
Process Construction and Customization

Brian Henderson-Sellers
(University of Technology, Sydney, Australia

brian@it.uts.edu.au)

Magdy Serour
(University of Technology, Sydney, Australia

mserour@it.uts.edu.au)

Tom McBride
(University of Technology, Sydney, Australia

mcbride@it.uts.edu.au)

Cesar Gonzalez-Perez
(University of Technology, Sydney, Australia

cesargon@it.uts.edu.au)

Lorraine Dagher
(University of Technology, Sydney, Australia

ldagher@it.uts.edu.au)

Abstract: Adopting the most appropriate methodology for particular software developments re-
mains a challenge for all industrial IT organizations. Previous attempts to promote a single ap-
proach as useful for all occasions has proven untenable. Rather, a combination of a metamodel
and a repository of process/method components (“method engineering”) provides a more effi-
cacious approach, particularly as elements of the method engineering approach are able to be
automated. In this paper, we advocate the use of method engineering, illustrating its utility by the
construction of methodologies at various levels of process capability.
Key Words: design methods, design, software process
Category: D2.10, K6.3

1 Introduction

Information systems for commercial application need to be of high quality, flexible and
maintainable. Building such systems needs some sort of process. The process an or-
ganization uses to build software applications can vary enormously [Cockburn, 2000].
Furthermore, different organizations can have different capability to execute such a pro-
cess. There are different levels of process capability for an organization, as exemplified
by, for instance, CMM [Paulk et al., 1993] and SPICE (ISO 15504) [ISO, 1998]. For
organizations aiming to achieve a CMM/ SPICE level 3, having a repeatable process is
critical. Such a process needs to be able to assist in optimizing a development team’s
performance in creating a high quality software product. While there are many pro-
cesses available, few have the ability to be customized to particular situations and par-
ticular capability levels. There is a general “one size fits all” mindset in these software

Journal of Universal Computer Science, vol. 10, no. 4 (2004), 326-358
submitted: 17/10/03, accepted: 2/2/04, appeared: 28/4/04 © J.UCS



methodologies. Flexibility is limited, which can lead many organizations into dysfunc-
tional practices.

In this paper, we examine the current problems with software development method-
ologies, first in terms of currently available support [see Section 2] and then in terms
of the importance of quality and productivity [see Section 3]. We advocate extensive
adoption of method engineering and, more specifically, situational method engineering
(SME) as a means of providing at least a partial solution to today’s concerns of poor
productivity and poor software quality [see Section 4]. Finally, we present a summary
of conclusions and some relevant bibliography [see Section 5 and References].

2 Limitations of Existing Processes

Recently, several research groups have identified the need to modify or customize
software processes [Pérez et al., 1995] [van Slooten and Hodes, 1996] [Chroust, 2000]
[Ralyté and Rolland, 2001]. In the pre-OO process environment, the TAME project
aimed to deliver a tool to be used to permit a more quantitative and objective assessment
of the optimal tailoring required to improve a process [Basili and Rombach, 1987]. The
SPEARMINT approach [Scott et al., 2001] provides a means of documenting and mod-
elling existing processes, and the PIE methodology [Cunin et al., 2001] addresses is-
sues relevant to the modelling and management of processes as they evolve during
projects. The aim of making process construction more rigorous is also described in
the process construction kit of [Rupprecht et al., 2000] and the process framework of
[Hruby, 2000]. More recently, the notions of process diversity were espoused in a spe-
cial issue of IEEE Software (July/August 2000) in which [Glass, 2000a] notes the recent
growth in the method engineering community.

The term process may be defined in two slightly different ways. The software devel-
opment community (here our primary focus being the object-oriented community) tend
to use process and methodology typically as synonyms to mean everything that needs to
be done in a successful development. For example, Breton and Bézivin describe it as “a
set of work items, scheduled according to constraints, which all participate in fulfilling
a common purpose” [Breton and Bézivin, 2001]. This use of the appellation “process”
tends to include human resource issues, technology issues, lifecycle issues as well as is-
sues pertaining to software development “phases” [Henderson-Sellers et al., 1998]; al-
though when qualified it may be used on a smaller scale, e.g., the “software maintenance
process” [Breton and Bézivin, 2001]. In contrast, the capability assessment and stan-
dards communities tend to use the term process at a smaller scale, as equivalent to terms
like Activity in OPEN [Graham et al., 1997] or Discipline in SPEM [OMG, 2003]. If
the term process is defined as a transformation from input into output [ISO, 1998], the
notions of process (improvement) in many ISO standards and Software Process Im-
provement contexts (SPI) [Jalote, 2002] underline that the granularity of interest is of-
ten called method fragment [van Slooten and Hodes, 1996][Brinkkemper et al., 2001],

327Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



method chunk [Ralyté and Rolland, 2001], or, very intuitively, process component
[Henderson-Sellers et al., 2002][Firesmith and Henderson-Sellers, 2002].

We should also note that the terminology of process, method and methodology is
often highly confused. The term “methodology” is usually understood to have two com-
ponents: process and product [Rolland et al., 1999]. In this paper, however, we will only
be addressing the process component of the methodology and so will take the liberty
of using process and methodology as synonyms (also the term “method” is taken as a
synonym of methodology).

There are currently several object-oriented software development methodologies,
processes, or methods available for developing software applications. They are pre-
sented in such a way as to assist developers in producing high quality and robust soft-
ware on time and on budget to satisfy the organization’s business needs. Software meth-
ods have a responsibility to facilitate creativity and, at the same time, provide an ulti-
mate way for planning and managing every phase of the entire software development
lifecycle for different project, organization and even different domain constraints. Con-
temporary OO software development processes range in “size” from “light-weight” or
“agile” to “heavy-weight” or “formal,” broadly falling into two categories.

The first category can be best described as well-established and large-scale pro-
cesses. The second category covers those processes that advocate a new style of soft-
ware development, often described as agile or light-weight processes. They are based on
the enforcement of embracing and responding quickly to changes in a fast, iterative, in-
cremental manner. eXtreme Programming [Beck, 1999], Crystal [Cockburn, 2001] and
SCRUM [Beedle et al., 2002] are examples of these agile processes. Agile methods
have, to date, been largely trialled on small projects and there is significant debate as
to what extent they will or will not scale up (see, for example, [Constantine, 2002]).
The agile community strongly claim that agile/lightweight methods are seen to be more
people oriented and more able to adapt to changes than the more traditional approaches.

In general, software methods offer good advice and focus on the entire software
development life cycle. On the other hand, they do not usually offer a great deal of
flexibility or tailorability to enable and empower a development team to adapt them to
best suit a particular project.

Constantine and Lockwood claim that it is not possible to design or select a sin-
gle method for all conceivable situations, especially the prevailing organizational cul-
ture [Constantine and Lockwood, 1994]. Most of the contemporary methods purport to
offer “the solution” to almost all software projects by direct adoption with a low degree
of customization. The formal, so-called “heavyweight”, methods, both in structured
development and, recently, in object-oriented development, have been described as in-
flexible and hard-to-follow methods. [Fowler, 2002] argues that the existing/dominant
heavyweight methods have too much overhead and are resource hungry. Indeed, many
authors cite the popularity of the CMM (and now the CMMI) and ISO12207 as leading
to organizations creating and using processes that are more “heavy” than necessary.

328 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



Existing “heavyweight” methods tend to be predictive and unable to react to chang-
ing circumstances. They are thus useful for fixed price and/or fixed scope contracts, par-
ticularly where requirements are well-known, and can be used when significant project
management overheads must be incurred, e.g., with large, business-critical systems built
by teams of over 50 members [Fowler, 2002].

One current question now is, have agile methods fixed the major drawbacks and
removed the weaknesses of the formal methods? Our current research suggests that ag-
ile/lightweight methods impose some significant amount of rigour on the process com-
ponent of the method. Henninger et al. assert that when moving from project to project
in different domains, with varying project size or scope, for instance, it is unlikely that
the same agile method will be appropriate [Henninger et al., 2002]. With XP, for exam-
ple [Beck, 1999], there are a number of pre-specified practices and values. Advocates
of XP state publicly that if any one of these is missing then it is inappropriate for the
development team to claim they are using XP. In other words, while the method itself
provides a high degree of flexibility to react to customers’ whims, the overall project
management element and the very structure of the procedures tend to be tightly con-
trolled (as indeed they must be if such a rapid, high pressure development can succeed.)

In addition, there are a number of recent research efforts that aspire to add more
values to the existing agile methods in order to reduce their weaknesses. Some examples
can be found in [Patton, 2003a][Abrahamsson et al., 2003] and, most recently, in the
integration of Usage Centered Design (UCD) into agile methods [Patton, 2003b].

To sum up the above aphorisms, neither formal nor agile methods satisfy and fulfil
the ever-increasing demands of the software development community. For many situa-
tions, heavyweight methods fail to offer a sufficient degree of flexibility and tailorability
to be customized for different projects. On the other hand, existing agile methods do not
offer any flexibility whatsoever that enables developers to self tune or re-engineer their
method to suit a different project, organization or even a different domain.

2.1 Criteria for Process Flexibility Assessment

The usage of a process by an organization is, by its nature, a delicate and unstable
situation. On the one hand, the process must guide the organization in the appropriate
direction, compelling it to “do the right thing”. On the other hand, the organization must
find its particular skills and values supported and respected by the process rather than
being exhorted to use unfamiliar techniques or approaches. Most of the processes avail-
able today promise guidance and guarantee superior results if you follow them but make
no claims with regard to considering the organization’s existing assets. Therefore, the
successful adoption of a particular process is, in real life, only possible if the organiza-
tion accommodates a large number of changes dictated by a pre-defined, rigid process.
For this reason, flexibility becomes an important and desirable characteristic of a pro-
cess. However, process flexibility cannot be approached in an unstructured way or as
an afterthought. The process must be flexible (so it can accept each organization’s work

329Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



style and skills) but also, regardless of how it is customised, maintain an appropriate
degree of formalism and efficacy.

In order to assess existing processes with regard to their flexibility and capability for
customization, some objective criteria must be developed. Organizational variability,
the reason behind the need for process customization, can provide some insights to
these:

– Different organizations possess varied degrees of expertise in different skills and
techniques. Organizational culture and style often help determine which techniques
are used and which are not.

– Different projects (even within the same organization) often demand different de-
grees of formality and accuracy, depending on their criticality and quality require-
ments. Not all projects require the same tasks to be done and products to be devel-
oped.

– Different organizations often perform at different capability or maturity levels. Usu-
ally, organizations performing at higher capability levels carry out jobs (such as
process measurement or detailed planning) that organizations performing at lower
capability levels simply omit.

Some criteria can be derived from these facts:

Criterion A: Does the process allow for technique selection for each task?

Criterion B: Does the process allow for the selection of what activities, tasks and tech-
niques are to be used in a per-project basis, depending on the specific characteristics
of the project?

Criterion C: Does the process allow for the customization of what activities and tasks
are performed, and what work products are constructed, depending on the capabil-
ity level of the organization and/or development team?

Criteria A and B show that different techniques may be used to achieve the same
results. For example, a wide range of techniques can be used to develop a system re-
quirements specification. Some organizations and some projects might make use of
more formal techniques, such as questionnaires, workshops and joint application devel-
opment, while others would use storyboarding and throwaway prototyping. A process
capability to allow an organization to decide on the techniques to use in order to realise
a given task or produce a given product is, therefore, the first criterion to assess the
process’ flexibility.

Criterion B also illustrates that projects of different kinds have different needs in
terms of the products, i.e., models and documents, that must be created and the tasks
that must be executed. For example, the development of a class library that lacks a user

330 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



interface will not need to create user interface diagrams and will not need to perform
tasks related to usability assessment or the definition of user navigation paths. A project
aiming to produce a business application with a complex user interface, on the other
hand, will need to spend a considerable amount of time on these issues. A process’
capability to allow an organization to selectively select or omit portions of the process
is the second criterion for process flexibility assessment.

Finally, Criterion C shows that some tasks (and, consequently, some intermediate
products) may or may not be performed during a project depending on the capability
level at which the organization is performing. For example, an organization perform-
ing at CMM level 2 or above will want to perform some kind of quality management
activities (and for this reason generate products such as quality plans and quality as-
surance records), while an organization performing at level 1 will completely exclude
such quality assurance chores. Sometimes, this difference is more subtle, affecting not
whether an organization performs a whole activity (such as quality management or re-
quirements engineering) but which specific tasks it will perform within a given activity.
For example, a level 1 organization will perform requirements engineering by analysing
stakeholders and users, developing a vision statement, obtaining and analysing the re-
quirements and then preparing a specification document. A level 2 organization will
perform all of these tasks as well, but will also develop a plan for the whole activity
and verify all the generated work products for correctness. A level 3 organization will
add process measurement and improvement tasks to these, and so on. A process’ ca-
pability to allow an organization to add or remove details on the jobs to be performed
depending on the required capability level is, therefore, the third criterion for process
flexibility assessment.

2.2 Assessment of Existing Process Approaches

There are many processes available currently, but few can be customised to a satisfac-
tory degree. Using the three flexibility assessment criteria developed in the previous
section, it is possible to objectively evaluate how flexible processes are. We will focus
on the following processes or process frameworks/metamodels, which are (in alpha-
betical order): Catalysis [D’Souza and Wills, 1999], CMMI [SEI, 2000], Extreme Pro-
gramming or XP for short [Beck, 1999], ISO/IEC 12207 [ISO, 2002], ISO/IEC 15504
[ISO, 1998], OMG SPEM [OMG, 2003], OOSPICE [Stallinger et al., 2003], OPEN
[Firesmith and Henderson-Sellers, 2002], and the well-known Rational Unified Process
(RUP) [Kruchten, 1999][MacIsaac, 2003]

[Table 1] shows how these processes or process frameworks score in relation with
each of the defined flexibility assessment criteria. Details for each process or process
framework are given below.

Catalysis: it makes no distinction between techniques (how to achieve a specific result)
and tasks (what is expected to achieve), offering process patterns that can be freely

331Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



Process Criterion A Criterion B Criterion C
or Task Project Maturity

framework customization customization customization
Catalysis No Yes No

CMMI n/a No Yes
Extreme Programming No No No

ISO/IEC 12207 n/a Yes No
ISO/IEC 15504 n/a Yes Yes

OMG SPEM Yes Yes No
OOSPICE Yes Yes Yes

OPEN Yes Yes No
RUP No Yes No

Table 1: Degree of compliance of each of the studied processes/frameworks with each
of the three objective criteria

customised. Therefore, no support for technique-to-task mappings exists. However,
Catalysis process patterns comprise an original approach to process fragment se-
lection, allowing developers to use the patterns that they consider most appropriate
and ignoring others. Finally, Catalysis makes no mention of capability levels.

CMMI: it is not a process or a process framework in itself, but contains a process
reference model used to perform process assessments. Therefore, the first criterion
in our list cannot be evaluated. With regard to process fragment selection, CMMI
approaches assessment from a monolithic point of view, so no discrete process
fragments are considered. Finally, capability levels are considered by CMMI.

Extreme Programming: together with other agile approaches to software develop-
ment, it is extremely rigid in its prescriptiveness of tasks and techniques to be used.
No flexible mappings are possible, since all the techniques to be used are prede-
fined by the method itself. Also, leaving out a fragment of the process is explicitly
forbidden, and there is no mention of capability levels.

ISO/IEC 12207: it uses abstract definitions of the jobs to be performed, so no support
for technique-to-task mappings is given. Discrete process fragments are defined, so
selection facilities exist. Finally, 12207 makes no reference to capability levels.

ISO/IEC 15504: similarly to CMMI, is not a process framework but an assessment
standard that contains a process reference model, so the first criterion in our list
cannot be evaluated. However, since 15504 addresses process assessment using
discrete process fragments, selection facilities are considered to be present. Finally,
15504 makes explicit use of capability levels.

SPEM: it provides a Guidance class (of which Technique is a kind) that can be mapped
to other model elements in a many-to-many fashion, so a flexible technique-to-task

332 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



mapping can be achieved. Also, SPEM provides for the definition of discrete activ-
ities and steps, so process fragment selection facilities do exist. Finally, capability
levels are not considered by SPEM.

OOSPICE: it has been designed with flexibility criteria in mind, so it satisfies all of
them. OOSPICE includes a TaskTechniqueMapping class that allows flexible map-
ping between tasks and techniques. Also, it approaches the definition of a pro-
cess using discrete chunks that can be selected depending on the needs. Finally,
OOSPICE incorporates minimum capability level attributes for some of its classes,
so processes can be tagged with the appropriate capability level as necessary.

OPEN: it provides a deontic matrix to map tasks to techniques, so a flexible map-
ping is easily attained. Also, process fragment selection is supported through the
OPEN repository of process components. Finally, OPEN does not directly support
the concept of capability level.

RUP: it does not provide a mechanism to allow mapping techniques to tasks, since pro-
cess components are provided as pre-packaged chunks. However, process fragment
selection is supported through such packages. Finally, no mention of capability lev-
els is made.

[Table 2] summarises the scores for each of the evaluated process or process frame-
work. A value of 1 has been assigned to each “yes” in the previous table, and a value of
−1 has been assigned to each “no”. The result of this numerical conversion is shown in
the column titled “Score”. The column “Normalized Score” shows the result of normal-
izing the scores to a [0, 100] interval. It can be readily observed that the “processes” with
the best scores (100 on the normalized scale) are those associated with a metamodel-
based process focusing on capability assessment (OOSPICE). Those with the lowest
scores are those created as one-off methodologies/processes (Catalysis, XP and RUP),
with neither capability nor explicit metamodel content, i.e., no notion of method engi-
neering. Both metamodel-focused methodological frameworks, OPEN and SPEM, have
the same score, in the upper half of the scale.

3 Importance of problem: Improving productivity and quality

The software industry, although improving, is plagued by overruns in budget, poor qual-
ity and cancelled projects [Yourdon and Argila, 1996], sometimes colloquially known
as the “software crisis” [Onoma, 1987][Laplante, 1998]. While [Glass, 2000b] agrees
that there are software project failures, he argues that this does not necessarily in-
dicate a crisis. His view is that reports of failed software projects, especially large
ones, are exception reports and newsworthy because of the rarity rather than a gen-
eral comment on the state of software development. Glass acknowledges that other
industry commentators do not share his view and are more pessimistic. The Chaos

333Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



Process Score Normalized
or Framework Score

Catalysis −1 33
CMMI 0 50

Extreme Programming −3 0
ISO/IEC 12207 0 50
ISO/IEC 15504 2 83

OMG SPEM 1 67
OOSPICE 3 100

OPEN 1 67
RUP −1 33

Table 2: Flexibility scores for the studied processes/frameworks

Report [Johnson et al., 2001] similarly shows a steady improvement in the number of
projects that complete.

In 1994, only 16% of application development projects met the criteria for success
(completed on time, on budget, and with all features/functions originally specified.) In
2000, 28% of projects were in the successful column. In 1994, 28,000 projects were
successful, while in 2000, the number rose to 78,000, e.g., almost a threefold increase.
Conversely, failed projects amounted to 54,000 in the 1994 study as compared to 65,000
in the 2000 study. This was an 18% increase, while overall project growth exceeded
60%. Still, 65,000 is a large number.

Richard Hunter from the Gartner Group [Hunter, 1998] asserts that consistent ad-
herence to a moderately rigorous software methodology/process can provide 70% of IT
organizations with a productivity improvement of at least 30% within two years. This
fact emphasises the need for inserting a formal software development process in prac-
tice. A proper process intends to make software development more formal, rigorous and
repeatable as far as it is possible. Finally, development knowledge should not remain in
the brain of a single person, but in an organization’s documentation.

Measures of software project success, particularly those used in long lived compar-
isons such as the Standish Group’s Chaos Report [Group, 1994], have generally been
measured on completion, budget, schedule and accepted functionality. Quality levels,
i.e., an absence of defects, are judged indirectly by the software being of sufficient
quality to have been accepted. The International Software Benchmarking Standards
Group [ISBSG, 2003] measure productivity very specifically by the product delivery
rate, measured as the number of hours per function point. There is no measure given
for quality or defect density. Again, it is assumed that the measure of quality is that
the delivered product was of sufficient quality to be accepted. The desire to improve
software productivity and quality can stem from a desire to compete in the market place
just as strongly as a desire to avoid an expensive failure. When software systems are
acquired rather than developed in-house, it is natural to seek some assurance that the

334 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



supplier has their development processes under control, will deliver to budget, schedule
and with the required functionality. Market forces will tend to favour those with higher
productivity and quality (sufficient motivation in itself to seek better software develop-
ment practices.) Obviously those with more productive processes can submit a lower
bid for the same work, or attract a better profit. From the other side of the bargaining ta-
ble, a customer may demand that an organization carry out some process improvements
as a contractual condition.

There is a general antipathy to adopting a process, often being seen as a “waste of
time”. A study by Baddoo and Hall found that the most demotivator against process im-
provement was commercial pressure [Baddoo and Hall, 2003]. Making improvements
takes time and will generally reduce productivity as the developers learn the new skills
or techniques [van Zyl and Walker, 1982]. That the same improvements will ultimately
result in considerably higher productivity is not an effective answer to a demanding
customer concerned about their specific deadlines. Often the process improvements fall
victim to such commercial pressures. Baddoo and Hall also found that resistance to soft-
ware process improvement was largely due to inertia, bad experience and general lack
of support for software process improvement (SPI). Inertia stems from a comfort with
the familiar and an unwillingness to adopt a new, and unfamiliar, process. These were
both coupled with a lack of managerial support throughout the improvement process.

Time to market dominates thinking, often totally at the expense of the need for
quality. Sometimes there is good reason why an application must be completed by a
given deadline. When completion is timed to coincide with another event, such as the
completion of a building or a tunnel or a factory, there is a very real need to meet
a project schedule. However, when the product is intended for a general market, the
schedule pressure is more to match or beat competitors.

Software development is often seen as a production process rather than a design
or problem solving process. That it, the problem to be solved is relatively known and
developing a system that implements the solution is likened to the production of some-
thing.

Production that is less frequently repeated in the sense of, for example, building
construction is characterized by extensive planning to reduce, if not remove, unknowns
from a schedule followed by execution of the scheduled activities in pursuit of the final
goal [Muller, 1982][Yates and Tatum, 1982]. The expression “plan the work then work
the plan” neatly sums up this approach. Essential to this type of planning is that the
techniques to be used are well known and the problems to be solved have precedent so-
lutions. It is the rare buildings such as the Sydney Opera House that challenges existing
construction processes.

Such an approach assumes that all problems are solvable if they are decomposed
sufficiently, and that the solution can be reassembled from the component solutions, i.e.,
the whole is a sum of its parts. Many articles on project management reflect this model,
for instance: [Bauch and Chung, 2001] [McConnell, 1998] [Scarola and Tatum, 1982]

335Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



[Hughes and Cotterell, 1999] [ISO, 1999] [Thomsett, 2002] [Boehm et al., 2000] or
[PMI, 2000] or are good examples. A system will be divided into components and sub-
components with the expectation that each sub-component problem can be solved, and
that the resultant components will interface and interact in predetermined ways. The
whole becomes the sum of its parts.

[Gasson, 1998] identifies “a traditional, rational model of design [that] nominates
most current organizational information systems development practice. This model is
based on the conceptualization of IS development as a staged, linear, decompositional
process.” Projects treated in this way place great emphasis on planning and estima-
tion. The assumption is that planning, with only minor corrections, will be done once
and will accurately predict how the project will be carried out. Naturally, this requires
detailed estimates of how long each task will take and the resources required for its
completion. With the software development project divided into component parts in
this way, it becomes possible to treat software development as an engineering process,
amenable to many of the same monitoring, management and improvement techniques
[Humphrey, 1989][Humphrey, 1994][Humphrey, 2000].

Unfortunately, no metrics exist to demonstrate that such myopic thinking leads fre-
quently to loss of opportunities and/or defunct businesses, although there is a growing
body of evidence to suggest that higher maturity levels are associated with better soft-
ware development performance [Lawlis et al., 1995][Brodman and Johnson, 1996]. In
contrast, if software development is viewed as a design process, then there is an em-
phasis on solving the problem at hand, rather than implementing an already known
solution. In design problems, people have to collaborate and social processes are essen-
tial [Gruhn, 1992]. [Gasson, 1998] argues that the design activity cannot be separated
into a single stage of the system development life cycle. Gasson further argues that the
traditional model requires that all the requirements are defined before problem decom-
position begins. Obviously this is seldom true when, on average, only 58% of require-
ments were specified before beginning product design [Thomke and Reinertsen, 1998].

Major benefits that we, the software community, can achieve from deploying a for-
mal software process in practice are as follow:

– Ensuring that a consistent, reproducible approach is applied to all projects in the
way of providing a uniform approach to developing software.

– Achieving a clear definition and clear management of each phase with its pre- and
post-conditions.

– Overcoming the inadequacy and imperfection of the ad hoc process.

– Controlling and supporting the whole development life cycle and providing good
project planning and management.

– Gaining consistency and traceability through the whole development life cycle.

336 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



– Emphasizing the analysis and understanding of the problem through customer in-
volvement.

– Supporting a whole suite of projects (a “programme”).

– Reducing the risk associated with shortcuts and honest mistakes.

– Simplifying the complexity of today’s requirements and best handling the enor-
mous size by decomposition to manageable pieces of software.

– Producing complete and consistent documentation from one project to the next.

– Gaining a degree of flexibility to tailoring the process to manage and support dif-
ferent types of projects and strategies.

In summary, following a formal OO Software Engineering Process (SEP) through
the full lifecycle of software development can maximize and facilitate the benefits of
producing high quality software, including interoperability, portability (platform inde-
pendency), adaptability, scalability, supporting graphical user interfaces and providing
better fault tolerance and more network management.

3.1 Software Process and CMM

The SEI Capability Maturity Model for Software (CMM) [Paulk et al., 1993] was de-
veloped by the Software Engineering Institute (SEI), to set a standard and provide guid-
ance for developing software engineering disciplines and management. It describes a
framework that organizations can use to determine their ability to develop and maintain
software and is a model for organizational improvement. Its use is becoming widespread
among software developers, especially for companies developing large-scale software
in a competitive procurement environment. Government and corporate software cus-
tomers are increasingly requiring that proposals include information about a software
development organization’s level of certification of the CMM. SEI has defined five lev-
els to characterise the maturity of a software development organization, as follows:

Level 1 (Initial): Processes are ad hoc and occasionally chaotic. Few processes are
defined. Success depends on individual effort and heroics.

Level 2 (Repeatable): Basic project management processes are established to track
cost, schedule and functionality. A process discipline is in place to repeat earlier
successes on projects with similar applications.

Level 3 (Defined): Management and engineering processes are documented and inte-
grated into a standard software process. Projects use an approved, tailored version
of the organization’s standard software process.

337Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



Level 4 (Managed): Detailed measures of the software process and product quality are
collected. Processes and products are quantitatively understood and controlled.

Level 5 (Optimizing): Continuous process improvement is aided by quantitative feed-
back from the process, and from piloting innovative ideas and technologies.

3.2 OO Process

An object-oriented process provides the step-by-step activities that lead from analysis
to implementation. The process provides a set of graphical notations for use in reviews,
inspections and documentation, and also provides communication techniques to bridge
the gap between software developers and customers.

An OO process provides a communication medium between developers and cus-
tomers, a framework for modelling the domain problem, and standards for transitioning
the problem from analysis to final deliverable products. The process has an impact on
almost every step in the software development activities.

An OO process provides predictability, repeatability and documentability. Software
systems without documentation can be very costly to enhance and maintain. Each en-
hancement or maintenance task will cost as much or more than the original development
cost.

An OO process provides a way for project managers to successfully manage their
projects, as well as a way for all system stakeholders to monitor the project progress.

3.3 One Size Does Not Fit All

With all the number of OO processes available, how can we choose the most appro-
priate process that is the best fit for target software project? A difficult task simply be-
cause there is no one size does fit all [Constantine and Lockwood, 1994]. Fayad et al.
have similarly stated this fact by saying that “there are no meaningful one-size-fits-all
software development methods” [Fayad et al., 1996]. For example, very large projects
require more planning, management and control than small projects, which, in contrast,
may better utilize an agile/lightweight process. Intensive, critical and real time projects
need more safety, quality assurance, reviews and accurate and extensive testing than
other projects. On-line web applications require a different process to ordinary sys-
tems, as mentioned in [Lowe et al., 2001][Haire et al., 2002], for instance. Brand new
systems require a different process to software re-engineering projects. Soft systems
(ill-defined) require a different process to well-defined systems. A single project will
require a different process to a whole suite of projects (programme). Organizations
transitioning to Object Technology (OT) for the first time definitely require a different
process to than other organizations that have already moved to, and adopted OT.

338 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



3.4 Process Selection Criteria

Criteria for selecting a software process mainly focus on the best match between the
process and the software development environment within the problem domain that
leads to economical advantages. Other criteria include:

– Alignment with the organization’s strategy as this is considered by many as a Crit-
ical Success Factor for software development [Yourdon, 1999].

– Project size since large projects usually require more sophisticated and formal pro-
cess such as OPEN or RUP whereas small projects generally need a lightweight
and fast process such as eXtreme Programming [Beck, 1999].

– Project timeframe and other constraints that developers have to satisfy.

– Development type since web and on-line development requires a different process
than business or distributed applications.

– Safety requirements since critical systems such as life support and airline naviga-
tion systems mostly emphasise safety issues.

– Other process selection criteria including scalability, complexity, architecture, reli-
ability, maintainability, support, cost and development life span.

3.5 Process Maturity

The process maturity (or capability) framework arose from the need to rate poten-
tial software development organizations on their ability to deliver product on time, to
budget, within requirements and the to required quality levels [ISO, 1998][SEI, 1993].
Usually, the framework consists of 5 levels, beginning with the lowest level of 1 and
ending with the highest level of 5. At the lowest level, an organization develops software
relying on “heroic” effort and seldom delivers to schedule and budget. At level 2, de-
velopment is managed and controlled while at level 3 software development processes
are defined and followed. Levels 4 and 5 bring in some of the more advanced process
management concepts such as statistical process control and continuous improvement.
There have been several studies confirming a relationship between higher maturity
levels and improved software development performance [Brodman and Johnson, 1996]
[Butler and Lipke, 2000][Goldenson and Herbsleb, 1995][Lawlis et al., 1995]. While it
is obvious that higher capability levels are better, but they incur organizational effort and
cost which may not always be required or justified by a particular project. For example,
a prototype development may need to emphasize speed rather than rigorous quality in
order to demonstrate proof of concept. Similarly a small team of less than 10 developers
may not need the same organizational management rigour as a project requiring several
hundreds of developers. In other words, a process operating at a lower capability level
may be acceptable, even optimal, under such constraints.

339Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



3.6 Full Development Life Cycle Support

A good process should be able to support every activity within the development life cy-
cle from analysis to deployment and maintenance. This doesn’t only include analysis,
design and building, but also the support of other areas, such as project management,
testing, retrospectives and enhancements. The lifecycle commences with the identifica-
tion of a business problem and ends with the termination of use of the software in that
organization.

The selected process should also support some important issues, including pro-
cess improvement, reusability and repeatability and should be usable at each level
of process capability. It should not focus only on the current problem or project; in-
stead, it should be flexible enough to be adapted to the problem or other develop-
ment projects. Ideally, the lifecycle model used should be able to be varied since for
some projects, a waterfall approach is adequate, for others an OO fountain model is
needed and for others an XP-style lifecycle model is most appropriate [see Chapter 6
of [Firesmith and Henderson-Sellers, 2002]]. A good process should maintain consis-
tency between development activities without violating the object-oriented paradigm
[Humphrey, 1988].

3.7 Reuse and its Applicability to Quality

Reusability has the potential to underpin improvements in quality and therefore needs
to be integrated into the process. Reuse is as old as programming itself; it is a software
technology that remains valid [Lynex and P.J., 1998], building or assembling software
systems from predefined components. Reuse must be seen as a long-term strategy to
which management is committed.

It is shown that reusability needs to extend not only for a project but over the entire
organization. Reuse must be supported by an organizational structure that divides the
roles and responsibilities of system developers into reusable component builders and
assemblers [McClure, 1997]. This is part of the team building initiative that a software
development team should undergo to implement reusability for software improvement.

Recently, most software developers and their management are integrating reuse into
their processes knowing the cost effectiveness, low risk and reduction in time to pro-
duce a product. Modern object-oriented processes are very often seen as enablers for
reuse [Morisio, 2002].

Object oriented software engineering required large scale software reuse be recog-
nised in a practical way. The basic concept of systematic reuse is to develop systems
components of a reasonable size and reuse [McIlroy, 1969]. This ensures that when
components are reused they have not only been tested before, but are tested again and
again when the components are reused, thus ensuring better quality of the software (or,
here, the process/methodology.)

340 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



3.8 Team Building as a Prerequisite for a Quality Process

The importance of team building as part of a quality process is also frequently ignored.
These more human aspects of computing are frequently not included in software devel-
opment methodologies so the project managers must utilize a (perhaps incompatible)
human resource (HR) strategy.

Team building has not been largely studied in the context of software development
methodologies. With the introduction of Agile Methods, the emphasis of people has
become more of a concern. As Agile Methods are explained to be people-focused not
process-focused [Cockburn and Highsmith, 2001], software methodologies are turning
towards how to improve their teams and utilize their resources.

From experience, [Fowler, 1995] states that many Information Technology projects
have failed due to the nature of teams within the IT industry. Teams have been made up
of IT specialists, with no other team roles to understand the users view. Teams should
consist of a diversity of individuals to aid in problem solving, decision-making and
change that occurs during the course of a project. Typical profiles include individuals
who could be described [Belbin, 1981] as co-ordinators (respected by the team, chair
the team but not necessary creative), and plants (clever people, who are innovative and
have problem solving skills.) Team building involves understanding the skills and tal-
ents of the people who are required to fulfil the goals of the software process and, most
importantly, how these skills complement each other.

The role of each person within a team is affected by the size of a team. A team of
4-6 people has specific roles [Belbin, 2000]. The term team, having come from team
sports, illustrates that in every sport there are teams of a set size. The size allows each
player to have a role to play within the team. On the other hand, [Belbin, 2000] also
mentions that there is a difference between the team activity of a team sport and a team
in an organization. The sporting team is trained with skills to compete on a field of play
with little communication. In an organizational team, communication is vital for the
decision making processes in a competitive economy that is changing rapidly each day.

Selecting a team needs careful planning and basic knowledge of the individuals re-
quired for the team [Belbin, 2000]. The roles that are selected through team building
exercises are the core of the team. As each role is played out during the development
of the software, the team becomes committed and motivated to the project. In our mod-
ern organizations where change is constant, our teams need to be flexible to embrace
changes. With team roles, this flexibility allows the entire team to focus and remain
with the organizational vision.

Building a team relies on the people resources to accomplish the team’s goals in
light of the organizational mission. Team building is a critical component of any high
quality process, as exemplified in contemporary agile methodologies.

341Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



4 Solution: Method Engineering

Underpinning all these problems is the lack of use of a flexible software development
methodology that takes into account all the human and organizational cultural issues as
well as technical issues. The solution we advocate is commonly referred to as situational
method engineering, or SME for short [Kumar and Welke, 1992][Brinkkemper, 1996]
[Hofstede et al., 1997][Kraiem et al., 2000][Ralyté and Rolland, 2001]. This is an ap-
proach with a sound theoretical basis but, as yet, little adoption by industry. Rupprecht
et al. have proposed that a framework together with techniques may be useful for con-
structing situational engineering processes (which they call “process individualization”)
by applying a number of predefined operators on a number of predefined generic pro-
cess building blocks with the help of a reference model [Rupprecht et al., 2000]. While
this approach provides a complete solution to the situational methodology problem, it
is only implemented in a number of engineering domains, which are simpler and less
volatile than the field of software engineering. Their proposals included a CASE tool
for process construction, commercially available as the ARIS Process Generator. Fur-
ther development of such tools, more appropriately named CAME (Computer Assisted
Method Engineering), is given by [Saeki, 2003].

In the SME approach, methodological ideas are arranged as “method chunks” or
“process components” and stored in a common repository [Ralyté and Rolland, 2001]
[Firesmith and Henderson-Sellers, 2002]. A number of these are selected for process
construction and customization, selection being determined by a large number of factors
highly specific to the particular software development organization or particular project.
Rules for constructing such processes are still being investigated [Klooster et al., 1997]
[Brinkkemper et al., 1999][Henderson-Sellers, 2002][Ralyté, 2002].

A process for method assembly was proposed by [Ralyté and Rolland, 2001], which
consists of two parts: the Method Engineering Process Model (MEPM) and the Assem-
bly Process Model (APM). The authors identify three different cases that need to be ad-
dressed by the processes, namely: in the definition of a brand new methodology created
to satisfy a set of methodology requirements; for adding alternative method chunks to
an existing methodology; to add new functionality to an existing methodology. Each of
these three cases is represented as an individual strategy that is used to link the require-
ments to the constructed method chunk. The process is described graphically in terms
of a map between one node representing “Specify Method Requirements” and a sec-
ond node named “Construct a Method Chunk”. They also include a “reverse” strategy
from “Construct a Method Chunk” back to ”Specify Method Requirements”, a strategy
called “Requirements Correction”.

Based on this high level process construction process of the MEPM, the finer detail
is added using the APM. The APM focuses on a node called “Select a Chunk” which
has four associated strategies (evaluation, decomposition, aggregation and refinement).
These strategies are used to evaluate the appropriateness of each selected chunk, check-
ing whether it meets the methodological requirements.

342 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



1. There should be at least one concept newly introduced in each method fragment.
2. There should be at least one concept linking the two fragments to be assembled.
3. When adding new concepts, there should be connections between them and exist-

ing fragments.
4. When adding new associations, both new fragments should be participants.
5. In the resultant combined fragment, there should be no isolated elements.
6. There should be no name duplication for different method fragments.
7. Identification of added concepts should occur after the associated concepts have

been identified.
8. When two fragments are assembled, it is necessary that the output of one is used

as the input to the other.
9. Every work product must be identifiable as the output of a particular process frag-

ment.
10. When a work product has been created from other work products, then the pro-

cess fragments producing the individual work products are summed to the process
producing the amalgamated work product.

11. Any technical method fragment should be supported by a conceptual method frag-
ment.

12. When there is an association between two product fragments, there should be at
least one association between their respective components.

Table 3: Rules proposed in [Brinkkemper et al., 1999] for ensuring constructed process
quality

Once the chunk is selected correctly, then it is likely that this chunk will need to be
incorporated with other chunks. There are two basic strategies proposed: an association
strategy when there is no overlap between the new chunk and any existing chunks and,
secondly, an integration strategy when there is overlap present. Integration clearly pro-
vides the largest challenges. Detailed strategies advocated for use in APM include name
unification, merge, transformation, generalization, specialization, remove, addition and
completeness [Ralyté and Rolland, 2001].

It is important that the constructed methodology is meaningful. This is addressed
by [Brinkkemper et al., 1999], who propose a list of 12 rules [see Table 3] to ensure
that the constructed methodology is of quality. It is suggested that method fragments
should be viewed as being on one of three dimensions: perspective, abstraction level
and granularity. Violations of integrity are classified in [Brinkkemper et al., 1999] as
either:

Internally incomplete: if a fragment requires another, e.g., in providing a required
work product.

Inconsistent: if a conflict between two fragments arise.

Inapplicable: when the use of a fragment is not possible due to lack of capability
(important in the context of this paper.)

343Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



In this approach, the rules for method assembly are represented using a formal logic.
This is used to define all small scale manipulations as well as the completeness and
consistency rules.

An important component of method engineering is to ensure that the method chunks
or process components are congruent with (and instantiated from) a process meta-
model [Brinkkemper et al., 1999][Henderson-Sellers, 2003]. Several such metamodels
have been proposed, including an ER-based one [Kelly et al., 1996], object-oriented
metamodels [Firesmith and Henderson-Sellers, 2002][OMG, 2003], or even so-called
virtual workspaces and capability assessment [Hawryszkiewycz, 2000]. More general
discussion of this topic is also found in [Brinkkemper et al., 1999], for instance.

Finally, transitioning an organization to a new technology (here method engineer-
ing) requires consideration of both personal and organizational cultures. Furthermore,
team building [see Section 3.8] will diversify process ownership since adopting a tech-
nology is a team responsibility, not an individual one. It has also been found from ob-
servations that, in practice, this introduction is best done in an incremental fashion. The
ability to incrementally introduce a method also leads to support for software process
improvement and the much needed agility of a process to fit both current and future
situations.

A final thread is the desirability to automate the process/method construction pro-
cess; appropriate supporting tools are being developed, but there are not conclusive re-
sults [Nguyen and Henderson-Sellers, 2003b][Nguyen and Henderson-Sellers, 2003a].

Industrial evaluations of the approach using the OPF [Serour et al., 2002] demon-
strate the viability of an SME approach to software development. These evaluative in-
dustry studies were conducted with a legal publishing company in Sydney, Australia,
who were transitioning to an object-oriented, web-based development environment.
This transition was facilitated by the adoption by the organization of a planned tran-
sition process and the use of a method engineering approach by which they were able
to adopt, initially, an agile version of OPEN (with UML as the notation) and then allow
it to be incrementally improved by the addition of increasingly sophisticated process
components, compatible with higher levels of process capability [see Section 3.5].

4.1 A Practical Example of Method Engineering

To illustrate how such a methodology might look in practice, examples have been taken
from a methodology that was developed as part of the OOSPICE project. The two exam-
ples show the same process, namely: a basic process listing only those tasks necessary
to achieve a SPICE capability level of 1 [see Section 4.1.1], and listing all tasks nec-
essary to achieve a level 5, too [see Section 4.1.2]. The examples, generated by a tool
embodying many of the integrity constraints discussed earlier, show how any process
described in this manner can easily be tailored to the capability level required by the
organization or by a specific project.

344 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



In [Section 4.1.2], the capability level is shown on the left hand side for each entry
under Outcomes, Tasks and Techniques. The process can be tailored still further by
selecting techniques (only a few are shown for illustrative purposes) with which to
complete specific tasks that are appropriate to process capability level required by the
organization or a specific project.

4.1.1 Example Process at Capability Level 1

Purpose: To establish a managed and evolving repository of knowledge about the domain.

Outline: A strategy to guide the management of the repository of domain knowledge is devel-
oped. The scope and characteristics of the domain are defined and standard terminology is
established. Finally, the domain status is assessed.

Outcomes:

1 A domain engineering strategy is developed.
1 The domain is defined.
1 Standard terminology is established.
1 Domain characteristics are identified.
1 The domain status is assessed.

Specific Tasks:

1 Develop a strategy for domain engineering

Identify the stakeholders and their objectives, organizational constraints and applicable orga-
nizational policies. Identify how to achieve the desired outcomes while satisfying the stake-
holders’ objectives within the identified constraints. Identify what needs to be done and
when, the required resources and how to overcome deficits in those resources. Identify how
the organization will decide the strategy is working.

Actions:

Domain Strategy Create
Business Objectives ReadOnly

Techniques:

Strategy Development Optional

1 Define domain

A description of the type of problem that systems in the domain solve and the external en-
vironment with which systems interact is produced. The observable behaviour that systems
exhibit in solving the problem is described. The behavioural aspects of the system should be
viewed from a black-box perspective. Any significant constraints concerning how the sys-
tems operate in terms of performance, reliability or distribution concerns are also included.
The primary functions performed by every system in the domain and any important functions
performed by only some systems are defined.

Actions:

Domain Specification Create
Domain Strategy ReadOnly

1 Establish standard terminology

Definitions of all significant terms used by domain experts in discussing the requirements
or engineering of systems in the domain. Cross references to related terms and references
to definitions from standard glossaries should be included. A structure should be created

345Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



that shows term specializations and relationships among similar concepts to reveal miss-
ing terms that represent generalizations of specializations of known terms. In addition, a
structure should be created that shows the composition of terms and the interrelationship of
independent concepts in the formation of logical structures to reveal missing terms that are
necessary to complete the definition of other terms or terms that tie other terms together into
more complex concepts.

Actions:

Domain Specification Modify

1 Identify domain characteristics

Assumptions, constraints and core characteristics of the domain are identified.

Actions:

Domain Specification Modify

1 Assess domain status

An evaluation of the technical maturity of the domain in terms of Domain Objectives and
plans for domain development and evolution is performed. The Assess Domain Status task is
defined in terms of its sub-activities, namely: (i) Determine Marketability, and (ii) Determine
Implement Ability and Risk. These sub-activities comprise a Viability Analysis. Each of the
sub-activities results in an endorsement and commitment to the defined Domain Scope.

Actions:

Domain Assessment Create
Domain Specification ReadOnly
Domain Strategy ReadOnly

4.1.2 Example Process at Capability Level 5

Purpose: To establish a managed and evolving repository of knowledge about the domain.

Outline: A strategy to guide the management of the repository of domain knowledge is devel-
oped. The scope and characteristics of the domain are defined and standard terminology is
established. Finally, the domain status is assessed.

Outcomes:

1 A domain engineering strategy is developed.
1 The domain is defined.
1 Standard terminology is established.
1 Domain characteristics are identified.
1 The domain status is assessed.

2 The objectives for the performance of the process are identified. (2.1)
2 Resources required for performing the process are made available, allocated and used.

(2.1)
2 The responsibility and authority for performing the process activities is assigned.

(2.1)
2 The performance of the process is planned.(2.1)
2 The performance of the process is controlled. (2.1)
2 The process work product requirements are defined. (2.2)
2 The documentation and control requirements for the process work products are de-

fined. (2.2)
2 Any dependencies among controlled work products are identified. (2.2)
2 Work products are appropriately identified, documented and controlled. (2.2)
2 Work products are verified and, if necessary, adjusted to meet the defined require-

ments. (2.2)

346 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



3 A standard process including appropriate guidance on tailoring is defined, that sup-
ports the execution of the process. (3.1)

3 Performance of the defined process is conducted in accordance with an appropriately
selected and/or tailored standard process. (3.1)

3 Process performance data is collected and used as a basis for understanding the be-
haviour of the defined process. (3.1)

3 Experiences of using the defined process are collected and used to refine the standard
process and tailoring guidance. (3.1)

3 The standard process identifies the competencies, roles and responsibilities required
for enacting the defined process. (3.2)

3 The process infrastructure required for performing the defined process is identified
and documented as part of the standard process. (3.2)

3 The required resources are made available, allocated and used to support the perfor-
mance of the defined process. (3.2)

4 Objectives for process performance are established. (4.1)
4 Product and process measures are identified in line with relevant process objectives.

(4.1)
4 Product and process measures are collected to monitor the extent to which the defined

process objectives are met. (4.1)
4 Process capability is measured and maintained across the organizational unit. (4.1)
4 Suitable analysis and control techniques are identified. (4.2)
4 During process enactment, product and process measures are analysed to support

control of process performance within defined limits. (4.2)
4 Process performance trends across the organizational unit are analyzed. (4.2)
4 Effective actions are taken to address special causes of variation in performance. (4.2)

5 The process improvement goals for the process are defined that support the relevant
business goals of the organization. (5.1)

5 The causes of real and potential variations are identified. (5.1)
5 Improvement opportunities are identified. (5.1)
5 An implementation strategy is established and deployed to achieve the process im-

provement goals across the organization. (5.1)
5 The impact of all proposed changes is assessed against the objectives of the defined

process and standard process. (5.2)
5 The implementation of all agreed changes is managed to ensure that any disruption

to the process performance is understood and acted upon. (5.2)

5 The effectiveness of process change on the basis of actual performance is evaluated
against the defined product requirements and process objectives to determine whether
results are due to common or special causes. (5.2)

Specific Tasks:

1 Develop a strategy for domain engineering

Identify the stakeholders and their objectives, organizational constraints and applicable orga-
nizational policies. Identify how to achieve the desired outcomes while satisfying the stake-
holders’ objectives within the identified constraints. Identify what needs to be done and
when, the required resources and how to overcome deficits in those resources. Identify how
the organization will decide the strategy is working.

Actions:

Domain Strategy Create
Business Objectives ReadOnly

Techniques

Strategy Development Optional

347Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



1 Define domain

A description of the type of problem that systems in the domain solve and the external en-
vironment with which systems interact is produced. The observable behaviour that systems
exhibit in solving the problem is described. The behavioural aspects of the system should be
viewed from a black-box perspective. Any significant constraints concerning how the sys-
tems operate in terms of performance, reliability or distribution concerns are also included.
The primary functions performed by every system in the domain and any important functions
performed by only some systems are defined.

Actions:

Domain Specification Create
Domain Strategy ReadOnly

1 Establish standard terminology

Definitions of all significant terms used by domain experts in discussing the requirements
or engineering of systems in the domain. Cross references to related terms and references
to definitions from standard glossaries should be included. A structure should be created
that shows term specializations and relationships among similar concepts to reveal miss-
ing terms that represent generalizations of specializations of known terms. In addition, a
structure should be created that shows the composition of terms and the interrelationship of
independent concepts in the formation of logical structures to reveal missing terms that are
necessary to complete the definition of other terms or terms that tie other terms together into
more complex concepts.

Actions:

Domain Specification Modify

1 Identify domain characteristics

Assumptions, constraints and core characteristics of the domain are identified.

Actions:

Domain Specification Modify

1 Assess domain status

An evaluation of the technical maturity of the domain in terms of Domain Objectives and
plans for domain development and evolution is performed. The Assess Domain Status task
is defined in terms of its sub-activities: (i) Determine Marketability, and (ii) Determine Im-
plement Ability and Risk. These sub-activities comprise a Viability Analysis. Each of the
sub-activities results in an endorsement and commitment to the defined Domain Scope.

Actions:

Domain Assessment Create
Domain Specification ReadOnly
Domain Strategy ReadOnly

2 Develop a plan for the process

Identify the process objectives, input and output work products, resources required to achieve
the process objectives and the resources necessary to achieve them. Identify responsibilities
and authorities necessary for performing the process.

Actions:

Process Plan Create
Business Objectives ReadOnly
Project Plan ReadOnly

348 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



Techniques:

Timeboxing Optional
Workflow Analysis Optional

2 Identify work product control requirements

For all process work product, identify requirements related to their control and management
through the product’s life cycle.

Actions:

Process Plan ReadOnly
Work Product Requirements ReadOnly

2 Identify work product dependencies

Identify and document dependencies among work products.

Actions:

Process Plan Modify
Process Work Product Modify

2 Identify work product requirements

For each process work product, identify its content and project requirements.

Actions:

Work Product Requirements Create
Process Plan ReadOnly

2 Manage work products

Identify, document and control work products. Work products should be appropriately iden-
tified by name, status and version. Changes to work products should be managed and updated
versions of work products communicated to stakeholders.

Actions:

Process Work Product Modify

2 Modify controlled work product

A controlled work product is modified and the modifications recorded. Updated versions are
placed under control and distributed as necessary.

Actions:

Process Work Product Modify

2 Monitor and manage the process plan

Monitor a planned process according to its plan. Detect deviations from the plan are detected
and resolved. Issues arising from performing the process are communicated to stakeholders.

Actions:

Process Plan Modify

2 Verify work products

Work products are verified against their requirements.

Actions:

Work Product Requirements ReadOnly

3 Collect process performance data

Collect and analyse process performance data. Use the analysed data to contribute to under-
standing and improving the standard process.

349Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



Actions:

Defined Process ReadOnly
Process Plan ReadOnly

3 Define a standard process

A standard process that supports the execution of the process is defined. Tailoring guidelines
and constraints on such tailoring are written to describe how the standard process could be
modified to suit the particular project or circumstances. The definition should cover roles,
responsibilities and infrastructure necessary to perform the process.

Actions:

Defined Process Create

3 Improve the standard process

Data from and experiences with performed processes are used to develop improvements to
the standard processes.

Actions:

Defined Process Modify

3 Perform defined process

The defined, and possibly tailored, process is performed as defined and planned. All required
work products will be produced.

Actions:

Defined Process ReadOnly

3 Support process performance

Required resources are made available, allocated and used to support the performance of the
process. Another critical aspect of this process attribute is ensuring that enabling conditions
for successful deployment (implementation) of the defined process are present. Enabling
conditions include: (i) defining the specific attributes of human resources who implement
the process, (ii) understanding the process infrastructure required for performing the defined
process, (iii) successful allocation and deployment of the required human resources and
process infrastructures, (iv) a common documented understanding of roles, responsibilities
and competencies for performing the defined process.

The process infrastructure encompasses tools, methods and special facilities that are required
for performing the defined process.

Actions:

Defined Process ReadOnly
Process Plan ReadOnly

4 Analyse process performance data

Industry best practice and process performance data are analysed to identify potential oppor-
tunities for process improvement.

Actions:

Process Performance Analysis Create
Process Performance Data ReadOnly

4 Analyse process performance trends

Analyse process performance data from across the organizational unit to determine causes of
variation of process performance and the extent to which the process supports the business
objectives.

Actions:

350 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



Process Performance Analysis Create
Process Measurement Plan ReadOnly
Process Performance Data ReadOnly

4 Assess process capabiltity

Measure and record process capability across the organizational unit.

Actions:

Process Capability Assessment Create
Defined Process ReadOnly

4 Control the process performance

Use statistical process control or other suitable quantitative technique to monitor and control
the process. The analysis and control techniques chosen will be influenced by the nature of
the process as well as by the overall context of the organizational unit being assessed. For
example, not all processes are equally suited to statistical control, and alternative techniques
can be selected that demonstrate a qualitative understanding of the process.

Actions:

Process Measurement Plan ReadOnly
Process Performance Data ReadOnly

4 Correct process performance

Actions are identified to correct causes of process performance variation and to better achieve
the process objectives.

Actions:

Defined Process Modify
Process Performance Analysis ReadOnly

4 Define process analysis and control techniques

Define process analysis and control techniques that are capable of identifying root causes of
variation in process performance.

Actions:

Process Measurement Plan Modify

4 Define process performance measures

Measures that support the process objectives are identified and documented.

Actions:

Process Measurement Plan Create

4 Define process performance objectives

Relevant business goals are understood and clearly identified, and some form of correspon-
dence is established between the business goals and the specific goals and measures for
product and process.

Actions:

Process Measurement Plan Modify

4 Quantitatively monitor process performance

Data for the identified process measures is collected and analysed to determine the extent to
which the defined process supports the objectives for that process.

Actions:

Defined Process ReadOnly
Process Measurement Plan ReadOnly
Process Performance Data ReadOnly

351Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



5 Assess proposed process changes

Assess the potential impact of proposed process changes against the process objectives.

Actions:

Process Improvement Plan ReadOnly
Process Improvements ReadOnly

5 Define process improvement goals

Define process improvement goals that support business goals.

Actions:

Process Improvement Plan Create

5 Develop and implement improvement strategy

Develop a strategy to implement process improvements. Implement the strategy across the
organization to achieve the identified improvements.

Actions:

Process Improvement Plan Modify

5 Develop process improvement strategy

The implementation timing and sequencing of agreed changes is carefully planned so as to
ensure a minimal amount of disruption to process performance. This planning will typically
consider factors such as project criticality and status, process change effectiveness evaluation
and new business generation.

Actions:

Process Improvement Plan ReadOnly
Project Plan ReadOnly

5 Evaluate process change effects

The effectiveness of changes is evaluated against actual results and adjustments are made as
necessary to achieve relevant process improvement objectives.

Actions:

Defined Process ReadOnly
Process Improvement Plan ReadOnly
Process Improvements ReadOnly

5 Identify process improvements

Identify potential process improvements.

Actions:

Process Improvements Create
Process Improvement Plan ReadOnly

5 Identify real and potential task variation causes

Examine processes to anticipate and identify real or potential causes of variations in process.

Actions:

Business Objectives ReadOnly
Defined Process ReadOnly
Process Performance Data ReadOnly

5 Manage process change implementation

The implementation timing and sequencing of agreed changes is carefully planned so as to
ensure a minimal amount of disruption to process performance. This planning will typically

352 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



consider factors such as project criticality and status, process change effectiveness evaluation
and new business generation.

Actions:

Defined Process Modify
Process Improvement Plan ReadOnly
Process Improvements ReadOnly

4.2 Improving Quality with Method Engineering

Improvements to the twin goals of software productivity and quality have been sought
from the earliest days of commercial software development. The question to be exam-
ined here is not whether this approach is better than nothing, but whether it is better
than other methodologies.

The most (and most rigorous) information on software productivity and quality im-
provements as a consequence of adopting a particular software development methodol-
ogy comes from studies associated with the Software Engineering Institute’s Capability
Maturity Model (CMM) and its successor the Integrated Capability Maturity Model
(CMMI). The CMM grew out of work at the Software Engineering Institute at Carnegie
Mellon University on a U.S. Air Force project. The objective was to provide guidance
to the military services in selecting capable software contractors [Humphrey, 1989].
The subsequent CMM was adopted by many military-related organizations. There have
been several reports of the effects that adopting the CMM has on software quality and
productivity, among other things. [Herbsleb et al., 1994] related improvements with the
number of years that organizations had spent engaged in software process improve-
ments rather than on the maturity level attained. The report concluded that the return
on investment when “improvement is planned and executed well and takes place in
a favorable environment” was five or six times the cost of implementing the improve-
ments. [Goldenson and Herbsleb, 1995] found that maturity level was positively related
to organizational performance as measured by its ability to meet schedules, ability to
meet budget, product quality, staff productivity, customer satisfaction and staff morale.
[Lawlis et al., 1995] examined the relationship between maturity level and cost perfor-
mance and maturity level and schedule performance but not between maturity level and
product quality. They found that maturity level was positively related to both.

The successor to the CMM, the CMMI, shows similar relationship to improved
product quality, reduced development cost and reduced development schedule but there
is no analysis relating the reported benefits to the maturity level attained by the organi-
zations that participated in the study [Goldenson and Gibson, 2003].

From these studies, it can be concluded that a capability based methodology allows
organizations to attain a level of maturity, and hence of software development perfor-
mance, that suits their circumstances and that the maturity level chosen or attained will
affect their productivity and quality performance.

CMM and CMMI are not the only capability level based methodologies. Although
SPICE [ISO, 1998] is a software process assessment method rather than a software

353Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



development methodology, it does contain an exemplar process model that serves as a
software development methodology. To date, relationships between assessed SPICE ca-
pability levels and software development quality and productivity have been anecdotal
rather than quantitative, and have concentrated on process improvement rather than spe-
cific outcomes related to using the SPICE assessment framework or its contained soft-
ware development methodology. Certainly the assumption behind many papers is that
process improvement sufficiently achieves its objectives to make process improvement
attractive. To date there has been no complete field trial of the described methodology.

5 Conclusions

Situational method engineering and its industrial testing provides an approach to soft-
ware engineering that will permit organizations to enhance their success rate. While no
silver bullet, SME creates an environment in which a software development organiza-
tion can construct both a highly customized process for its current situation, but also one
that will grow in sophistication. Consequently, the organization can increase its capabil-
ity, as measured by the CMM or SPICE scales. Metrics-focused method chunks can be
incorporated into the constructed organizationally-specific methodology increasingly as
this transition along the capability scale occurs.

Acknowledgements

C.G-P. and M.K.S. wish to acknowledge research funding support from the Australian
Research Council. This is Contribution number 03/21 of the Centre for Object Technol-
ogy Applications and Research.

References

[Abrahamsson et al., 2003] Abrahamsson, P., Warsta, J., Siponen, M., and Ronkai nen, J. (2003).
New directions on agile methods a comparative analysis. In Proc. of ICSE’03, pages 244–254.
IEEE Computer Society Press.

[Baddoo and Hall, 2003] Baddoo, N. and Hall, T. (2003). De-motivators for software process
improvement: an analysis of practitioners´ views. Journal of Systems and Software, 66:23–33.

[Basili and Rombach, 1987] Basili, V. and Rombach, H. (1987). Tailoring the software process
to project goals and environments. In Proc. of ICSE’98, pages 345–357. IEEE Computer Soci-
ety Press.

[Bauch and Chung, 2001] Bauch, G. and Chung, C. (2001). A statistical project control tool for
engineering managers. Project Management Journal, 32:37–44.

[Beck, 1999] Beck, K. (1999). Extreme Programming Explained. Embrace Change. Addison-
Wesley.

[Beedle et al., 2002] Beedle, M., Devos, M., Sharon, Y., Schwaber, K., and Sutherland, J. (2002).
SCRUM: An extension pattern language for hyper productive software development. http:
//www.tiac.net/users/jsuth/scrum.

[Belbin, 2000] Belbin, M. (2000). Beyond the Team. Butterworth-Heinemann.
[Belbin, 1981] Belbin, R. (1981). Management Teams: Why They Succeed or Fail. Butterworth

Heinemann.

354 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



[Boehm et al., 2000] Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E.,
Madachy, R., Reifer, D., and Steece, B. (2000). Software Cost Estimation with Cocomo II.
Prentice Hall.

[Breton and Bézivin, 2001] Breton, E. and Bézivin, J. (2001). Model driven process engineer-
ing. In Proc. of the 25th Annual International Computer Software and Applications Confer-
ence, pages 225–230. IEEE Computer Society Press.

[Brinkkemper, 1996] Brinkkemper, S. (1996). Method engineering: engineering of information
systems development methods and tools. Information Software Technology, 38(4):275–280.

[Brinkkemper et al., 1999] Brinkkemper, S., Saeki, M., and Harmsen, F. (1999). Meta-mod-
elling based assembly techniques for situational method engineering. Information Systems,
24(3):209–228.

[Brinkkemper et al., 2001] Brinkkemper, S., Saeki, M., and Harmsen, F. (2001). A method en-
gineering language for the description of systems development methods (extended abstract). In
Dittrich, K., Geppert, A., and Norrie, M., editors, Advanced Information Systems Engineering,
number 2068 in LNCS, pages 473–476. Springer-Verlag.

[Brodman and Johnson, 1996] Brodman, J. and Johnson, D. (1996). Return on investment from
software process improvement as measured by u.s. industry. Crosstalk, 9.

[Butler and Lipke, 2000] Butler, K. and Lipke, W. (2000). Software process achievement at
tinker air force base, oklahoma. Technical report, Software Engineering Institute.

[Chroust, 2000] Chroust, G. (2000). Software process models: structure and challenges. In
Feng, Y., Notkin, D., and Gaudel, M., editors, Proc. of the IFIP Congress 2000, pages 279–
286.

[Cockburn, 2000] Cockburn, A. (2000). Selecting a project’s methodology. IEEE Software,
17(4):64–71.

[Cockburn, 2001] Cockburn, A. (2001). Agile Software Development. Addison Wesley.
[Cockburn and Highsmith, 2001] Cockburn, A. and Highsmith, J. (2001). Agile software devel-

opment: The people factor. IEEE Computer, 34(11):131–133.
[Constantine, 2002] Constantine, L. (2002). Non-skid agility? Information Age,

August/September:34–42.
[Constantine and Lockwood, 1994] Constantine, L. and Lockwood, L. (1994). One size does

not fit all: fitting practices to people. American Programmer, 7(12):30–38.
[Cunin et al., 2001] Cunin, P.-Y., Greenwood, R., Francou, L., Robertson, I., and Warboys, B.

(2001). The pie methodology: Concept and application. In Ambriola, V., editor, Proc. of the
8th European Workshop, number 2077 in LNCS, pages 3–26. Springer Verlag.

[D’Souza and Wills, 1999] D’Souza, F. and Wills, A. (1999). Objects, Components and Frame-
works with UML: The Catalysis Approach. Addison-Wesley.

[Fayad et al., 1996] Fayad, M., Tsai, W., and Fulghum, M. (1996). Transition to object-oriented
software development. Communications of the ACM, 39(2):108–121.

[Firesmith and Henderson-Sellers, 2002] Firesmith, D. and Henderson-Sellers, B. (2002). The
OPEN Process Framework: An Introduction. Addison-Wesley.

[Fowler, 1995] Fowler, A. (1995). How to build effective teams. People Management, 1(4).
[Fowler, 2002] Fowler, M. (2002). The new methodology. http://www.martinfowler.
com/articles/newMethodology.html.

[Gasson, 1998] Gasson, S. (1998). Framing design: a social process view of information system
development. In Proc. of the International Conference on Information Systems.

[Glass, 2000a] Glass, R. (2000a). Process diversity and a computing old wives’/husbands’ tale.
IEEE Software, 17(4):128–127.

[Glass, 2000b] Glass, R. (2000b). Talk about a software crisis: Not! Journal of Systems and
Software, 55:1–2.

[Goldenson and Gibson, 2003] Goldenson, D. and Gibson, D. (2003). Demonstrating the impact
and benefits of cmmi: An update and preliminary results. Technical report, Software Engineer-
ing Institute.

[Goldenson and Herbsleb, 1995] Goldenson, D. and Herbsleb, J. (1995). After the appraisal:
A systematic survey of process improvement, its benefits, and factors that influence success.
Technical report, Software Engineering Institute.

355Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



[Graham et al., 1997] Graham, I., Henderson-Sellers, B., and Younessi, H. (1997). The OPEN
Process Specification. Addison Wesley.

[Group, 1994] Group, T. S. (1994). The chaos report. http://www.pm2go.com/
sample_research/chaos_1994_1.php.

[Gruhn, 1992] Gruhn, V. (1992). Software processes are social processes. In Proc. of Fifth
International Workshop on Computer-Aided Software Engineering.

[Haire et al., 2002] Haire, B., Lowe, D., and Henderson-Sellers, B. (2002). Supporting web
development in the OPEN process: additional roles and techniques. In Bellahsène, Z., Patel,
D., and Rolland, C., editors, Object-Oriented Information Systems, number 2425 in LNCS,
pages 82–94. Springer Verlag.

[Hawryszkiewycz, 2000] Hawryszkiewycz, I. (2000). Knowledge networks in administrative
systems. In Working Conference on Advances in Electronic Government, pages 59–75.

[Henderson-Sellers, 2002] Henderson-Sellers, B. (2002). Process metamodelling and process
construction: examples using the open process framework (OPF). Annals of Software Engi-
neering, 14:341–362.

[Henderson-Sellers, 2003] Henderson-Sellers, B. (2003). Method engineering for oo system
development. Communications of the ACM, 46(10):73–78.

[Henderson-Sellers et al., 2002] Henderson-Sellers, B., Bohling, J., and Rout, T. (2002). Creat-
ing the oospice model architecture: A case of reuse. In Rout, T., editor, Proc. of SPICE 2002,
pages 171–181.

[Henderson-Sellers et al., 1998] Henderson-Sellers, B., Simons, A., and Younessi, H. (1998).
The OPEN Toolbox of Techniques. Addison-Wesley.

[Henninger et al., 2002] Henninger, S., Ivaturi, A., Nuli, K., and Thirunavukkaras, A. (2002).
Supporting adaptable methodologies to meet evolving project needs. In Proc. of the 1st
ICSE’02 Workshop on Iterative, Adaptive, and Agile Processes.

[Herbsleb et al., 1994] Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., and Zubrow, D. (1994).
Benefits of cmm-based software process improvement: Initial results. Technical report, Soft-
ware Engineering Institute.

[Hofstede et al., 1997] Hofstede, T., A.H.M., and Verhoef, T. (1997). On the feasibility of situ-
ational method engineering. Information Systems, 22:401–422.

[Hruby, 2000] Hruby, P. (2000). Designing customizable methodologies. Journal on Object-
Oriented Programming, 13(8):22–31.

[Hughes and Cotterell, 1999] Hughes, B. and Cotterell, M. (1999). Software Project Manage-
ment. McGraw-Hill.

[Humphrey, 1988] Humphrey, W. (1988). Characterizing the software process. IEEE Software,
5(2):73–79.

[Humphrey, 1989] Humphrey, W. (1989). Managing the Software Process. Addison-Wesley.
[Humphrey, 1994] Humphrey, W. (1994). A Discipline for Software Engineering. Addison-

Wesley.
[Humphrey, 2000] Humphrey, W. (2000). The team software process. Technical report, Soft-

ware Engineering Institute.
[Hunter, 1998] Hunter, R. (1998). Ad project portfolio management. In Proc. of the Gartner

Group IT98 Symposium. CD-ROM.
[ISBSG, 2003] ISBSG (2003). International software benchmarking standards group web site.
http://www.isbsg.org.au.

[ISO, 1998] ISO (1998). Iso/iec tr 15504 — information technology: software process assess-
ment. Technical report, International Organization for Standardization.

[ISO, 1999] ISO (1999). Iso/iec 16326:1999 — software engineering: Guide for the applica-
tion of iso/iec 12207 to project management. Technical report, International Organization for
Standardization.

[ISO, 2002] ISO (2002). Iso/iec software life cycle processes, amendment 1, iso/iec 12207.
Technical report, International Organization for Standardization.

[Jalote, 2002] Jalote, P. (2002). Lessons learned in framework-based software process improve-
ment. In Proc. of the 9th Asia-Pacific Conference on Software Engineering, pages 261–268.
IEEE Computer Society Press.

356 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



[Johnson et al., 2001] Johnson, J., Boucher, K. D., Conners, K., and Robinson, J. (2001).
Collaborating on project success. http://www.softwaremag.com/archive/
2001feb/CollaborativeMgt.html.

[Kelly et al., 1996] Kelly, S., Lyytinen.K., and Rossi, M. (1996). Metaedit+: A fully config-
urable multi-user and multi-tool case and came environment. In Constapoulos, P., Mylopoulos,
J., and Vassiliou, Y., editors, Proc. of the CAISE’96 Conference, pages 1–21. Springer-Verlag.

[Klooster et al., 1997] Klooster, M., Brinkkemper, S., Harmsen, F., and Wijers, G. (1997). In-
tranet facilitated knowledge management: A theory and tool for defining situational methods.
In Proc. of CAISE’97, pages 303–317. Springer Verlag.

[Kraiem et al., 2000] Kraiem, N., Bourguiba, I., and Selmi, S. (2000). Situational method for
information system project. http://www.ssgrr.it/en/ssgrr2000/papers/283.
pdf.

[Kruchten, 1999] Kruchten, P. (1999). The Rational Unified Process, An Introduction. Addison-
Wesley.

[Kumar and Welke, 1992] Kumar, K. and Welke, R. (1992). Methodology engineering: a pro-
posal for situation-specific methodology construction. In Cotterman, W. and Senn, J., editors,
Challenges and Strategies for Research in Systems Development, pages 257–269. John Wiley.

[Laplante, 1998] Laplante, A. (1998). Border war. Computer World, 9(March):81–84.
[Lawlis et al., 1995] Lawlis, D., Flowe, C., and Thordahl, C. (1995). A correlational study of

the cmm and software development performance. Crosstalk, 8.
[Lowe et al., 2001] Lowe, D., , and Henderson-Sellers, B. (2001). Characteristics of web devel-

opment processes. In Milutinovic, V., editor, International Conference on Advances in Infras-
tructure for Electronic Business, Science, and Education on the Internet.

[Lynex and P.J., 1998] Lynex, A. and P.J., L. (1998). Organizational considerations for software
reuse. Annals of Software Engineering, 5:105–124.

[MacIsaac, 2003] MacIsaac, B. (2003). An overview of the rup as a process engineering plat-
form: Process engineering for object-oriented and component-based development. In Proc. of
the OOPSLA 2003 Workshop, pages 43–52.

[McClure, 1997] McClure, C. (1997). Software Reuse Techniques. Prentice Hall.
[McConnell, 1998] McConnell, S. (1998). Software Project Survival Guide. Microsoft Press.
[McIlroy, 1969] McIlroy, D. (1969). Mass produced software components. In Proc. of the 1968

NATO conference on Software Engineering, pages 138–155.
[Morisio, 2002] Morisio, M. (2002). Success and failure factors in software reuse. IEEE Trans-

actions on Software Engineering, 28(4):340–357.
[Muller, 1982] Muller, F. (1982). Definition of construction management. In Specialty Confer-

ence on Engineering and Construction Projects.
[Nguyen and Henderson-Sellers, 2003a] Nguyen, V. and Henderson-Sellers, B., editors (2003a).

OPENPC: a tool to automate aspects of method engineering.
[Nguyen and Henderson-Sellers, 2003b] Nguyen, V. and Henderson-Sellers, B. (2003b). To-

wards automated support for method engineering with the open approach. In Proc. of 7th
IASTED International Conference on Software Engineering and Applications, pages 691–696.
ACTA Press.

[OMG, 2003] OMG (2003). Software process engineering metamodel specification, version 1.0.
[Onoma, 1987] Onoma, A. (1987). Solving the software crisis: toward management of large

scale software development. In Proc. of 1987 Fall Computer Conference on Exploring tech-
nology, pages 244–245.

[Patton, 2003a] Patton, J. (2003a). Hitting the target: adding interaction design to agile software
development. In Proc. of the OOPSLA’02 Conference. ACM Press.

[Patton, 2003b] Patton, J. (2003b). Improving agility: adding usage-centered design to agile
software development, performance by design. In Constantine, L., editor, Proc. of forUSE
2003 Second International Conference on Usage-Centered Design, pages 59–73. Ampersand
Press.

[Paulk et al., 1993] Paulk, C., Weber, C., Garcia, S., Chrissis, M., and Bush, M. (1993). Key
practices of the capability maturity model, version 1.1. Technical report, Software Engineering
Institute.

357Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...



[Pérez et al., 1995] Pérez, G., El Amam, K., and Madhavji, N. (1995). Customising software
process models. In Proc. of the 4th European Workshop on Software Process Technology,
pages 70–78.

[PMI, 2000] PMI (2000). A guide to the project management body of knowledge. Technical
report, Project Management Institute.

[Ralyté, 2002] Ralyté, J. (2002). Requirements definition for the situational method engineering.
In Rolland, C., Brinkkemper, S., and Saeki, M., editors, Engineering Information Systems in
the Internet Context. Kluwer Academic Publishers.

[Ralyté and Rolland, 2001] Ralyté, J. and Rolland, C. (2001). An assembly process model for
method engineering. In Dittrich, K., Geppert, A., and Norrie, M., editors, Advanced Informa-
tion Systems Engineering, number 2068 in LNCS, pages 267–283. Springer-Verlag.

[Rolland et al., 1999] Rolland, C., Prakash, N., and Benjamen, A. (1999). A multi-model view
of process modelling. Requirements Engineeting Journal, 4:169–187.

[Rupprecht et al., 2000] Rupprecht, C., Funffinger, M., Knublauch, H., and Rose, T. (2000).
Capture and dissemination of experience about the construction of engineering processes. In
Proc. of CAISE’89, number 1789 in LNCS, pages 294–308. Springer.

[Saeki, 2003] Saeki, M. (2003). Came: the first step to automated software engineering. In Proc.
of the OOPSLA’03 Workshop on Process Engineering for Object-Oriented and Component-
Based Development, pages 7–18.

[Scarola and Tatum, 1982] Scarola, J. and Tatum, C. (1982). Definition of project management.
In Proc. of the Specialty Conference on Engineering and Construction Projects.

[Scott et al., 2001] Scott, L., Carvalho, L., Jeffery, R., and D’Ambra, J. (2001). An evaluation
of the spearmint approach to software process modelling. In Ambriola, V., editor, Proc. of the
8th European Workshop on Software Process Technology, number 2077 in LNCS, pages 77–89.
Springer-Verlag.

[SEI, 1993] SEI (1993). Capability maturity model for software, version 1.1. Technical report,
Software Engineering Institute.

[SEI, 2000] SEI (2000). Cmmi for systems engineering/software engineering, version 1.02.
Technical report, Software Engineering Institute.

[Serour et al., 2002] Serour, M., Henderson-Sellers, B., Hughes, J., Winder, D., and Chow, L.
(2002). Organizational transition to object technology: theory and practice. In Bellahsène,
Z., Patel, D., and Rolland, C., editors, Object-Oriented Information Systems, number 2425 in
LNCS, pages 229–241. Springer–Verlag.

[Stallinger et al., 2003] Stallinger, F., Henderson-Sellers, B., and Torgersson, J. (2003). The
oospice assessment component: customizing software process assessment to cbd. In Barbier, F.,
editor, Business Component-Based Software Engineering, chapter 7, pages 119–134. Kluwer
Academic Publishers.

[Thomke and Reinertsen, 1998] Thomke, S. and Reinertsen, D. (1998). Agile product develop-
ment: managing development flexibility in uncertain environments. California Management
Review, 8(2).

[Thomsett, 2002] Thomsett, R. (2002). Radical Project management. Prentice Hall.
[van Slooten and Hodes, 1996] van Slooten, K. and Hodes, B. (1996). Characterizing is devel-

opment projects. In Brinkkemper, S., Lyytinen, K., and Welke, R., editors, Proc. of the IFIP
TC8 Working Conference on Method Engineering, pages 29–44. Chapman & Hall.

[van Zyl and Walker, 1982] van Zyl, J. and Walker, A. (1982). Using spice and process inno-
vation to increase capability. In Proc. of the International Conference on Software Process
Improvement and Capability Determination.

[Yates and Tatum, 1982] Yates, M. and Tatum, C. (1982). Definition of engineering manage-
ment. In Proc. of the Specialty Conference on Engineering and Construction Projects.

[Yourdon, 1999] Yourdon, E. (1999). Software process for the 21st century. Cutter IT Journal,
12(9):12–15.

[Yourdon and Argila, 1996] Yourdon, E. and Argila, C. (1996). Case Studies in Object Oriented
Analysis & Design. Prentice Hall.

358 Henderson-Sellers B., Srour M., McBride T., Gonzalez-Perez C., Dagher L. ...


