BBs are
described by the grammar, in a BNF-like notation. The set of non-terminal symbols is
declared as {C, B, Blist, DBB}, where "C" is the start symbol. The set of terminal
symbols is declared as {<building block>, <extended by>, <requires>,
<mutual exclusive>, <and>}, where dependencies are highlighted in bold and
<building block> stands for a single BB from the set of existing BBs. The set of
productions is depicted in [Fig. 3].

Our Add On "�
	����", for instance, requires two ESRBBs: the "�������������	"

ESRBB and the "�����	" ESRBB. This dependency is specified in the form of a
constraint as:

"�
	����" <requires> "�������������	" <and> "�����	".

An additional constraint

"�
	����" <requires> "
����	
���	��" <and> "�����	"

indicates that the same Add On could also be used to instantiate an ownership relation
for lessons learned in an EB schema. From this example it becomes obvious that a
single Add On can easily be combined with many ESRBBs. For a more detailed
discussion of dependencies between different types of BBs and their representation
with the help of constraints, the interested reader is referred to [Carbon, 02].

{ 1) C � BDBBBlist
 2) Blist � B | B <and> Blist
 3) DBB � <extended by> | <requires> | <mutual exclusive>
 4) B � <building block>
}.

Figure 3: Grammar for schema BB constraints

663Feldmann R.L., Carbon R.: Experience Base Schema Building Blocks ...

4 Capturing Schema Expert Knowledge Using our Model

Now we will have a closer look at our example set of BBs depicted in [Fig. 4]. Each
BB, especially the ESRBBs and Add Ons, can be independently defined by an expert
for the corresponding type of schema.

Let us assume that in addition to the attributes already mentioned in [section 3], a
process pattern schema expert completed the "�������������	" ESRBB by adding the
attributes "modeling_language", "precondition", "postcondition", and
"related_roles". Furthermore, the schema expert documents that it should be
possible to identify the owner of a stored process pattern, even if this person is not an
employee. Consequently, s/he defines the Add On "�
	��", which contains an
attribute "owner_name" for storing the ownership information. The Add On needs
the ESRBB "�������������	" to be applicable. This is expressed by another "requires"
constraint in [Fig. 4]. Now the ESRBB "�������������	" requires either "�
	��" or
"�
	����" for identification of the ownership of a process pattern. Since the
application of both Add Ons, "�
	��" and "�
	����", in the same EB schema would
lead to redundancy (which again might lead to inconsistencies later in the EB content)
both Add Ons are declared as "mutual exclusive" by using another constraint.

Let us further assume that we asked an expert for Learning Software
Organizations to help us in completing our set of schema BBs. According to this
expert, it should be possible to document learning cycles in an EB. Therefore, s/he
enriches our example set with the following BBs:

The ESRBB "���������" allows the storage of project information as a basis for
organizational learning. This ESRBB holds attributes such as
"application_domain", "start_date", and "end_date" of the project.

The Add On "�����" defines a relation "used_in/uses" between the ESRBBs
"���������" and "�������������	" to indicate that a process pattern of the EB has been

������

ProjectDB
Relation: ---
Attribute: application_domain
Attribute: start_date
Attribute: end_date

�
�
��
�
���
�
	
��

��
��

��
��
���
�	
��

�
��

�����������

Person
Relation: ---
Attribute: employee_name
Attribute: phone#

�
�
�
�
�

��
��

�
��
��
�

	�
��	�

�����������

����������

����������������
�������������������

������
��	������

�����������
���
�	�����

�����

	�
��	�

	�
��	�

	�
��	�

	�
��	�

�����������

�����������

�����������

�����������
	�
��	�

�����������

�	
��

	�
��	�

LessonLearned
Relation: ---
Attribute: situation
Attribute: problem
Attribute: solution

	�
��	�

�����������

�����������

������

	�
��	�

�����������

�����
��
��
������
���

�����		�
�����

	�
��	�

�����������

	�
��	�

ProcessPattern
Relation: see_also
Attribute: application_domain
Attribute: lifecycle_model
Attribute: modeling_language
Attribute: precondition
Attribute: postcondition
Attribute: related_roles

	�
��	�

�����������

	�
��	�

�����������

Figure 4: ESRBBs and Add Ons of our example with their constraints

664 Feldmann R.L., Carbon R.: Experience Base Schema Building Blocks ...

used in a certain project. Constraints indicate that the Add On requires both ESRBBs
to exist before it can be integrated into an EB schema.

The Add On "�����	" holds the definition for a relation "gained_in/gains"
between the ESRBBs "���������" and "
����	
���	��". It allows to indicate from
which project of the EB a lesson learned was derived. Again, the "��������" and
"����	
�
��
" constraints are used to express the dependencies in combining the Add
On and ESRBBs.

The Add On "��������" allows a relation "has_part/is_about" between the
ESRBBs "�������������	" and "
����	
���	��" in the EB. Hence, one can store
feedback in the form of lessons learned for a concrete process pattern in the EB.

The Add On "
���	�	��������������������	" allows the definition of a learning
cycle for process patterns based on feedback gained in concrete projects. To install
the learning cycle, this Add On simply requires the usage of the Add Ons "��������",
"�����", and "�����	". This is coded with the help of a set of "��������" constraints.
Consequently, the Add On does not contain any specific attributes or relations.

This should close the integration of expert knowledge into our example set of
schema BBs. The given set already allows us to support the creation of EB schemas
with up to four different types of entries. All of these possible entries are basically
described by the four ESRBBs "�������������	", "
����	
���	��", "���������", and
"�����	". Of course, there could be further extensions of the BBs with additional
(schema) experts, but this is beyond the scope of this paper.

Now let us see how our example set of schema BBs can help our company
ITS+M [see section 1] with their problem in installing a new EB. Some possible EB
schemas based on combinations of our BBs are illustrated in [Fig. 5]. Since ITS+M
wants to store process patterns in the new EB, all schemas initially include the
ESRBB "�������������	". Thereby, ITS+M already receives a schema that holds an
initial set of attributes used for storing process patterns. The schema includes context
attributes (e.g., "application_domain" and "precondition") that will help
ITM+S to identify possible process patterns that can be used for optimizing the SW
processes of a certain customer. A complete EB schema for ITS+M derived from the
BB set might be:

(a) (b) (c)

������
����������	��

�
����

���������		���
	����
	��������	��

����
�
��������

����������	���	��

���
��������

����
��������

���	���������

����	���

��������

���	

���
��	��

	����
	��������	��

��	����	��

�����	��

���������		���
	����
	��������	��

����
�
��������

����������	���	��

���
��������

����
��������

���	���������

����������

����	���

	�����

	�	

���
��	��

	����
	��������	��

��	����	��

�����	��

�����
������

����	����

�������

��������

���������		���
	����
	��������	��

����
�
��������

����������	���	��

���
��������

����
��������

���	���������

����������

����	���

	�����

	�	

�
�������

�
��	

�
	��
��

�	�
��
�

��������

�	���

Figure 5: Example EB schema built from the set of building blocks
(schema elements caused by Add On are indicated in italics)

665Feldmann R.L., Carbon R.: Experience Base Schema Building Blocks ...

• Schema (a) in [Fig. 5]. This is the result of combining the ESRBBs "�����	"
and "�������������	" with the Add On "�
	����". This simple schema would
allow ITS+M to store their process patterns and indicate which employee can
be contacted (e.g., via the phone number stored in the attribute "phone#") if
questions arise. ITM+S likes the idea of documenting the owner of a process
pattern. However, this solution is not selected because ITM+S does not like
the idea of storing complete records with information on their employees in
the new EB. Instead, ITS+M decides to use the Add On "�
	��" for their
schema.

• Schema (b) in [Fig. 5]. This is the result of employing the ESRBBs
"�������������	" and "���������" together with the Add Ons "�
	��" and
"�����". This schema is the one ITM+S favors for the initial implementation
of their new EB. It allows them not only to easily select process patterns for
new projects, but also to see in which similar projects a process pattern has
been successfully used before.

• Schema (c) in [Fig. 5]. Combining the ESRBB "ProcessPattern" with the
Add Ons "Owner" and "LearningCycle_ProcessPattern" could build this
schema. Via its required constraints, the latter includes the Add Ons
"��������", "�����", and "�����	". These again require the usage of the
ESRBBs "���������" and "
����	
���	��". As can be seen, this schema
includes all elements of schema (b), and therefore, can be seen as its
(modular) extension. However, since ITM+S wants to have an operable EB
as soon as possible, they decide to first implement a smaller version of their
EB. After this first iteration is installed successfully, they will then
implement the complete schema (c) in a subsequent step.

List of existing
building blocks

Attributes of the
selected

building block

Relations of the
selected

building block

Opens the Relation
Editor to insert a new

relation from the relation
pool

Opens the
Attribute Editor to

insert a new
attribute from the

attribute pool

Identifies when the BB
should be selected.(i.e.,

when the question is
answered with "yes").

�������������	
��
��

������	��������	�������� ����

����������	

�������

�������	

����������

������	�

�����

Figure 6: Screenshot of the Building Block Editor

666 Feldmann R.L., Carbon R.: Experience Base Schema Building Blocks ...

5 Tool Support

To support easy definition and management of schema BB sets according to our
conceptual model, we implemented a tool environment. The GUI is implemented in
Java and a relational database management system is used to store the BB sets.
Several editors are available.

An Attribute Editor and a Relation Editor provide functions to create, modify, and
view attributes and relations. Attributes and relations are stored in so-called pools.
When defining BBs with the Building Block Editor (see [Fig. 6]), attributes and
relations are taken out of these pools. This solution supports reuse of attributes and
relations in more than one BB. Furthermore, the Building Block Editor allows to store
additional descriptive information with the BBs. A recommendation for selecting
applicable BBs from a set, for instance, can be given. [Fig. 6] shows the Building
Block Editor interface displaying the ESRBB “�������������	” from our example.

The so-called Constraint Editor allows to specify dependencies between BBs of a
set. Possible constraints restricted according to the productions listed in [section 3]
can be easily edited without direct application of the formal productions. A complete
documentation of our tool environment can be found in [Carbon, 02].

6 Conclusion and Future Directions

In conclusion we can state that the conceptual model for PLEASERS schema building
blocks we presented seems to be a feasible way to document and consolidate schema
knowledge. First experience in using the described approach were gained while
building the underlying EB of the ViSEK portal [Visek, 03]. For this task, the initial
set of schema building blocks of the PLEASERS library was used. The approach
supported fast setup of an initial schema. Furthermore, it allowed focusing discussions
of experts on selected parts of the schema (i.e., the schema building blocks relevant to
the expert's field of knowledge). Additionally, the initial set of schema BBs in the
PLEASERS library was extended after the ViSEK schema had been developed
successfully. Schema BBs for storing process patterns according to the approach
described in [Gnatz, 99] were added to the PLEASERS library. Hence, the knowledge
of the schema experts who developed the ViSEK schema was captured and is now
available to be transferred to other projects. However, the current set of schema BBs
needs to be further extended to cover more areas of expertise. Additionally, the
usability of the schema BB approach and the PLEASERS library, as well as its ease
of use, needs to be systematically tested in future empirical studies.

Acknowledgements

Part of this work has been conducted in the context of the Sonderforschungsbereich
501 ‘Development of Large Systems with Generic Methods’ (SFB 501) funded by the
Deutsche Forschungsgemeinschaft (DFG).

667Feldmann R.L., Carbon R.: Experience Base Schema Building Blocks ...

References

[Aamodt, 95] Aamodt, A., Nygard, M.: "Different roles and mutual dependencies of data,
information and knowledge - An AI perspective on their integration"; Data and Knowledge
Engineering, 16 (1995), 191–222.

[Avenhaus, 98] Avenhaus, J., Gotzhein, R., Härder, T., Litz, L., Madlener, K., Nehmer, J.,
Richter, M., Ritter, N., Rombach, D., Schürmann, B., Zimmermann, G.: "Entwicklung großer
Systeme mit generischen Methoden - Eine Übersicht über den Sonderforschungsbereich 501";
Informatik, Forschung und Entwicklung, 13, 4 (1998), 227–234.

[Basili, 94] Basili, V.R., Caldiera, G., Rombach, D.: "Experience Factory"; In Marciniak, J.J.
(ed.), Encyclopedia of Software Engineering, vol 1, John Wiley & Sons (1994), 469–476.

[Basili, 91] Basili, V.R., Rombach, H.D.: "Support for comprehensive reuse"; IEE Software
Engineering Journal, 6, 5 (1991), 303–316.

[Bomarius, 98] Bomarius, F., Althoff, K.-D., Müller, W.: "Knowledge Management for
Learning Software Organizations"; Software Process–Improvement and Practice, 4, 2 (1998),
89–95.

[Broomé, 00] Broomé, M., Runeson, P.: "Technical Requirements for the Implementation of an
Experience Base"; In: Ruhe, G., Bomarius, F. (eds.), Learning Software Organizations:
Methodology and Applications, LNCS #1756, Springer (2000), 87–102.

[Carbon, 02] Carbon, R.: "A Repository for Experience Base Schema Building Blocks",
Master’s Thesis, Software Engineering Research Group, Dept. of Computer Science,
University of Kaiserslautern (2002).

[Clements, 01] Clements, P.C., Northrop, L.: "Software Product Lines: Practices and Patterns";
SEI Series in Software Engineering. Addison-Wesley (2001).

[Feldmann, 00] Feldmann, R.L.: "On Developing a Repository Structure Tailored for Reuse
with Improvement"; In: Ruhe, G., Bomarius, F. (eds.), Learning Software Organizations:
Methodology and Applications, LNCS #1756, Springer (2000), 51–71.

[Gamma, 95] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: "Design Patterns – Elements of
Reusable Object-Oriented Software"; Addison-Wesley (1995).

[Gnatz, 99] Gnatz, M., Marschall, F., Popp, G., Rausch, A. Scherin, W.: "Modular Process
Patterns supporting an Evolutionary Software Development Process"; Proc. 3rd International
Conference on Product Focused Software Process Imrovement (PROFES 2001),
Kaiserslautern, Germany (2001).

[Koennecker, 99] Koennecker, A., Jeffery, R., Low, G.: "Lessons Learned from the Failure of
an Experience Base Initiative Using Bottom-up Development Paradigm"; Proc. 24th Annual
Software Engineering Workshop (SWE24), Greenbelt, Maryland, USA (1999), Online @
http://sel.gsfc.nasa.gov/website/sew/1999/program.html, last visited January 2003.

[Lindvall, 01] Lindvall, M., Frey, M., Costa, P., Tesoriero, R.: "Lessons Learned about
Structuring and Describing Experience for Three Experience Bases"; In: Althoff, K.-D. et. al.
(eds.), Advances in Learning Software Organizations, LNCS #2176, Springer (2001), 106–119.

[Schneider, 02] Schneider, K., Schwinn, T.: "Maturing Experience Base Concepts at
DaimlerChrysler"; Software Process Improvement and Practice, 6, 2 (2001), 85–96.
[Tautz, 99] Tautz, C., Gresse von Wangenheim, C.: "REFSENO: A Representation Formalism
for Software Engineering Ontologies"; Proc. 5th German Conference on Knowledge-based
Systems (1999).

668 Feldmann R.L., Carbon R.: Experience Base Schema Building Blocks ...

[Trapp, 02] Trapp, M.: "A Flexible Approach for Coupling Experience Base Requirements and
Applicable Schema Building Blocks"; Master’s Thesis, Software Engineering Research Group,
Dept. of Computer Science, University of Kaiserslautern (2002).

[Visek, 03] "ViSEK: Virtuelles Software Engineering Kompetenzzentrum"; Online @
http://visek.de, last visited January 2003.

[Weiss, 99] Weiss, D., Lai, C.T.R.: "Software Product-Line Engineering – A Family-Based
Software Development Process"; Addison-Wesley, (1999).

669Feldmann R.L., Carbon R.: Experience Base Schema Building Blocks ...

