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1 Introduction

In general, polymorphic recursion occurs in functions defined over nested (also
called non-uniform or non-regular) data types, i.e. data types whose definitions
include a recursive component that is not identical to the type being defined. Sev-
eral examples of such data types and interesting functions that operate on them
have been presented [Connelly and Morris, 1995, Okasaki, 1997, Okasaki, 1998,
Bird and Meertens, 1998].

Languages such as Haskell [Jones et al., 1998, Thompson, 1999] and SML
[Milner et al., 1989], with support for parametric polymorphism [Milner, 1978,
Damas and Milner, 1982], use one of the following two approaches for the treat-
ment of recursive definitions.

The first approach imposes a restriction on recursive definitions, either con-
sidering recursive definitions to be monomorphic (as for example in SML), or
allowing polymorphic recursion only when the programmer explicitly annotates
the polymorphic types (as for example in Haskell). In this approach, the lan-
guage processor front-end separates the definitions occurring in a program into
non-mutually recursive binding groups, by examining the program’s call graph,
and performs a topological sort of these binding groups for determining an order
in which to type the definitions.
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The second approach allows polymorphic recursive definitions without a pri-
ori imposing restrictions, but the type inference algorithm uses in this case a
user-configurable iteration limit for stopping the type inference process and re-
jecting input programs when this limit is exceeded (as for example in Mercury
[Henderson et al., 2003]).

The obligation on programmers to annotate types of polymorphic recursive
definitions goes against the intent of type inference, which is to give programmers
the freedom to choose to make or not type annotations, depending on whether
they think it is appropriate or not. Furthermore, it has the opposite effect of usual
type annotations (in languages with support for type inference and parametric
polymorphism), which is to specify a type that is an instance of the inferred
most general type. An undesirable consequence, in Haskell, of the possibility of
making a type more general by means of a type annotation is that the insertion
of a type annotation in a program may change its semantics. An interesting
example illustrating this situation has been posted in the Haskell mailing list by
Lennart Augustsson [Lennart Augustsson, 2001].

In [Henglein, 1993, Kfoury et al., 1993] the equivalence of typability in the
Milner-Mycroft calculus — that extends the Damas-Milner calculus with poly-
morphic recursion — with semi-unifiability was proved. In this paper we do not
intend to discuss the question of decidability of the semi-unification problem,
which is now being questioned in another paper [Figueiredo and Camarão, 2002].
Our aim here is to present a type inference algorithm — called MMo — that has
been used with success by us and is expected to behave quite well and be useful
in practice. In all examples we have seen in the literature (including all exam-
ples given in this paper), one iteration (unification) has been enough to infer
the types of expressions involving polymorphic recursion (with the exception of
contrived examples presented in this paper specifically provided as worst case
examples of time complexity for the type inference algorithm). As occurs in
the case of type inference for core ML (see e.g. [Kanellakis and Mitchell, 1989,
Mairson, 1990, Paris Kanellakis and Mitchell, 1991, Mitchell, 1996]), there exist
cases where the time complexity of MMo is exponential on the size of the in-
put program, but these examples do not occur in practice. Both in the case of
core ML and in the case of polymorphic recursion, exponentiality requires the
existence of so-called big types : a big type of an expression e is a type that has
a number of type variables that is exponentially larger than the size of e. Big
types do not represent useful abstractions. For small types, the time complexity
of the algorithm is polynomial (cf. [Henglein, 1993, Theorem 8, page 285]. This
explains why the type inference algorithm for ML behaves well in practice, and
is exactly the reason for our expectation on the behavior of MMo. An example
where a big type occurs because of polymorphic recursion (and not because of
let-bindings) is presented at the end of this paper (Section 7).
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For simplicity, in this paper we present an algorithm that imposes a restric-
tion on the set of typable programs with polymorphic recursion: polymorphic
recursive definitions may occur only at the outermost level (in other words,
an inner let-binding may not introduce polymorphic recursive definitions). The
elimination of this restriction is not straightforward, but also not very significant
in principle, requiring some extra (“bookkeeping”) work that would deviate from
our main interests.

Our work explores the idea, suggested by Jim [Jim, 1996], that principal typ-
ing is the key for efficiently solving the problem of type inference for mutually
recursive definitions. The basic ingredient used in MMo is the computation of
principal typings for any given typing problem, instead of simply the principal
type. This is achieved essentially by allowing inferred typing contexts (in a for-
mulation of the algorithm in terms of a type system, this would mean typing
contexts that occur in the right-hand side of typing formulas) to have more than
one assumption for the same variable.

We present a stepwise description of MMo in Haskell. This is based on Mark
Jones’s type inference algorithm for Haskell [Jones, 1999] — although all the
main ideas constitute an adaptation of those in [Figueiredo and Camarão, 2002]
towards obtaining a practical type inference algorithm — intended to provide a
palatable description for readers, as well as for language designers and develop-
ers, familiar with Haskell.

We assume in the sequel a basic knowledge of Haskell and of the process of
type inference [Mitchell, 1996]. Our prototype implementation includes also a
(monadic) parser (based on Parsec [Leijen, 2003]) that supports a large subset
of Haskell (e.g. the Haskell layout rule is not yet implemented). It is available,
together with examples (including all examples given in this paper) at:

http://www.dcc.ufmg.br/~camarao/MMo/MMo.tar.gz

2 Motivation

Recently, several applications of the use of nested data types have been presented.
One example is a data type that represents perfectly balanced binary trees,
proposed by Chris Okasaki [Okasaki, 1998], which can be declared as follows:

data Seq a = Nil | Cons a (Seq (a,a))

In this example the recursive component Seq(a,a) is different from the type
Seq a being defined, characterizing this as a nested data type. Often, nested data
types support algorithms more efficient than corresponding uniform versions.
For example, function len below calculates the number of elements in a data
structure of type Seq a of length n in time O(log n).
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-- len :: Seq a -> Int
len Nil = 0
len (Cons x s) = 1 + 2 * (len s)

pair f (x,y) = (f x, f y)

-- mapseq :: (a -> b) -> Seq a -> Seq b
mapseq f Nil = Nil
mapseq f (Cons x xs) = Cons (f x) (mapseq (pair f ) xs)

Figure 1: An example of a nested data type

Function len uses polymorphic recursion, since it receives as parameter a
value of type Seq a and returns an integer, but calls itself with values of type
Seq(a, a). The mapseq function is also polymorphic recursive. Functions len and
mapseq can be declared in Haskell 98 as long as their of types are explicitly
annotated.

Another example that illustrates the potential significance of the use of nested
data types has been presented in [Bird and Meertens, 1998], where a nested data
type is used to represent expressions of the λ-calculus in the notation of De
Bruijn levels.

In De Bruijn’s notation, bound variables are represented by natural numbers.
Number n represents the variable of the λ-abstraction that is nested n times
inside other λ-abstractions; for example, λ. λ. 0(11) represents the lambda term
λx. λy. x(y y).

To manipulate terms containing free variables, a (so-called) named context
is necessary, assigning De Bruijn numbers to free variables [Pierce, 2002]. For
example: in context Γ = {w �→ 0, x �→ 1, y �→ 2}, x(w y) is represented by
1(0 2) and λx. λy. x(w y) is represented by λ. λ. 0(2 1), where free variable w is
represented by its index added to the number of nested lambda abstractions
inside which it occurs.

Elements of Term a can be free variables, applications or abstractions. The
variable of the outermost λ-abstraction is represented by Var Zero, of the next
λ-abstraction V ar(Succ Zero), and so on. Free variables are represented by
V ar(Succn a), where n is equal to the number of nested λ-abstractions. With
this representation, there is no need for using a named context to represent free
variables.

Term a is a nested data type because the recursive component Term(Binda)
that appears in its definition is different from the type being defined. Using func-
tion abstract defined on Fig. 2, we can obtain the representation of λx. λy. x(wy).
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data Bind a = Zero | Succ a
data Term a = Var a | App (Term a, Term a) | Abs (Term (Bind a))

-- lift :: (Term a, a) -> Term (Bind a)
lift (Var y, x) = if x == y then (Var Zero) else (Var (Succ y))
lift (App (u, v), x) = App (lift (u, x), lift (v, x))
lift (Abs t, x) = Abs (lift (t, Succ x))

abstract (t, x) = Abs (lift (t, x))
reduce (Abs s, t) = subst (s, t)

-- subst :: (Term (Bind a), Term a) -> Term a
subst (Var Zero, t) = t
subst (Var (Succ x), t) = Var x
subst (App (u, v), t) = App (subst (u, t), subst (v, t))
subst (Abs s,t) = Abs (subst (s, term Succ t))

-- term :: (a -> b) -> (Term a, Term b)
term f (Var x) = Var (f x)
term f (App (u, v)) = App (term f u, term f v)
term f (Abs t) = Abs (term (bind f) t)

bind f Zero = Zero
bind f (Succ x) = Succ (f x)

Figure 2: A nested data representation of De Bruijn levels

That is,

abstract (abstract (App (Var ’x’, App (Var ’w’, Var ’y’)), ’y’), ’x’)

is equal to

Abs (Abs (App (Var Zero, App (Var (Succ (Succ ’w’)), Var (Succ Zero)))))

Function reduce implements (λ-calculus) β-reduction. The other functions
in Figure 2 are used in the implementation of abstract and reduce: term maps
f over a term, bind maps f over elements of Bind, subst is used in reduce to
update (decrease) levels of variables when leaving a lambda abstraction, and lift
updates levels of variables of a term t for use in the representation λx. t.

Functions lift, subst and term are also polymorphic recursive. They can be
declared in Haskell 98, as long as their types are explicitly annotated. It’d be
necessary that a and Bind a be declared as equality types.
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3 Types

We start the description of the implementation by defining how types are rep-
resented. For simple types, we have (where Id is a synonym for String):

data Type = TVar Tyvar | TCon Tycon | TGen Int
| TAp Type Type deriving Eq

data Tyvar = Tyvar Id [Int] deriving Eq
data Tycon = Tycon Id deriving Eq

The use of a list of integers in type variables is explained in Section 6 The
following definitions illustrate the representation of predefined types:

tInt = TCon (Tycon "Int"); tChar = TCon (Tycon "Char");
tList = TCon (Tycon "[]"); tString= TAp tList tChar;
tTuple2 = TCon (Tycon "(,)"); tArrow= TCon (Tycon "(->)");

TGen Int is used for representing quantified type variables. This representa-
tion is appropriate, because quantified type variables are then easily not modified
by substitutions (see next section) and because type equality need not consider
equivalence up to renaming of quantified type variables (since they are integer
numbers generated in a given order).

Types can also be quantified types (also called type schemes):

data Scheme = Forall Type deriving Eq

quantify ::[Tyvar] -> Type -> Scheme
quantify vs t = Forall (apply s t)

where vs’ = [ v | v <- tv t, v ‘elem‘ vs ]
s = zip vs’ (map TGen [0..])

toScheme ::Type -> Scheme
toScheme t = Forall t

4 Substitutions

Substitutions are finite mappings from type variables into simple types. Their
finite domain makes a list of pairs a suitable representation, since the operation
of computing the domain of a substitution can then be easily implemented (in
contrast to the situation of representing substitutions by a functional type).
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type Subst = [(Tyvar, Type)]
domain = map fst
nullSubst = []
(+->) :: Tyvar -> Type -> Subst
a +-> t = [(a, t)]
(@@) :: Subst -> Subst -> Subst
s1 @@ s2 = [ (u, apply s1 t) | (u,t) <- s2 ] ++ s1

Straightforward definitions are given for the identity (null) substitution, a
“maps-to” operator (+->), and composition of substitutions (@@). The latter
uses list concatenation, taking into account that an application of a substitution,
represented by a list, considers only the first occurrence of a type variable in this
list.

Functions apply and tv , for applying a substitution and for computing the
set of free type variables, respectively, are overloaded to operate on quantified
types, simple types or typing contexts. We include only the (more interesting)
definition of apply for simple types, which uses the fact that lookup returns the
type associated to the first occurrence of a type variable in the list representing
a substitution:

instance Subs Type where
apply s (TVar u) = case lookup u s of { Just t -> t; Nothing -> TVar u }
apply s (TAp l r) = TAp (apply s l) (apply s r)
apply s t = t

Types t and t′ unify if there exists a substitution S such that S(t) = S(t′). Its
constructive (algorithmic) definition is straightforward and well-known, and is
omitted. For simplicity, we use unify::(t,t)->Subst as returning a substitution
or error, instead of Maybe Subst (the latter would enable issuing more meaningful
error messages). Function unify is also overloaded to unify lists of types.

5 Typing Contexts and Principal Typings

A principal typing solution (t,g) of a typing problem (e,g0) is such that typing
context g requires less and type t provides more than any other typing solution.
context (g0 ) in a typing problem allows the specification of fixed assumptions,
that is, assumptions for variables that are visible in the represented scope. A
typing context is a list of assumptions, i.e. a list of pairs (x,sc), where x is a
variable and sc is a quantified type:

data Assump = Id :>: (Kind of def , Type) deriving Eq
data Kind of def = LET | LAM deriving Eq
type TypCtx = [Assump]
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An assumption for a variable also includes information about the kind of its defin-
ing occurrence. We distinguish between let-bound (LET ) and λ-bound (LAM )
variables. The distinction is used to identify type variables that may not be
quantified (which are those occurring in types of λ-bound variables).

An important characteristic of MMo is the way typing contexts are used,
throughout, for the purpose of computing principal typings. The results of type
inference functions are “contextualized”: for example, function tiExpr (Section
6) returns a contextualized simple type — i.e. an inferred type together with
a corresponding minimal context required for its inference — and tiBindGroup
(Section 6) returns a contextualized typing context (i.e. a list of contextualized
assumptions, of type InfCtx ):

type Typing = (Type, TypCtx); type IdTyping = (Id , Typing);
type InfCtx = [IdTyping]

Function tc gives the principal typing solution of typing problems (x,g) (see
Figure 3), where TI is the type inference monadic type constructor and variable
g is used to denote typing contexts.

tc :: Id -> TypCtx -> TI Typing
tc i g = if null found sc then do t <- newTVar

return (t, [i :>:(LET, toScheme t)])
else do t <- freshInst $ head found sc

return (t, [i :>: (LET, toScheme t)])
where found sc = find i g

find :: Id -> TypCtx -> [Scheme]
find i g = [sc |(i′ :>: (kdo, sc)) <- g, i′==i ]

Figure 3: Principal typings for variables

Another important characteristic of MMo is the possibility of an inferred
typing context to have more than one assumption for the same variable (in-
put typing contexts, on the other hand, can be simple typing contexts, with
just one type assumption for each variable). Consider, for example, the problem
of inferring principal typings for expression x x , in a given typing context g0,
where the definition of x might occur after the use of this expression. It is well-
known that there is no principal typing for expression x x in the Damas-Milner
system [Damas, 1984, Jim, 1996, Figueiredo and Camarão, 2001]. The reason is
that the greatest type derivable for this expression, ∀a. a, can only be derived in

880 Vasconcellos C., Figueiredo L., Camarao C.: Practical Type Inference ...



a typing context with the assumption x : ∀a. a. Other typing solutions exist —
for example, assumption x : ∀a. a → a can be used to derive xx : ∀a. a → a, but,
while using a typing context that requires less, yields a type that also provides
less. If g0 does not include any assumption for x, tc assigns a fresh type variable
as the type of each occurrence of x in xx, say a and b. (Obtaining fresh type
variables is the job of newTVar above, which uses a simple monad for updating
the integer value corresponding to the last fresh type variable used.) As usual
in type inference algorithms (cf. Section 6), this will result in unifying a with
b → a′, where a′ is another new fresh type variable. The typing returned for xx

will be then (a′,[x : b → a′, x : b]).
Type a′ can then be closed, by using function close (Figure 5), which works

so as not to close any type variable in the type of a λ-bound assumption, in the
given typing context. This yields principal typing (∀a. a,[x : b → a′, x : b]) for
typing problem (x x,∅).

Operators (|+) for overriding a typing context with another in let-bindings,
(|-|) for removing assumptions from a typing context after let-bindings, and
(|-), which also removes assumptions from a typing context, but in this case
after λ-expressions, are defined in Figure 4. The latter requires checking that
no variable occurring in a pattern at the left-hand side of a function definition
occurs twice in the resulting typing context. For example, two assumptions for x

are inserted in the resulting typing context for xx (as explained above). We can
think of this as meaning that x would need to have a polymorphic type, in order
for xx to be typable (and therefore \x. x x is detected as not type correct).

g0 |+ g = g ++ filter compl g0
where compl (x:>: ) = not(x ‘elem‘ (dom g))

(|-) :: TypCtx -> [Id] -> TypCtx
g |- xs = if length elems xs <= length xs then non elems xs

else error ("parameter used polymorphically")
where (elems xs,non elems xs) = partition( (x:>: ) -> x ‘elem‘ xs) g

(|-|) :: TypCtx -> [Id] -> TypCtx
g |-| is = filter ( (i:>: ) -> i ‘notElem‘ is) g

Figure 4: Overriding and removing entries from typing contexts
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6 Inferring Principal Pairs

tiProgram and tiBindGroup receive a typing context and a binding group and
return a contextualized typing context, i.e. a list of contextualized types, one
for each definition in the binding group. The data structures used are defined
below:

type BindGroup = ([AnnotType bind], [InferType bind])
type InferType bind = (Id, [Alt])
type AnnotType bind = (Id, Type, [Alt])
type Alt = ([Pat], Expr)

tiProgram :: TypCtx -> BindGroup -> TypCtx
tiProgram g0 bg = (map close) $ runTI $ tiBindGroup g0 bg

lambda assump (i :>:(LAM , ))= True
lambda assump = False

lambda assumps = filter lambda assump

close :: IdTyping -> Assump
close (i,(ti,gi)) = i:>:(LET, quantify (tv ti \\ tv (lambda assumps gi)) ti)

Figure 5: Closing simple types

tiProgram calls the monadic deconstructor function (runTI ), with the result
of tiBindGroup. The definitions of monadic operations, used to generate fresh
type variables (by newTVar) and, based on this, fresh instances of polymor-
phic types (by freshInst), as well as the treatment of patterns (of type Pat),
follow Mark Jones’s work [Jones, 1999, Section 10], and are omitted for brevity.
However, as we will see later in this section, we will need another function for
generating special fresh instances of types, named supInst .

Function tiBindGroup returns a contextualized typing context, which is a list
of the contextualized types of all definitions in a binding group. The contextual-
ized types are pairs (ts,gs); ts is a list of so-called inferred types and gs , a list
of inferred typing contexts , contains assumptions whose types are called required
types . Function close is used to quantify the inferred types. The definitions of
tiBindGroup and close are given in Figures 7 and 5, respectively. Inferred and
required types are unified, by folding function getTs (Figure 9) over the initial
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contextualized simple types, given by tiInferTyping. This is explained in more
detail below. Required types of each λ-bound variable are then unified, and the
resulting substitution s is applied to each inferred type and typing context. Be-
fore returning the obtained contextualized typing context, it is checked whether
annotated types are correct , meaning that they are equal (simply compared by
using ==) to the corresponding types inferred by considering g — with sym-
bols with annotated types as assumptions (see Figure 7) — as the input typing
context.

Contextualized types are inferred for definitions with and without type an-
notations, contained respectively in the lists expl bg and impl bg. tiBindGroup
uses tiInferTyping to infer a list of (initial) contextualized simple types, one
for each definition. The definition of tiInferTyping essentially calls tiExpr (see
below) for computing contextualized simple types for each name defined in the
binding group.

List is infTypings , returned by tiInferTyping, consists of the names defined
in a binding group (xs) and corresponding contextualized simple types (ts,gs).
Let’s say xs is formed by x1, . . . , xn, and similarly for ts and gs . The crucial
job of function getTs (Figure 9) is to return all pairs (t,t’) such that i) t’
occurs in an assumption xi : t′ in some gj (j ∈ {1, . . . , n}); ii) t is obtained
from ti by renaming, to a fresh type variable, each type variable that does not
occur free in the type of some λ-bound variable — in other words, by renaming
(to a fresh type variable) each type variable in tv(ti)\\nqtvsi , where nqtvsi =

tv(lambda assumps gi).
This renaming is done by function supInst (used by getTs and defined in

Figure 6). The renaming corresponds to the creation of new (fresh) variables
occurring in formulas in the left-hand side of inequalities in the underlying semi-
unification problem (SUP). This SUP is such that each inequality (ti ≤i t′)
corresponds to a polymorphic use (with type t′) of some defined variable (with
inferred type ti).

supInst :: [Tyvar] -> Int -> Type -> TI Type
supInst vs n (TAp l r) = do t1<-supInst vs n l; t2<-supInst vs n r;

return $ TAp t1 t2
supInst vs n (t@(TVar tv@(Tyvar v l)))
| tv ‘elem‘ vs = return t
| otherwise = return $ TVar $ Tyvar v (n:l)

supInst t = return t

Figure 6: Generating indexes that register type variable dependencies
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tiBindGroup :: TypCtx -> BindGroup -> TI InfCtx
tiBindGroup g0 (expl bg,impl bg) =
do let g = g0 |+ [ v:>:(CW ,sc) | (v,sc,alts) <- expl bg ]

is infTypings<-tiInferTyping g (impl bg++(map(\(v, ,a)->(v,a)) expl bg))
ins infTypings’ <- unify inf req is infTypings
checkAnnot expl bg $ is infTypings’

unify inf req:: InfCtx -> TI InfCtx
unify inf req isIinfTypings =

do let { (is,infTypings) = unzip is infTypings; (t i,g i) = unzip infTypings;
all g i = concat g i; lbtvs = tv $ lambda assumps all g i }

tsReq tsInf <- foldM (getTs lbtvs (zip is t i)) [] (zip [0..]all g i)
(tsReq tsInf1,infCtx) <- unif app lbtvs (tsReq tsInf ,is,infTypings)
return infCtx

unif app::[Tyvar]->([(Type,Type)],[Id],[Typing])->([(Type,Type)],[Typing])
unif app lbtvs (tsReq tsInf ,is,infTypings) =

do let { s = unify $ unzip tsReq tsInf ; infTypings’ = apply s infTypings }
tsReq tsInf ’ <- foldM (getTs lbtvs (zip is (map fst infTypings’))) []

(zip [0..] $ concat $ map snd infTypings’)
if stop s (map fst infTypings ++ (

map (\( :>:( ,Forall t))->t) $ concat $ map snd infTypings))
then return (tsReq tsInf ’,zip is infTypings’)
else if circular dep s then error(

"Cannot (semi-)unify inferred with required types\n")
else unif app lbtvs (tsReq tsInf ’,is,infTypings’)

stop s ts = null (domain(filter effective s) ‘intersect‘ tv ts)

-- effective means not a renaming substitution
effective ((Tyvar ),(TVar (Tyvar ))) = False
effective = True

Figure 7: Principal pairs of recursive definitions

After these pairs (t,t′) are obtained, a substitution is computed by unifica-
tion of types in each of these pairs. Then it is tested whether this substitution has
(so-called) “circular dependencies” between type variables (see below), reporting
an error if this happens; if not, the substitution can either modify inferred or
required types, in which case the whole process is repeated, or not — in the
latter case the process terminates, giving (successfully) contextualized inferred
types.

This process is performed by function unif app (defined in Figure 7) over the
list tsReq tsInf , returned by getTs . The updating of an inferred type, by the
application of a substitution, occurs because the use of a variable in the corre-
sponding definition requires less than it could; in other words, this use of the
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circular dep :: Subst -> Bool
circular dep = fst.foldr circ(False, [])

circ :: (Tyvar,Type) -> (Bool,Subst) -> (Bool,Subst)
circ (True,s) = (True,s)
circ (u,t) (False,s)
| xi (TVar u) t′ = (True,s)
| otherwise = (False,(u,t′):s)
where t′ = apply′ s t

apply′ s u@(TVar (Tyvar v (i:l))) =
case lookup (Tyvar v l) s of

Just t -> t
Nothing -> u

apply′ s (TAp l r) = TAp (apply′ s l) (apply′ s r)
apply′ s t = t
apply′ s t = apply s t

xi (TAp l r) (TAp l′r′) = xi l l′ || xi r r′

xi (TVar v) (TAp l r) = xi′ v l || xi′ v r
xi = False

xi′ v (TAp l r) = xi′ v l || xi′ v r
xi′ (Tyvar v l) (TVar (Tyvar v′l′)) = v == v′ && l ‘subStr‘ l′

xi′ = False

subStr :: IneqIndexes -> IneqIndexes -> Bool
subStr [] = True
subStr l ( :l′) = l == l′ || l ‘subStr‘ l′

subStr = False

Figure 8: Testing circular dependencies between type variables

variable requires a type that is more general than that given by its definition.
The key idea that allows this process (in fact, the underlying semi-unification)
to terminate is the detection of circular dependencies between type variables.
What exactly is a circular dependency and how this dectection is carried out?
Briefly, and informally, each new fresh variable α is created in this process with
a representation that “remembers” all fresh variables β from which it has been
originated (informally, we say “on which it depends”); a test of circular depen-
dency is merely then a test of whether a substitution requires replacing α by a
type in which some of these type variables β occur.

This representation is simply a sequence of integer indices — where distinct
indexes correspond to distinct polymorphic uses (i.e. distinct is): creating a new
fresh variable from a type variable α that occurs in ti simply amounts to placing
a new head (namely, i) in the sequence of indices of α. Function circular dep,
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responsible for testing circular dependencies between type variables, is defined
in Figure 8.

Function stop (Figure 7) determines when to stop the process of unifying
inferred and required types. This occurs when no inferred or required type is
updated.

Function tiExpr , called by tiInferTyping, computes principal typings for ex-
pressions. For reasons of space and focus, Figure 10 includes only the cases of
variables, applications and let-bindings at the outermost level.

getTs vs i ts pts (n,i:>:( ,sc@(Forall t))) =
-- getTs updates the list of pairs of types pts with pairs (t,t′), where
-- t′=supInst vs n t” for all i:t” ∈ i ts, t′′ �= t (modulo renaming of tvars)
-- vs indicate type variables that shall not be quantified
-- n denotes inequality index in the underlying SUP
-- corresponding to distinct uses of a defined variable

do let getT (i,sc) = case lookup i i ts of
Just t′ -> let sc′ = quantify (tv t′ \\ vs) t′ in
if sc==sc′ then return Nothing
else do t′′ <- supInst vs n t′; return (Just t′′)

Nothing -> return Nothing
maybe t <- getT (i,sc)
case maybe t of Just t′ -> return ((t,t′):pts)

Nothing-> return pts

Figure 9: Unification of inferred and required types

7 Examples

As a simple example of type inference with polymorphic recursion, consider the
definitions of function len and the constructors of data typeSeq a in Figure 1.
The value of is infTypings, that defines a typing for each name in the binding
group, is given by:

[(Nil, (Seq a, [])),
(Cons, (b → Seq (b, b) → Seq b, [])),
(len,(Seq c → Int, [(+):Int → Int → Int, len:Seq(c, c) → Int]))]

As a result of folding getTs over is infTyping, the following pairs of types are
produced: [(Seq(c, c) → Int,Seq c0 → Int)], where c0 is a fresh type vari-
able, created by supInst , from c). The application of the substitution obtained
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tiExpr :: TypCtx -> Expr -> TI Typing

tiExpr g (Var i) = tc i g

tiExpr g0 (Ap e1 e2) =
do (t1,g1) <- tiExpr g0 e1

(t2,g2) <- tiExpr g0 e2
a <- newTVar
let { s0 = unify (t1, fn t2 a); g1’ = apply s0 g1; g2’ = apply s0 g2;

pts = types common lambda vars g1’ g2’;
s1 = unify (unzip pts); s = s1 @@ s0 }

return (apply s a, apply s1 g1’ ‘union‘ apply s1 g2’)

tiExpr g0 (Let bg e) =
do infCtx <- tiBindGroup g0 bg

let { is = map fst infCtx; g = infCtx2TypCtx infCtx;
gi = bigUnion $ map (snd.snd) infCtx; g0’= apply s g0;
s = unify $ unzip $ types common lambda vars g0 gi }

(t,g’) <- tiExpr (g0’ |+ apply s g) e
let s′ = unify $ unzip $ types common lambda vars g0’ g’

s′′ = s’@@s
return (apply s′′ t, apply s′′ (g’|-| is) ‘union‘

apply s′′ (lambda assumps gi))

Figure 10: Principal typings for expressions

as a result of unifying the pairs of types given by getTs — namely, the identity
substitution on all type variables but c0, which is mapped to (c,c) — does not
modify inferred or required types.

As a simple (but now contrived) example for which types are indeed modified
by the unification of inferred with required types, consider:

h x = (g x) + 1

g x = h (g x)

In this case, is infTyping is given by:

[(h, (c → Int, [(+):Int → Int→ Int, g:c → Int])),
(g, (a → b, [g:a → d, h: d → b]))]

getTs returns the following pairs of types: [(d → b, c0 → Int), (a →
d, a1 → b1), (c → Int, a2 → b2)]. The unification of these pairs of types,
performed by unif app, causes type variable b to be replaced by Int . Since (in-
ferred/required) types are modified by the application of this substitution, an-
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other call to unif app follows. Pairs of inferred and required types are obtained
from the contextualized simple types in:

[(h, (c → Int, [(+):Int → Int → Int, g:c → Int])),
(g, (a → Int, [g:a → Int, h: Int → Int]))]

getTs now returns: [(a → Int, a1 → Int), (c → Int, a1 → Int)]. Apply-
ing the substitution obtained by unifying these pairs of types modifies neither
inferred nor required types (modulo renaming of type variables), and unif app
is thus completed.

The simplest case in which there is a circular dependency between type vari-
ables appears in the types of inferred and required types is that of a “direct
dependency”, which occurs for example in the case of the definition f x = f .
Inferred and required types for this definition are, respectively, a → b and b. A
call to getTs returns, then, the list [(b, a0 → b0)]. The unification of pairs of
types in this list gives a substitution that maps b to a0 → b0. A call to circu-
lar dep, with this substitution as parameter, returns True, originating then a
type error message.

Examples of indirect circular dependencies may be constructed — based on
the expression used in [Henglein, 1993] to show that typability in the Milner-
Mycroft calculus is reducible to semi-unification — by varying the value of n in
the following pseudo-Haskell example (where we use (v1, . . . , vn).i to denote vi,
for i = 1, . . . , n, corresponding to Haskell functions fst , snd etc.):

k x y = x
f x1 x2 . . . xn = k (\x -> x x1 x1, ..., \x -> x xn xn)

(\ y1 y2 · · · yn -> (f y1 y2 . . . yn).1 == x2, ...,
\ y1 y2 · · · yn -> (f y1 y2 . . . yn).(n − 1) == xn,
\ y1 y2 · · · yn -> (f y1 y2 . . . yn).n == x1)

The time taken by circular dep to detect the circular dependency (issuing
then a type error) grows exponentially with an increase of n. A similar well-
typed example can be obtained by changing the definition so that f has n + 1
parameters instead to n, change calls accordingly and use xn+1 instead of x1 in
the last line above. Then f becomes typable, and has a big type; for n = 2 (i.e. f

has 3 parameters) this type can be written as:

∀a, b, c, d, e, f, g, h. a → ((b → b → c) → c) →
((((d → d → e) → e) → ((d → d → e) → e) → f) → f) →

((a → a → g) → g, (((b → b → c) → c) → ((b → b → c) → c) → h) → h)
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8 Conclusion

We have presented an algorithm (called MMo) for typing polymorphic recursive
definitions, with the aim of providing a readable description for programmers,
language designers and developers familiar with Haskell. MMo is an adapta-
tion into Haskell of an algorithm that can be straightforwardly obtained from
the rewriting system RSUP [Figueiredo and Camarão, 2002]. Its correctness and
termination follow from that of RSUP, which have been proved in that paper.
The algorithm allows type inference to be simplified, by eliminating the need to
examine the call graph of a program in order to determine an order in which to
infer types. The worst case time complexity of MMo is exponential, as occurs
in the case of type inference for core ML. However, these worst case examples
simply do not occur in practice: both in the case of core ML and with poly-
morphic recursion, exponentiality requires the existence of big types (for which
the number of type variables is exponentially larger than the size of the input
expression), and these do not represent useful abstractions. For small types, the
time complexity of the algorithm is polynomial. The algorithm is expected thus
to behave well in practice.
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