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Abstract: Given a finite set of patterns, i.e., subsets of ZZ2. What is the best way to
place translates of them in such a way that every point belongs to at least one translate
and no two points belong to the same set of translates? We give some general results,
and investigate the particular case when there is only a single pattern and that pattern
is a square or has size at most four.
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1 Introduction and basics

Assume that T is a set consisting of a finite number of finite, nonempty subsets
of ZZ2, which we call patterns.

Definition 1. A set

A = {(cj , Tj) : j ∈ J} ⊆ ZZ2 × T

(or the covering by A) is called T -identifying if for all x ∈ ZZ2, the sets

I(x) = {(ci, Ti) ∈ A : x ∈ ci + Ti}

are nonempty, and moreover no two of them coincide.

So we are covering all the vertices of ZZ2 using translates of the |T | given
patterns, and the idea is that for every x ∈ ZZ2 it is true that if we know which
ones contain x, then we know x, i.e., x is uniquely determined.

We call the set I(x) in Definition 1 the I-set of x (whether or not A is T -
identifying).
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It is natural to assume — and we do so from now on — that

ci + Ti �= cj + Tj whenever i �= j.

Without loss of generality, we can assume that all the patterns contain the
point (0, 0).

We often consider the case in which T consists of a single set T . In this
case the identifying set is completely determined by the pattern T and the set
C = {c1, c2, . . . , c|C|}, and we call C a T -identifying code; its elements are called
codewords.

If T is a ball of a given radius, r, in a graph with vertex set V = ZZ2, i.e., T

is the set of all points within graphic distance r from a given x ∈ ZZ2, then C is
called r-identifying. Such r-identifying codes have been studied in particular in
the following four graphs:
– the square grid, where the edge set is

ES = {{u, v} : u − v ∈ {(0,±1), (±1, 0)}}

(see, e.g., [3], [5], [8], [9], [12], [14], [16], [17]); for instance, it is known that the
density of any 1-identifying code is at least 15/43, and there is a construction
with density 7/20;
– the triangular grid, where the edge set is

ET = {{u, v} : u − v ∈ {(0,±1), (±1, 0), (1, 1), (−1,−1)}}

(see, e.g., [3], [5], [12], [17]);
– the king grid, where the edge set is

EK = {{u, v} : u − v ∈ {(0,±1), (±1, 0), (1,±1), (−1,±1)}}

(see, e.g., [4], [5], [11], [12], [15]);
– the hexagonal mesh, where the edge set is

EH = {{u = (i, j), v} : u − v ∈ {(0, (−1)i+j+1), (±1, 0)}}

(see, e.g., [3], [5], [10], [12], [17]). Usually — unlike in this paper — a codeword
is associated with the centre of the ball, i.e., the pattern T is chosen to be the
ball with centre (0, 0).

The problem of r-identifying codes originated (see [17]) in fault diagnosis in
multiprocessor systems: such a system can be modeled as a graph G = (V, E)
where V is the set of processors and E the set of links between processors.
Assume that at most one of the processors is malfunctioning and one wishes to
test the system and locate the faulty processor. For this purpose, some processors
(which constitute the code) will be selected and assigned the task of testing their
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r-neighbourhoods (which are balls of radius r). Whenever a selected processor,
i.e., a codeword, detects a fault, it sends an alarm signal. The requirement is
that when we know which codewords gave the alarm, this information alone is
enough to locate the malfunctioning processor.

The use of paths instead of balls is also suggested in [18].
Our approach also provides useful infrastructure for identifying faulty edges

as we shall see in Section 4. For more on the technical background and edge
identification, we refer to [2] and [18].

We now give a definition intended to measure the performance of an identi-
fying set. Denote by Qn the set of vertices (x, y) ∈ ZZ2 with |x| ≤ n and |y| ≤ n.

Definition 2. Assume that A is as in Definition 1. The density of (the covering
by) A is

D(A) = lim sup
n→∞

∑
j∈J |(cj + Tj) ∩ Qn|

|Qn|
.

The density of the underlying multiset C = {cj : j ∈ J} is

D(C) = lim sup
n→∞

∑
j∈J |{cj} ∩ Qn|

|Qn|
.

The density of A measures in how many sets cj + Tj a point x ∈ ZZ2 lies in
average, and therefore D(A) ≥ 1 whenever A is T -identifying. It is a natural
objective, given T , to try to find a T -identifying set with as small density as
possible. In view of the practical applications, it is also natural to try to minimize
the density of the underlying multiset. We will be considering almost exclusively
the case in which T consists of a single pattern T , and as shown in the next
theorem, in this case these two objectives coincide. The definition of the density
of a T -identifying code C (which is simply a set) reduces to

D(C) = lim sup
n→∞

|C ∩ Qn|
|Qn|

.

Clearly, if T contains a singleton set, there is a T -identifying set A with
density one. From now on, except in Theorem 12, we therefore assume that T
does not contain a singleton set. Then — as shown in Theorem 4 — the density
of any T -identifying set A is strictly greater than one.

The density of a T -identifying code C is closely related to the density of the
corresponding set A as proved in the following simple theorem.

Theorem 3. Let A be a T -identifying set, with |T | = k for all T ∈ T , and C

the underlying multiset. Then D(A) = k D(C).
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Proof. Take a > 0 such that T ⊆ Qa for all T ∈ T , and assume that n > a.
Then ∑

j∈J

|(cj + Tj) ∩ Qn+a| ≥ k
∑
j∈J

|{cj} ∩ Qn| ≥
∑
j∈J

|(cj + Tj) ∩ Qn−a|.

Dividing by |Qn| = (2n + 1)2 we get

(2n + 2a + 1)2

(2n + 1)2

∑
j∈J |(cj + Tj) ∩ Qn+a|

(2n + 2a + 1)2
≥ k

∑
j∈J |{cj} ∩ Qn|

|Qn|

≥ (2n − 2a + 1)2

(2n + 1)2

∑
j∈J |(cj + Tj) ∩ Qn−a|

(2n − 2a + 1)2
.

The claim follows by letting n tend to infinity. Notice that the difference of the
left-hand side and the quantity

∑
j∈J |(cj + Tj)∩Qn+a|/(2n + 2a + 1)2 tends to

zero; a similar remark applies to the right-hand side. ��

Theorem 4. If |T | ≥ k for all T ∈ T , and A is T -identifying, then

D(A) ≥ 2k

k + 1
.

Proof. Let A = {(cj, Tj) : j ∈ J}. Choose an integer a > 0 such that ∪T∈T T ⊆
Qa. Assume that n > a, and denote by Fi the set of points x ∈ Qn which are
contained in exactly i of the sets cj + Tj . By counting in two ways the pairs
(x, cj + Tj) such that x ∈ Qn, (cj , Tj) ∈ A and x ∈ cj + Tj we get∑

i≥1

i|Fi| =
∑
j∈J

|(cj + Tj) ∩ Qn|.

Moreover, because a set cj +Tj can contain at most one point of F1, and |T | ≥ k

for all T ∈ T , corresponding to every such pair (x, cj + Tj) with x ∈ F1 ∩ Qn−a

there are at least k − 1 such pairs (y, cj + Tj) with y /∈ F1. Hence∑
i>1

i|Fi| ≥ (k − 1)|F1 ∩ Qn−a|.

Consequently,∑
j∈J |(cj + Tj) ∩ Qn|

(2n + 1)2

=
(2(n − a) + 1)2

(2n + 1)2
|F1| +

∑
i>1 i|Fi|

|F1 ∩ Qn−a| +
∑

i>1 |Fi ∩ Qn−a|

≥ (2(n − a) + 1)2

(2n + 1)2
|F1 ∩ Qn−a| +

∑
i>1 i|Fi|

|F1 ∩ Qn−a| +
∑

i>1 |Fi ∩ Qn−a|
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Figure 1: An optimal solution using a pattern of size seven.

≥ (2(n − a) + 1)2

(2n + 1)2

(
|F1 ∩ Qn−a| +

∑
i>1 i|Fi|

|F1 ∩ Qn−a| + 1
2

∑
i>1 i|Fi|

)

=
(2(n − a) + 1)2

(2n + 1)2

(
2 − |F1 ∩ Qn−a|

|F1 ∩ Qn−a| + 1
2

∑
i>1 i|Fi|

)

≥ (2(n − a) + 1)2

(2n + 1)2

(
2 − |F1 ∩ Qn−a|

|F1 ∩ Qn−a| + 1
2 (k − 1)|F1 ∩ Qn−a|

)

=
(2(n − a) + 1)2

(2n + 1)2

(
2 − 2

k + 1

)
,

where in the last inequality we have assumed that |F1 ∩Qn−a| > 0 (if not, then
the conclusion trivially holds). The claim follows when we let n tend to infinity.

��
The next theorem and the next example show that the lower bound of the

previous theorem can be attained.

Theorem 5. For all values of k there is a pattern T of cardinality k and a set
A which is T -identifying and has density 2k/(k + 1). If k = 2s + 1, we can
take T = {(0, 0), (0, 1), . . . , (0, s), (1, 0), (2, 0), . . . , (s, 0)}; if k = 2s, we can take
T = {(0, 0), (0, 1), . . . , (0, s), (1, 0), (2, 0), . . . , (s − 1, 0)}.

Proof. The construction for k = 2s + 1 = 7 is given in Figure 1. We have only
drawn s + 1 = 4 diagonals; we repeat these s + 1 diagonals in both directions.
Clearly the same construction works for all s.
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Figure 2: A T -identifying set: T = {{(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)}, {(0, 0),
(1, 0), (2, 0), (3, 0), (4, 0)}}. The points cj , j ∈ J , are in black. The points with
dotted lines are the points which belong to only one translate.

If k is even (k = 2s), we draw 2s + 1 diagonals at a time; first the s + 1
diagonals obtained from Figure 1 by dropping out the lower right-hand corners
of each translate of T , and then taking all the translates obtained by shifting
everything upwards by s (the new translates partly overlap the old ones). ��

Example 1. If we take T = {T1, T2}, where T1 = {(0, 0), (0, 1), . . . , (0, k−1)} and
T2 = {(0, 0), (1, 0), . . . , (k − 1, 0)}, then there is an optimal T -identifying set A
with density 2k/(k + 1). See Figure 2 for k = 5, from which it is easy to see the
general construction, in which, in any set Hj = (cj + T1) ∪ {cj + (1, 0)}, j ∈ J ,
two points, cj +(0, 1) and cj +(1, 0), belong to one translate, and the remaining
points belong to two translates. Since the sets Hj , j ∈ J , tile the whole space ZZ2,
the density is 2+2(k−1)

k+1 as claimed, and the density of the underlying multiset is
2/(k + 1).

Example 2. Assume that we want to use cycles of length 2k. Then we can
take T1 = {(0, 0), (0, 1), . . . , (0, k − 1), (1, k − 1), (1, k − 2), . . . , (1, 0)} and T2 =
{(0, 0), (1, 0), . . . , (k − 1, 0), (k − 1, 1), (k − 2, 1), . . . , (0, 1)}. If we take the three
translates (0, 0) + T2, (0, 1) + T2 and (0, 2) + T2, we immediately see that if we
know that a point is in their union, we know its y-coordinate. If we take C2 to
consist of all the points (ik, 4j), (ik, 4j +1), (ik, 4j +2) where i, j ∈ ZZ, then the
translates c+T2, c ∈ C2, together cover all the points, and uniquely identify the
y-coordinate of a point. If we similarly define C1 as the set of all points (x, y)
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for which (y, x) ∈ C2, then the set A = {(c1, T1) : c1 ∈ C1}∪ {(c2, T2) : c2 ∈ C2}
is {T1, T2}-identifying and has density 3.

2 Using a square pattern

In the king grid, two vertices in ZZ2 are connected by an edge if the Euclidean
distance between them is at most

√
2. With respect to the graphic distance, a

ball of radius r in the king grid is a square consisting of (2r + 1) × (2r + 1)
vertices. It is known from [11], [5] and [4], that if we take T to be such a square,
then the optimal density of a T -identifying code is 2/9 if r = 1 and 1/(4r) for
all r > 1. We can ask what happens if, more generally, T is a square consisting
of s × s vertices, i.e., s is allowed to be even.

We first prove an easy lower bound, using a technique borrowed from [12].

Theorem 6. Let T = {(a, b) : a, b ∈ {0, 1, . . . , s − 1}}. If C is a T -identifying
code, then its density is at least 1/(2s) for all s ≥ 1.

Proof. Let us assume that C is a T -identifying code, and let

L = {(0, 0), (1, 0), . . . , (n, 0)}

be a line segment in ZZ2. We see that

R = {(i, j) ∈ ZZ2 : −s + 1 ≤ i ≤ n,−s + 1 ≤ j ≤ 0}

is a rectangle containing s(n+s) points and is the set of all points c such that c+T

can cover at least one element of L. Now for all the n pairs ((u, 0), (u + 1, 0)),
u ∈ {0, 1, . . . , n − 1}, of consecutive points of L there has to be a separating
codeword c such that c + T contains one point of the pair but not the other.
Since for all codewords c ∈ C, c + T intersects L in a subsegment, a codeword
can be separating for at most two pairs, and therefore

n

2
≤ |C ∩ R|.

Finally, because we can tile ZZ2 using R, we get

D(C) ≥ n

2|R| =
n

2s(n + s)
.

By letting n tend to infinity, we obtain D(C) ≥ 1/(2s). ��

We can do better, by using a more sophisticated method from [4] (which was
used there for odd s ≥ 5).

Theorem 7. Let T = {(a, b) : a, b ∈ {0, 1, . . . , s − 1}}. If C is a T -identifying
code, then its density is at least 1/(2s− 2) for all s ≥ 4.
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Proof. (Sketch) The proof is essentially the same as the one used in [4] for the
odd case, and works for all s ≥ 4. In the proof of [4], a square is referred to by
its centre point (which is in ZZ2). In the general proof (with our choice of T ),
each codeword c ∈ C corresponds to the square c + T , i.e., the codeword is the
lower left-hand corner of the square. Nevertheless, by taking any four vertices
(x, y), (x, y + 1), (x + 1, y) and (x + 1, y + 1), and using the fact that every two
of them, say p and q, must be separated, i.e., there is a codeword c such that
c+T contains exactly one of p and q, we obtain Lemmas 2 and 3 of [4] using the
same argument. In the proof of Theorem 2 of [4], the numerical calculations go
through in a similar way, and by the assumption s ≥ 4, the sets K, which are
translates of the set {(0, 0), (0, 1), . . . , (0, s), (1, s), (2, s), . . . , (s, s), (s, s − 1),
(s, s − 2), . . . , (s, 0), (s − 1, 0), (s − 2, 0), . . . , (1, 0)}, have side length at least
five, which guarantees that the key step (the marking process) goes through
similarly. ��

Theorem 8. With T as in the previous theorem, there is a T -identifying code
with density s

2(s−1)2 for all even s ≥ 4.

Proof. Let S = {0, 1, 3, . . . , 2i + 1, . . . , s − 3},

C0 = {(j(s − 1), 0) : j ∈ ZZ}

and
C =

⋃
j∈ZZ,i∈S

(
C0 + (i + (s − 1)j, i + (s − 1)j)

)
(see Figure 3 for the case s = 6). Clearly, C is doubly periodic with periods
(0, s−1) and (s−1, 0); and the set {(i, j) : 0 ≤ i ≤ s−2, 0 ≤ j ≤ s−2} contains
exactly s/2 codewords. Therefore, C has density s

2(s−1)2 . We claim that C is
T -identifying.

First, we consider all the points (p, i), i ∈ ZZ, lying on the same vertical line p,
and show that none of them can be covered in the same way (i.e., have the same
I-set) as a point on some other vertical line. Without loss of generality, we can
assume that s − 1 ≤ p ≤ 2s − 3. We distinguish between two cases.

(i) p = s− 1 or p > s− 1 is even: Then any point (p, i) is contained in two
sets, c1 +T and c2 + T , where c1 and c2 are codewords belonging to the vertical
lines p − (s − 1) and p, respectively. On the other hand, no point (q, j), q < p,
belongs to c2 + T , and no point (q, j), q > p, belongs to c1 + T .

(ii) p > s − 1 is odd: Given (p, i), it suffices to show by (i) that there is no
(q, j), q �= p, q odd, which has the same I-set as (p, i). But this is clear, since
(p, i) belongs to a set c + T , where c is a codeword lying on the vertical line
p−1, whereas there is no such codeword on the vertical line p+1. This uniquely
identifies p.
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Figure 3: A T -identifying code: the case s = 6. Codewords are in black.

Therefore we have just proved that all points in ZZ2 are covered, and that
two points lying on different vertical lines cannot be covered in the same way.

For reasons of symmetry, the same is true with horizontal lines, which shows
that C is T -identifying. ��

Remark. In the odd case (see [4]), the construction is analogous to the above
construction, the difference being that the set S is now

{0, 2, 4, . . . , 2i, . . . , s − 3},

and the density of the code is 1/2(s−1), which meets the lower bound for s ≥ 5.
In the even case, s ≥ 4, the best density of a T -identifying code lies between

s−1
2(s−1)2 and s

2(s−1)2 . In the case s = 2, the following theorem gives the exact
value.

Theorem 9. Let T = {(0, 0), (0, 1), (1, 0), (1, 1)}. The optimal density of a T -
identifying code is 2/5.

Proof. The lower bound comes from Theorem 4 for k = 4 and Theorem 3. The
upper bound comes from the construction given in Figure 4, which is easy to
check. ��

We call a point (x, y) ∈ ZZ2 even, if x + y is even, and odd, otherwise. A
code is called even, if all its codewords are even. The codes in the next theorem
have slightly higher density than the ones in Theorem 8, but they are even. Such
codes are needed in the final section.
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Figure 4: An optimal T -identifying code: the case s = 2.

Theorem 10. Let T be as in Theorem 7.
(i) If s = 4t + 2, t ≥ 1, then there is an even code which is T -identifying and

has density 1
2s−4 .

(ii) If s = 4t, t ≥ 1, then there is an even code which is T -identifying and
has density s

2(s−2)2 .

Proof. We only give the constructions. The proofs are very similar to the proof
of Theorem 8.

In (i) we take S = {0, 1, 4, 5, 8, 9, . . . , s − 6, s − 5}, and in (ii) we take S =
{0, 1, 4, 5, 8, 9, . . . , s−4, s−3}. In both cases, we take C0 = {(j(s−2), 0) : j ∈ ZZ}
and

C =
⋃

j∈ZZ,i∈S

(C0 + (i + (s − 2)j, i + (s − 2)j)) .

The code C is even and T -identifying. ��

For s = 4, the following theorem improves on the upper bound 2/9 in Theo-
rem 8, and the upper bound 1/2 in Theorem 10. From Theorem 7 we have the
lower bound 1/6.

Theorem 11. Let T be the 4 × 4 square T = {(a, b) : a, b ∈ {0, 1, 2, 3}}.
(i) There is a T -identifying code with density 2/11.
(ii) There is an even T -identifying code with density 3/16.

Proof. Denote
Dk = {(i, i + k) : i ∈ ZZ}.

(i) We take C = ∪Dk where the union is taken over all indices k ≡ 0, 4
(mod 11). The density of the code is 2/11. The union of the squares c + T ,
c ∈ C, is clearly the whole set ZZ2.

Assume that v ∈ ZZ2 is an unknown point. Choose an index k such that
v ∈ (i, i+k)+T for some i, and then take the largest i such that v ∈ (i, i+k)+T .
Because v /∈ (i+1, i+1+k)+T , we know that v ∈ {(i, i+k), (i, i+k+1), (i, i+
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k+2), (i, i+k+3), (i+1, i+k), (i+2, i+k), (i+3, i+k)}. By checking, whether
or not v belongs to (i−3, i−3+k)+T , (i−2, i−2+k)+T , (i−1, i−1+k)+T ,
we can determine, which one of the sets {(i, i+ k)}, {(i, i+ k +1), (i+1, i+ k)},
{(i, i + k + 2), (i + 2, i + k)}, {(i, i + k + 3), (i + 3, i + k)} contains v. Separation
between the remaining at most two vertices is easy, because by definition, either
all the vertices in Dk−4 are in the code and the squares c+T , c ∈ Dk−4, contain
all the vertices in Dk−1 ∪Dk−2 ∪Dk−3 but none in Dk+1 ∪Dk+2 ∪Dk+3; or the
other way round if all the vertices in Dk+4 are in the code.

(ii) Take

Ek = {(i, i + k) ∈ Dk : i ≡ 0, 2, 5 or 7 (mod 8)},

and define the code C as the union of all D8m, m ∈ ZZ, and E8m+4, m ∈ ZZ. The
density of the code is 3/16. Again the squares c + T , c ∈ C, together contain all
the elements in ZZ2.

Assume that v ∈ ZZ2 is unknown.
If v ∈ c+T , c ∈ D8m for some m, then we proceed in exactly the same way as

in case (i), and find which one of the sets {(i, i+8m)}, {(i, i+8m+1), (i+1, i+
8m)}, {(i, i + 8m + 2), (i + 2, i + 8m)}, {(i, i + 8m + 3), (i + 3, i + 8m)} contains
v. Let us assume that we know that v ∈ {(i, i + 8m + 1), (i + 1, i + 8m)}. The
other two cases can be treated similarly. To separate between the two remaining
vertices, it is enough that at least one of the vertices (i−3, i+8m+1) ∈ D8m+4

and (i+1, i+8m−3) ∈ D8m−4 is in the code, and this is true by the definition of
the sets Ek: either i− 3 ≡ 0, 2, 5 or 7 (mod 8) or i + 1 ≡ 0, 2, 5 or 7 (mod 8).

Assume then that v /∈ c + T for all m ∈ ZZ and c ∈ D8m. Then we know that
v lies in one of the diagonals D8m+4 — and if v ∈ c + T for some c ∈ D8m+4,
then v ∈ D8m+4. The codewords in D8m+4 (and the fact that we already know
that v ∈ D8m+4) are now enough to determine v — in fact, in exactly the same
way as in the proof of Theorem 12 (cf. Figure 6). ��

3 Connected patterns of size at most four

Consider the case T = {T } when |T | ≤ 4. Up to obvious symmetries, there are
nine connected patterns of size at most four, see Figure 5. For the patterns 1, 2,
3 and 5, which consist of rectangles of height one, we give a more general result
from [1].

Theorem 12. [1] Let T = {(0, 0), (1, 0), . . . , (s − 1, 0)}. The best density of a
T -identifying code is 1 if s = 1, 2/3 if s = 2, and 1/2 if s > 2.

Proof. The case s = 1 is trivial. The lower bound for s = 2 is from Theorems 4
and 3. To prove that the density is at least half for all s > 2, we show that for
every (x, y) ∈ ZZ2 at least half of the points in the set {(x, y), (x− 1, y), . . . , (x−
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1 2 3 4

7 8 9

5

6

Figure 5: All connected patterns of size at most four up to obvious symmetries.

2s

s>2, s odd

s=2

s=6

Figure 6: Optimal T -identifying codes for rectangles of height one.

2s + 1, y)} are codewords. It suffices to prove that every pair {(i, y), (i − s, y)}
contains a codeword, and this follows, because if (i, y) is not a codeword, then
the only codeword that can separate between (i, y) and (i − 1, y) is (i − s, y).

The constructions from [1] are shown in Figure 6 in the cases s = 2, s > 2
odd, and s > 2 even (illustrated for s = 6): in each case every horizontal line is
treated as in the figure. ��

For the pattern 4, the best density of a T -identifying code is 1/2 by The-
orem 5. The pattern 6 was dealt with in Theorem 9 (density 2/5). For the re-
maining patterns, 7, 8 and 9, a lower bound for the density is 2/5, given by
Theorems 4 and 3. The next theorem shows that the best density is exactly 2/5.

Theorem 13. Let T = {(0, 0), (1, 0), (2, 0), (1, 1)}, T = {(0, 0), (1, 0), (2, 0),
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Pattern 7 Pattern 8

Pattern 9

Figure 7: Optimal T -identifying codes for patterns 7, 8 and 9.

(2, 1)} or T = {(0, 0), (1, 0), (1, 1), (2, 1)}. The best density of a T -identifying
code is 2/5.

Proof. All we need to prove is the upper bound. See Figure 7. ��

The following table summarizes the results obtained in this section, on the
patterns 1 to 9.

pattern number 1 2 3 4 5 6 7 8 9
pattern size 1 2 3 3 4 4 4 4 4

best density D(C) 1 2/3 1/2 1/2 1/2 2/5 2/5 2/5 2/5
best density D(A) 1 4/3 3/2 3/2 2 8/5 8/5 8/5 8/5

4 An application: identifying an edge

Consider the following problem in the square grid. Each vertex contains a pro-
cessor, and each edge represents a link between two processors. We assume that
at most one of the links is malfunctioning — and that none of the processors
is out of order — and wish to identify the malfunctioning link, if there is one.
We use the following simple scheme. Some of the vertices v (marked as black
squares in Figure 8) are assigned the task of checking all the four edges starting
from v. All those among the chosen vertices that have detected a problem send
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Figure 8: Identifying an edge in the square grid: an optimal solution when
r = 1. The chosen vertices are denoted by black squares.

us an alarm signal, i.e., just one bit of information telling us that among the
four edges, one of them is malfunctioning. Based on the answers we would like
to know exactly the location of the malfunctioning link, if there is one. What is
the best way of choosing the processors that take care of the checking?

As we have done in Figure 8, we can denote each edge by a circle located
in the middle point of the edge, and the area checked by a processor is a 2 × 2
square in the lattice formed by the circles. In terms of this new lattice, we take
T to be a 2×2 square, and from Theorem 4, we know that the best density of an
identifying set A consisting of such squares is at least 8/5, and the best density
of the code formed by the lower left-hand corners of the squares is at least 2/5.
Notice that here our problem is not the same as in Theorem 9, though: we are
only allowed to take translates that correspond to sets of four edges all having a
common end point. In fact, the requirement is simply that the code in the new
lattice should be even. It is easy to check that the construction of Figure 8 gives
an optimal solution to the problem. In terms of the original grid, we have chosen
4/5 of the processors to do the checking.

Given r > 1, we can consider the same problem when each of the chosen
processors v checks all the edges that belong to at least one path of length r

starting from v. Figure 9 illustrates the case r = 4. Then each of the chosen
processors (vertices) checks 2r×2r edges, and again we have the extra condition
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Figure 9: The solid circles mark the edges, which are on a path of length at
most r = 4 starting from the black square.

that in the lattice formed by the edges (the circles in Figure 9), the code should
be even.
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