
Methodologies for Developing Multi-Agent Systems

Jorge Gómez-Sanz
(Universidad Complutense Madrid, Spain

jjgomez@sip.ucm.es)

Juan Pavón
(Universidad Complutense Madrid, Spain

jpavon@sip.ucm.es)

Abstract: As agent technology has matured with the deployment of a variety of applications,
particularly in open and dynamic environments such as the web, several methodologies and tools
have been proposed to support software engineers during the development process of such sys-
tems. This article takes an overall look at representative agent-oriented methodologies by consid-
ering how they support specific agent-related concepts. This serves to identify areas in which this
technology has shown its potential to solve new problems, e.g., the ability to manage complex-
ity with an organizational perspective, goal-driven modelling as a way to build robust behaviors
for adaptive systems, or the definition of notation and mechanisms to implement high-level in-
teractions and protocols between agents. In order to be fully applicable, the challenge today is
the maturity of supporting tools, and new methods for validation and verification of multi-agent
systems.
Key Words: software agents, intelligent agents, multi-agent systems, agent-oriented software
engineering, agent-oriented methodologies
Category: D.1, D.2, I.2.11

1 Introduction

Until recently, the development of multi-agent systems (MAS) has been more of an
art than a structured discipline, and the success of the technology relied on specific
applications, especially for adaptive and collaborative systems. The generalization of
applications and the study of engineering issues have contributed to the agent concept
being considered as a new abstraction, which can be applied, throughout the whole soft-
ware life-cycle, for building new kinds of services in open and dynamic environments.
In this paper, we review methods and tools for the development of agent-based appli-
cations from this perspective, and discuss how agent-related concepts can support the
software engineering activities to tackle the complexity of future software systems.

In [Zambonelli and Parunak, 2002], the authors argue that today’s software systems
are reaching greater degrees of complexity in several aspects, not only size, as other
factors get involved. First, there is a trend to provide new services in open environments,
such as web services. This means that new system elements have to be able to acquire
knowledge about their context and interact with other entities. Besides, their context
changes over time as other elements appear, disappear, or modify their behavior (in
the case of processes) or contents (in the case of information). Different systems, not

Journal of Universal Computer Science, vol. 10, no. 4 (2004), 359-374
submitted: 17/10/03, accepted: 2/2/04, appeared: 28/4/04 © J.UCS



necessarily software systems, co-exist in the same environment, either collaborating or
competing. Sharing the environment implies that their actions will try to change this
environment, perhaps at the same time. Therefore, it is not possible to assure that an
action will have the expected result. In these situations, traditional control structures or
conventional synchronization mechanisms are not always valid because of the dynamics
of the environment. Agents have different techniques to deal with the uncertainty of
system dynamics, such as learning capabilities or planning capabilities. This way, an
agent can detect that a task is not performing as it should, and replace it with another
task or decide to collaborate with other agents.

Another characteristic of this open environment is heterogeneity: multiple comput-
ing devices everywhere, with different capabilities, and connected to (more and more
wireless) networks. This implies higher degrees of distribution in the management of
entities, in the location of control, and in the interactions. The agent approach assumes
these considerations at its foundations since agents are conceived as autonomous enti-
ties that can reside in a node of a network, or even migrate in the case of mobile agents.

From the perspective of knowledge processing and management, there is an in-
creasing need for processing information data to provide knowledge-based services. At
this point, new mechanisms for information processing are required, and interaction
among system components requires a higher level of abstraction, with more support
for semantic processing. The use of ontologies and agent communication languages is
advantageous regarding traditional object-oriented communication mechanisms, which
support syntactic interoperability only.

Finally, the usability of computer-based systems has increased as more people, with
a great variety of profiles, use them. Higher degrees of personalization have become
important for service acceptance and differentiation. This means highly reconfigurable
systems in which special processing is required for each user. This is often addressed
by considering one agent as a personal assistant for each user, with capabilities to learn
and adapt to the user’s changing profile.

It seems necessary to justify why objects are not enough to build such systems.
Although many MASs are implemented with object-oriented programming languages
and tools, agents are quite different from objects. Firstly, in their degree of autonomy
[Wooldridge and Ciancarini, 2000]. An object may exhibit autonomy over its state (by
restricting access to instance variables so that only the object can control them) but not
over its behavior, as the object must execute methods invoked on it (the execution of
methods on an object is mainly determined by external entities). In terms of agents,
responsibilities are clearly separated from one agent to another, and these are character-
ized in terms of goals rather than as a set of functions. Agents are autonomous to decide
which behavior is more convenient by taking their context and their goals into account.
When an agent receives a request to perform an action, it will consider whether to exe-
cute or refuse the task. This is important from a software engineering perspective since
goals are considered more stable than input-output relationships (functional approach)

360 Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



when a system evolves, and this is where contributions from the field of artificial intel-
ligence come into play to model agents and their social behavior. Given that an agent is
a goal-based entity, its behavior can be conceived as a reasoning system in which de-
cisions on which task to execute depend on the current knowledge of the environment,
the status of goal achievement, and actual capabilities of an agent and its neighbors.

From an engineering viewpoint, agents can also be considered as an extension of
the component model. Agents can be deployed in a distributed system quite easily,
and they can be configured not only with specific values for some parameters, but also
behavioristically. Taken to an extreme, agents can learn new procedures, and even new
interaction languages and protocols. A MAS represents then a set of highly configurable
entities, which can also be reused as an organization. New systems can be conceived
as a combination of agent organizations, each one providing services and relying on
services of other organizations. In this respect, the agent paradigm provides for both
the horizontal and vertical breakdown of complex system development. Because of the
growing possibilities of such an approach, work on coordinating agent systems is con-
sidered to be fundamental.

These ideas need to be organized methodologically so that they can be incorporated
into current software engineering practices. In the rest of this paper, we review how
agent-related concepts can be applied to define agent-oriented methodologies for the
development of complex systems. The organizational view of a MAS can help to deal
with such complexity: first, by separating the modelling of the system into several views
[see Section 2], which is illustrated with AAII/BDI, Vowels Engineering, CoMoMAS,
MAS-CommonKADS, MESSAGE, INGENIAS, MASSIVE, and ODAC; second, by
providing a framework to introduce other concepts such as roles, services, and inter-
actions [see Section 3], which is illustrated with Gaia, MaSE, and AALAADIN. The
experience with these methodologies has contributed to mature agent-related concepts
and there is currently a trend to define a common modelling language as an extension
to UML [see Section 4]. The survey finishes by reviewing verification techniques [see
Section 5] and implementation tools [see Section 6]. In the final section, we pose the
question of what methodology to choose and conclude that this is still open to dis-
cussion, although some authors have started to propose evaluation frameworks [see
Section 7].

2 Different Views of a Multi-Agent System

The modelling of a MAS should be considered from different complementary view-
points to deal with its complexity. One of the first proposals, the AAII/BDI methodol-
ogy [Kinny et al., 1996], considers two viewpoints: external and internal. The external
viewpoint considers agents as complex objects (with their own purposes, responsibili-
ties, services, and information), and external interactions, which is consistent with the
classical view of agents as autonomous entities that interact with their environment. The

361Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



internal viewpoint considers the elements required by the particular agent architecture,
e.g., a set of beliefs, goals and plans. This methodology is guided by the elaboration and
refinement of the models for each view: first the external viewpoint is considered; then,
the internal viewpoint; later, external models are fed back, and the process continues
until enough implementation details are obtained.

The purpose of the external viewpoint is to identify an agent class hierarchy (the
agent model) and a set of relationships between agents (the interaction model). They
are constructed in four steps, namely:

1. Identification of roles in the application domain.

2. For each role, identify its associated responsibilities, and the services provided and
used to fulfil those responsibilities.

3. For each service, identify the interactions associated with the provision of the ser-
vice. This allows to determine control relationships between agents.

4. Refine the agent hierarchy, e.g., refactoring, composition, and aggregation.

This process leads to an assignment of functionality (services) to agents, and asso-
ciations (services relationships and interactions) between them.

In this methodology, the internal viewpoint is highly dependent on the BDI archi-
tecture [Rao and Georgeff, 1991] since agents have some mental attitudes called be-
liefs, desires, and intentions, i.e., agents have a mental state that consists of informa-
tional, motivational, and deliberative states respectively. Beliefs represent the informa-
tion about the environment, the internal state the agent may hold, and the actions it may
perform (belief model); the agent will try to achieve a set of goals, and will respond
to certain events (goal model); the control structure of the agent is defined in terms of
plans (plan model). The methodology for the development of these models begins by
considering the services provided by the agent and the associated events and interac-
tions. They determine the goals, and the analysis consists of breaking them down into
subgoals, which leads to the identification of plans. This is summarized in two steps:

1. Analyzing the means of achieving the goals. This consists of a breakdown of the
goal into subgoals and actions, for the different contexts in which the goal has to
be achieved. This process is applied repeatedly to subgoals.

2. Build the beliefs of the system, by analyzing the context and conditions that control
the execution of activities.

Note that the emphasis is on goals instead of behaviors since they are considered
more stable in general. Thus, the resulting design is more stable, robust, and modular.
If the context changes, plans for new contexts can be added without changing plans for
the same goal.

362 Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



Most of the methodologies take more viewpoints into account. Vowels Engineering
[Ricordel and Demazeau, 2002] proposes five, which correspond to the Latin vowels:
Agent, Environment, Interactions, Organization, and User. Different techniques can be
applied to analyze and design each aspect. Agents can be conceived as simple automata
or complex knowledge-based systems. Interactions can be studied as physical models,
e.g., wavelength propagation, or as speech acts. Organizations can be inspired in bio-
logical models or ruled by sociological models. The purpose of this methodology is to
consider component libraries that provide solutions for each aspect, so that the designer
can instantiate an agent model, an organization model, and so on. The methodology pro-
poses to consider vowels (aspects) in a certain order, depending on the kind of system
being developed. For instance, if social relationships are important, the development
process should start with the organization. If the process starts with agents, then the
system will have an organization that probably emerges as a result of the interactions of
individual agents. This methodology is currently supported by the Volcano component-
oriented platform.

Structuring of the system into viewpoints was already applied in a methodology
for knowledge engineering called CommonKADS [Schreiber et al., 1994]. It proposed
six models to identify the organization in which the knowledge base system (KBS)
works, tasks, agents, e.g., the expert system, communications (mainly between the
agent and the user), experience (domain knowledge, and resolution knowledge), and
design (architecture of the KBS). As expert systems are quite centralized, this model
needed extensions to manage the distributed nature of MAS. This is the purpose of
the refinements proposed in CoMoMas [Glaser, 1996] for the agent model with so-
cial, cooperative and cognitive aspects, and adding a cooperative model and a sys-
tem model to consider the organizational aspects of the MAS. MAS-CommonKADS
[Iglesias et al., 1998] is more relevant since it uses the OMT object-oriented notation
to structure systems, use cases to capture requirements, and standard protocol spec-
ification techniques such as SDL [ITU-T, 1999] and message sequence charts to de-
scribe agent interactions. There is a case study developed with MAS-CommonKADS
[Arenas and Barrera-Sanabria, 2002] and the authors plan to announce some supporting
tools soon.

MESSAGE [Caire et al., 2001] is a recent proposal to integrate different method-
ologies. It builds on five viewpoints that are described with meta-models as UML exten-
sions [Gómez-Sanz et al., 2002]. A set of development tools for analysis, design, code
generation and validation are available and they build on these meta-models in IN-
GENIAS [Pavón and Gómez-Sanz, 2003], a refinement and extension of MESSAGE.
The development of a MAS consists of identifying elements for each viewpoint and
then performing a set of activities that are defined in the context of the Unified Pro-
cess [Jacobson et al., 1999]. The implementation can be generated automatically for
different target platforms with the INGENIAS Development Kit. The proposed view-
points are the following:

363Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



– The agent viewpoint, which describes an agent’s responsibilities with tasks and
roles. It also takes into account the control of the agent and defines its goals and the
mental states required during execution.

– The organization viewpoint, which determines the architecture of a system. Struc-
tural relationships are not restricted to hierarchies between roles. These structures
are delegated to specialized entities called groups. In the organization model there
are also power relationships among groups, organizations, and agents. The func-
tionality of the organization is expressed using workflows, which show consumer/
producer associations between tasks as well as the assignment of responsibilities
for their execution, and resources associated to each.

– The environment viewpoint, which defines the sensors and effectors of the agents.
It also identifies available resources as well as already existing agents and applica-
tions, e.g., legacy systems, databases, web information systems.

– The tasks and goals viewpoint, which is strongly influenced by the BDI model and
Newell’s principle of rationality. Its main purpose is to justify the execution of tasks
in terms of the goals. It also provides the breakdown of tasks and goals. To relate
both, there are specialized relationships that detail which information is needed
to consider a goal solved or failed. Finally, this viewpoint also provides low-level
details of tasks in the system, and describes which resources are needed during an
execution, which software modules are used throughout the process, and which are
the inputs and outputs.

– The interaction viewpoint, which describes how coordination among agents takes
place. It goes a step further than UML sequence diagrams since it reflects the mo-
tivation of the interaction and its participants. It also includes information about
the mental state required in each agent throughout the interaction as well as tasks
executed in the process. This allows us to justify at a design level why an agent
engages in a interaction and why it should continue.

Other methodologies that emphasize the modelling of the MAS from different view-
points are MASSIVE [Lind, 2000], which proposes seven viewpoints (environment,
task, role, interaction, society, architectural, and system), and ODAC [Gervais, 2003],
which uses the five ODP viewpoints (enterprise, information, computational, technol-
ogy and engineering) [X.900, 1995].

3 Roles, Services, Interactions, and Organizations

From the preceding section, it is clear that roles, services and interactions drive the
modelling of a MAS. The concept of role appears naturally when adopting an organiza-
tional view of the system as in the case of MAS. Roles identify functionality, in terms

364 Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



of services, and identify characteristics of parties in interactions. When instantiated,
roles are played by agents, which are supposed to have the capabilities to perform the
corresponding services.

Apart from AAII/BDI, these concepts have been fully developed in methodologies
such as Gaia and MaSE. The Gaia methodology [Wooldridge et al., 2000] addresses
the analysis of agent-based systems without referencing implementation issues. This
is achieved by considering the system as a society or organization. The organization
consists of a collection of roles, that have relationships with one another, and that take
part in institutionalized patterns of interactions with other roles. Each role is defined
by four attributes: responsibilities (its functionality, described as liveness and safety
properties), permissions (in terms of rights, identify the resources that are available
to the role, such as information resources), activities (those computations that can be
performed without interacting with others), and protocols (the way that it can interact
with other roles). These protocols are further defined in the interaction model. The
analysis consists of iterating repeatedly on the following steps:

1. Identify the roles in the system, as individuals, departments or organizations. The
result is a list of roles with an informal description.

2. For each role, identify and document the associated protocols. This gives an inter-
action model.

3. Elaborate the roles model with the previous information.

Design in Gaia produces three models: an agent model, which identifies agent types
(essentially, as aggregation of roles) and their instances in a system, a services model
(functions of each agent), and an acquaintance model, a directed graph that simply
describes the communication links between agents.

Gaia does not attempt to provide a computational model of the agent system, but
to describe how a society of agents cooperate to achieve the system-level goals, and
what is required by each individual agent in order to do this. Therefore, after applying
Gaia, the developer has to use other design techniques to accomplish an implementable
system. In this sense, Gaia is quite limited, and its relevance for agent-oriented soft-
ware engineering comes from its influence on other methodologies, particularly in the
analysis of roles and interactions.

MaSE (Multi-agent systems Software Engineering) [DeLoach et al., 2001], on the
contrary, supports the whole development life-cycle, from problem description to real-
ization. MaSE adopts the object-oriented paradigm (UML), by considering agents as
specialized proactive objects that coordinate by means of conversations. The develop-
ment process in MaSE consists of a collection of steps, most of them supported by
the agentTool system [DeLoach, 2001]. The first step is to capture system goals from
user requirements, and structuring them into a goal hierarchy. This is followed by use
case analysis and the definition of the corresponding sequence diagrams. From these

365Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



diagrams, it is possible to derive roles and their associated tasks. Roles in MaSE form
the foundation for agent class definition and represent system goals during the design
phase. The design phase in MaSE produces an agent class diagram, by assigning roles
to specific agent classes, the conversations between agents, the design of internal agent
architectures, and the deployment of agents in a system. A conversation is a coordina-
tion protocol between two agents, and it is described with two finite state machines, one
for each party (initiator and responder).

Roles and services help to structure the functionality associated to an agent or a
group of agents, contributing to the understandability and manageability of complex
systems, with an organizational perspective. This is the starting point of AALAADIN
project [Ferber and Gutknecht, 1998], whose goal is to provide tools to analyze, de-
sign, formalize and develop multi-agent systems from an organizational perspective.
This project has developed a generic meta-model of MAS based on organizational
concepts of agents, groups, and roles. This model is called AGR (Agent/Group/Role),
and it is supported by MadKit [MADKIT, 1999]. This model was extended in MES-
SAGE and INGENIAS, which developed the organization concept to consider differ-
ent contexts in which relationships and interactions between agents or roles may take
place [Garijo et al., 2000]. Initially inspired by the AALAADIN approach, they added
some extra concepts: workflows, resources, and their integration in the MAS specifi-
cation. Workflows and interactions are complementary concepts in INGENIAS. Work-
flows describe dependencies of tasks, the agents or roles that are responsible for their
execution, and which flows of information exist. Interactions define the exchange of
messages and the timing in the execution of tasks, as well as the conditions to meet in
order to continue an interaction.

These methodologies highlight organizations as a key element to study MAS and
consider them as something more than a set of roles and dependencies. An organization
corresponds to the system architecture since it defines the scope of agents and roles,
provided services, pursued goals, tasks to be executed, and available resources.

4 Towards a Unified Notation for MAS

As it has been recognized within the Special Interest Group on Methodologies and Soft-
ware Engineering for Agent Systems (MSEAS) at AgentLink, the agent community
needs to agree on concepts and vocabulary to ease the comparison of existing method-
ologies and provide a solid foundations for the evolution of agent development methods
and tools [Zambonelli et al., 2002].

Some methodologies are based on the definition of meta-models, which simpli-
fies the integration of new concepts or the modification of existing ones, e.g., INGE-
NIAS [Gómez-Sanz et al., 2002], AALAADIN [Ferber and Gutknecht, 1998]. In con-
trast, some methodologies describe their processes by means of meta-models, e.g.,
ADELFE [Picard et al., 2002], which extends the Unified Process by adding new ac-

366 Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



tivities, e.g., characterization of the environment, verification of the MAS, and identifi-
cation of agents. It is supported by OpenTool to edit AUML diagrams, and a library of
reusable components.

The trend that is gaining more importance seems to be the design of a unified
notation based on extending UML with agent-specific features that are not covered
by versions 1.4 or 2.0. The result is called Agent-UML (AUML) [AUML Team, 03].
This is currently being adopted by FIPA, the main international organization for agent
standards. AUML started by extending UML to specify agent interaction protocols
[Odell et al., 2001]. Protocol diagrams in AUML extend UML sequence diagrams by
providing mechanisms to define agent roles, agent lifelines (interaction threads, which
can split into two or more lifelines and merge at some subsequent point), nested and
interleaved protocols (patterns of interaction that can be reused with guards and con-
straints), and extended semantics for UML messages (for instance, to indicate the as-
sociated communicative act, whether messages are synchronous or asynchronous, and
other characteristics such as blocking, non-blocking and time-constrains). These dia-
grams have been used to specify FIPA interaction protocols.

Another extension to UML can be found in [Parunak and Odell, 2002]. It brings
together several agent organization-related concepts such as roles, group, dependencies
and speech acts, whose relevance to agent-based development has been discussed in the
previous sections. This approach is based on using three artifacts, namely:

1. Group, as a set of agents that share common interests, purposes or tasks. A group
is modelled by a class diagram and swinlanes to organize the roles in the group.

2. Role, as a representation of an agent’s function. One agent can play several roles
at a time, even in different organizations. The relationships between organizations,
agents and roles can also be depicted in a class diagram.

3. Environment, which provides three data processing functions: it merges informa-
tion from different agents that come to the same location at different times, it dis-
tributes data from one location to nearby locations, and it provides truth mainte-
nance by forgetting data that become obsolete.

Currently, the FIPA Modelling Technical Committee is also addressing the mod-
elling of agent classes, based on the proposal by [Bauer, 2002]. They rely on the as-
sumption that agent autonomy, proactivity, reactivity, and speech-act based communi-
cations require additional features to represent the internal state of the agents, other
than those used for objects. Here, an agent consists of a communicator, which performs
physical communication, a head, which deals with goals or states, and a body, which
performs the actions. The proposed notation allows to define agent classes, agent classes
satisfying distinguished roles, and agent instances. An agent class is defined by:

1. An agent class name and, optionally, a list of distinguished roles.

367Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



2. A state description, which looks similar to a field description in class diagrams, but
allows to express well-formed formulae for logical descriptions of the state. For
instance, this could be useful for defining the beliefs, desires, intentions, and goals
of an agent.

3. Actions, which can be denoted by the pro-active and re-active stereotypes.

4. Methods, as in UML classes.

5. Capabilities of the agent, e.g., FIPA service descriptions.

6. Communicative acts that define the main interface of the agent. Communicative
acts are themselves defined as other classes.

Other aspects of agent modelling are currently a subject of research, but should be
included in the FIPA AUML specifications. The evolution of this work can be tracked
on-line at www.auml.org.

5 Verification and Validation of MAS

Research in MAS verification is based on a trend to formalize agent systems. Formal
methods applied in MASs rely on existing techniques based on axiomatic approaches
and semantic-based approaches [Wooldridge and Ciancarini, 2000].

Axiomatic-based approaches propose proofs in the form of automatic theorem prov-
ing, which can sometimes determine if a specification satisfies a model. Well-known
examples of such an approach include ConGolog [Giacomo et al., 2000] as well as
CASL [Shapiro et al., 2002]. For an overview of automated theorem proving proce-
dures consult [Bledsoe, 1985]. Since theorem proving techniques have a high compu-
tational cost and may not be decidable, researchers tend to focus on semantic-based
approaches. Such approaches take the semantics of a language into consideration to
discern whether a formula is true or not in a concrete model. Model checking plays a
significant role here, but this is closer to testing than to verifying since it deals with
software, not only with formal specifications [Chandra et al., 2002]. However, model
checking is not usually interpreted this way in this context since programs are not writ-
ten in imperative languages, but in declarative modal languages. [Bordini et al., 2003]
and previous papers report on how to apply model checking to BDI based systems de-
fined with AgentSpeak(L) [Rao, 1996]. This work was previously initiated in the con-
text of the AAII/BDI methodology. In [Penczek and Lomuscio, 2003], the author also
studies model checking to verify the knowledge of agents in a sample scenario in which
two generals have to coordinate an attack. These approaches can be considered rep-
resentative since both start from a formal specification of the system. Just to provide a
different point of view, we would like to mention [Fuentes et al., 2003], which proposes
a new way of model checking using social theories as a model. Even if they are not so
formal, they are closer to standard human thinking.

368 Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



Validation, on the other hand, depends on having initial requirements and check-
ing if these requirements hold in the final system. This task refers to capturing initial
requirements and expressing them. There is an important amount of work in require-
ments elicitation in the agent domain that is considered relevant in the software engi-
neering community [Dardenne et al., 1993]. KAOS defines a meta-model of tasks and
goals to capture requirements and provides a tool called GRAIL/KAOS to represent
them [Darimont et al., 1997]. The conceptual framework called i* [Yu, 1997] defines
actors, beliefs, commitments, and goals to model organizational environments and their
information systems. Recently, i* has been adopted as an underlying framework for
an AOSE methodology named Tropos [Mylopoulos and Castro, 2000]. Tropos adds a
development process and automated translation methods from an i* specification into
agents supported by the Jack platform [Busetta et al., 1999]. The approach of the spec-
ification language Albert II is more formal [Heymans and Dubois, 1998]. The paper
describes a tool able to simulate a specification so that clients can see how it should
work and perform the validation themselves; there is also an example of validation.

Some of the existing methodologies apply these results, but it is not common.
MaSE uses model checking to detect deadlocks in communication among agents. It uses
SPIN [Holzmann, 1991], a well-known model checking tool that requires the transla-
tion of a MaSE specification into the PROMELA language. DESIRE, a component-
based framework, proposes a compositional verification method in which the authors
suggest to correlate the verification of system properties with the properties of its sub-
components [Brazier et al., 1997]. The properties to be verified depend on the domain.
In [Brazier et al., 1994], the domain is agent negotiation in load balance. The authors
suggest verification of termination, i.e., a negotiation terminates if there is a time after
which no bids are made, and communication groundedness, i.e., an agent can hear what
is said during a negotiation. Finally, INGENIAS uses Activity Theory [Leontiev, 1978]
to find contradiction patterns [Fuentes et al., 2003]. This theory provides explanations
of how human societies function using informal models. [Fuentes et al., 2003] shows
how these models can be formalized and applied to develop a MAS.

6 Implementation

Experience in the application of methodologies, particularly those with tool support,
has demonstrated the importance of tools to control the development process in all
phases and support developers to produce and measure the quality of the results ac-
cording to the methodology. Traditionally, the tools in this domain are composed of a
GUI front-end that helps configuring an existing framework. Although they can gen-
erate functional systems, sometimes they are highly coupled to a specific framework,
e.g., Zeus [ZEUS, 1999], and modifying it is difficult. MaSE generates code for dif-
ferent frameworks, but code generation facilities are not totally decoupled. Therefore,
adapting MaSE to another framework is still not trivial, but easier than Zeus. Currently,

369Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



there are new tools that are based on the definition of meta-models. This includes PASSI
[Burrafato and Cossentino, 2002], which is integrated in Rational Rose, and the INGE-
NIAS Development Kit [GRASIA! research group, 2003], which supports both editing
agent based specifications and code generation for several target platforms. Thanks to
meta-models, these tools are more adequate for industrial development since they can
be adapted to a variety of frameworks.

Besides tools, agents can be developed by reusing existing software components
from agent platforms and specialized libraries. With regard to platforms, JADE is cur-
rently the most used FIPA-compliant platform [Bellifemine et al., 2001][FIPA, 2003].
It provides some building blocks for agent communications, and utility agents for re-
mote monitoring of life-cycles and communications. Regarding the world of mobile
agents, Grasshopper [IKV++ Technologies AG, 1998] follows the corresponding OMG
standard, MASIF [OMG, 1999]. These platforms provide a basic agent class that pro-
vides access to the platform services, which range from agent management (creation,
destruction, and monitoring) to mobility. However, the internals of the agent, the deci-
sion mechanisms, learning capabilities, or social abilities, need to be implemented by
the developer.

To cover missing features, developers need to use third-party libraries and frame-
works. Examples include SOAR [Laird et al., 1999], the Cougaar agent architectures
[DARPA, 2003], the WEKA library [University of Waikato, 2004], and the JESS en-
gine [Friedman-Hill, 2003]. SOAR provides a deliberative architecture, which is de-
rived from the original results in [Laird et al., 1987]. There have been applications of
SOAR ranging from modelling human behavior in urban combat to players in first-
person-shoot’em-up games. Cougaar, according to their experiments, may be the most
stable agent architecture today. JESS is a Java implementation of CLIPS [NASA, 2003],
and it is usually applied to define behavior rules of agents. WEKA includes facilities to
define data-mining and machine learning capabilities.

For an exhaustive list of agent-related resources, we suggest that the reader should
consult [Mangina, 2002].

7 Conclusions

Given the diversity of agent-based methodologies, which one should you use? The an-
swer, of course, is not simple. If the developer is familiar with knowledge-based sys-
tems and has worked with the CommonKADS methodology, it would be easy to adopt
MAS-CommonKADS. For an object-oriented software developer, a methodology such
as MaSE or Adelfe does not require too many changes, since they are based on the
Unified Process. However, if the developer wants to fully exploit agent concepts, it is
better to seek for more agent-oriented approaches, e.g., Zeus or INGENIAS.

Although some comparison frameworks are clearly biased by its authors’ back-
ground on MAS, the evaluation of methodologies has gained importance recently. One

370 Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



of the very first evaluations refers to agent development platforms, rather than method-
ologies [Ricordel and Demazeau, 2000], but it takes into account their support in anal-
ysis, design, development, and deployment. In [Shehory and Sturm, 2001], they pay at-
tention to modelling aspects, but do not take into account the development process.
In [Cernuzzi and G. Rossi, 2002], the authors go a step forward with a quantitative ap-
proach in which they give numerical estimations on the extent to which a methodology
covers a specific feature. Last, but not least, [O’Malley and DeLoach, 2001] identifies
a collection of criteria to decide what methodology to choose. It considers the manage-
ment and needs that are required by each type of project. Although this is applied to
MaSE, the criteria they identify can be adapted to other methodologies.

We have created a web site to discuss this issue, and we provide a set of criteria and
case studies that can be applied to test and evaluate agent-oriented methodologies. The
site is available at http://ma.ei.uvigo.es/aose/.

Acknowledgements

This work was supported by the Spanish Ministry of Science and Technology under
grants TIC2002-04516-C03-03 and TIC2001-5108-E.

References

[Arenas and Barrera-Sanabria, 2002] Arenas, A. and Barrera-Sanabria, G. (2002). Applying the
MAS-CommonKADS methodology to the flights reservation problem: Integrating coordination
and expertise. In The 5th Joint Conference on Knowledge-Based Software Engineering.

[AUML Team, 03] AUML Team (03). Agent UML web site. http://www.auml.org.
[Bauer, 2002] Bauer, B. (2002). UML class diagrams: Revisited in the context of agent-based

systems. In Wooldridge, M., Weiß, G., and Cianciarini, P., editors, Agent-Oriented Software
Engineering II: Second International Workshop, volume 2222 of LNCS, pages 1–8. Springer-
Verlag.

[Bellifemine et al., 2001] Bellifemine, F., Poggi, A., and Rimassa, G. (2001). JADE: a FIPA
2000 compliant agent development environment. In Proc. of the 5th International Conference
on Autonomous Agents, pages 216–217. ACM Press.

[Bledsoe, 1985] Bledsoe, L. J. H. W. (1985). What is automated theorem proving? Journal of
Automated Reasoning, 1(1):23–28.

[Bordini et al., 2003] Bordini, R., Fisher, M., Visser, W., and Wooldridge, M. (2003). Verifiable
multi-agent programs. In Proc. of the First International Workshop on Programming Multia-
gent Systems, pages 1045–1052. Springer Verlag.

[Brazier et al., 1994] Brazier, F., van Langen, P., Treur, J., Wijngaards, N., and Willems, M.
(1994). Modelling a design task in DESIRE: the VT example. Technical Report IR-377, Uni-
versiteit Amsterdam, Department of Mathematics and Computer Science, Vrije, Amsterdam.

[Brazier et al., 1997] Brazier, F. T., Dunin-Keplicz, B., Jennings, N., and Treur, J. (1997). DE-
SIRE: Modelling multi-agent systems in a compositional framework. International Journal of
Cooperative Information Systems, 6(1):67–94.

[Burrafato and Cossentino, 2002] Burrafato, P. and Cossentino, M. (2002). Designing a multi-
agent solution for a bookstore with the PASSI methodology. In 4th International Bi-Conference
Workshop on Agent-Oriented Information Systems (AOIS-2002), Toronto, Ontario, Canada.
CEUR-WS.

371Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



[Busetta et al., 1999] Busetta, P., Rönnquist, R., Hodgson, A., and Lucas, A. (1999). JACK
Intelligent Agents – Components for intelligent agents in Java. Agentlink News, 2:2–5.

[Caire et al., 2001] Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F., Gómez-Sanz, J.,
Pavón, J., Kerney, P., Stark, J., and Massonet, P. (2001). Agent oriented analysis using MES-
SAGE/UML. In Wooldridge, M., Weiß, G., and Cianciarini, P., editors, Agent-Oriented Soft-
ware Engineering II: 2nd International Workshop, LNCS 2222, pages 119–135. Springer Ver-
lag.

[Cernuzzi and G. Rossi, 2002] Cernuzzi, L. and G. Rossi, G. (2002). On the evaluation of agent
oriented methodologies. In Proc. of the OOPSLA 2002 Workshop on Agent-Oriented Method-
ologies. COTAR.

[Chandra et al., 2002] Chandra, D., Godefroid, P., and Palm, C. (2002). Software model check-
ing in practice: an industrial case study. In Proc. ICSE’02, pages 431–441. ACM Press.

[Dardenne et al., 1993] Dardenne, A., van Lamsweerde, A., and Fickas, S. (1993). Goal-
directed requirements acquisition. Science of Computer Programming, 20:3–50.

[Darimont et al., 1997] Darimont, R., Delor, E., Massonet, P., and van Lamsweerde, A. (1997).
GRAIL/KAOS: an environment for goal-driven requirements engineering. In Proc. ICSE’97,
pages 612–613. ACM Press.

[DARPA, 2003] DARPA (2003). Cognitive agent architecture. http://www.cougaar.
org.

[DeLoach, 2001] DeLoach, S. (2001). Analysis and Design using MaSE and agenTool. In Proc.
of the 12th Midwest Artificial Intelligence and Cognitive Science Conferece (MAICS), Miami
University. Miami University Press.

[DeLoach et al., 2001] DeLoach, S., Wood, M., and Sparkman, C. (2001). Multiagent systems
engineering. Int. Journal of Software Engineering and Knowledge Engineering, 11(3):231–
258.

[Ferber and Gutknecht, 1998] Ferber, J. and Gutknecht, O. (1998). A meta-model for the analy-
sis and design of organizations in multi-agent systems. In Proc. ICMAS’98, pages 128–135.

[FIPA, 2003] FIPA (2003). Foundation for Intelligent Agents. http://www.fipa.org.
[Friedman-Hill, 2003] Friedman-Hill, E. (2003). Java expert system shell (JESS). http://
herzberg.ca.sandia.gov/jess.

[Fuentes et al., 2003] Fuentes, R., Gómez-Sanz, J., and Pavón, J. (2003). Activity theory for the
analysis and design of multi-agent systems. In Agent-Oriented Software Engineering IV, pages
110 – 122. Springer Verlag.

[Garijo et al., 2000] Garijo, F., Gómez-Sanz, J., Pavón, J., and Massonet, P. (2000). Multi-agent
system organization. An engineering perspective. In 10th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World.

[Gervais, 2003] Gervais, M. (2003). ODAC: An agent-oriented methodology based on ODP.
Journal of Autonomous Agents and Multi-Agent Systems, 7(3):199–228.

[Giacomo et al., 2000] Giacomo, G. D., Lesperance, Y., and Levesque, H. J. (2000). Congolog,
a concurrent programming language based on the situation calculus. Artificial Intelligence,
121:109–169.

[Glaser, 1996] Glaser, N. (1996). Contribution to Knowledge Modelling in a Multi-Agent
Framework (the CoMoMAS Approach). Ph.d. thesis, L’Universtité Henri Poincaré, Nancy I,
France.

[Gómez-Sanz et al., 2002] Gómez-Sanz, J., Pavón, J., and Garijo, F. (2002). Meta-models for
building multi-agent systems. In Proc. ACM SAC’02, pages 37–41. ACM Press.

[GRASIA! research group, 2003] GRASIA! research group (2003). INGENIAS IDK. http:
//ingenias.sourceforge.net.

[Heymans and Dubois, 1998] Heymans, P. and Dubois, E. (1998). Scenario-based techniques
for supporting the elaboration and the validation of formal requirements. Technical Report
CREWS Report 98-15, Universite de Namur, Belgium.

[Holzmann, 1991] Holzmann, G. (1991). Design and Validation of Computer Protocols.
Prentice-Hall, Englewood Cliffs, New Jersey.

[Iglesias et al., 1998] Iglesias, C., Garijo, M., Gonzales, J., and Velasco, J. R. (1998). Analysis
and design of multi-agent systems using MAS-CommonKADS. In Singh, M., Rao, A., and

372 Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



Wooldridge, M., editors, Intelligent Agents IV. Proc. of the Fourth International Workshop on
Agent Theories, Architectures, and Languages (ATAL-97), volume 1365 of LNAI, pages 313–
326. Springer-Verlag.

[IKV++ Technologies AG, 1998] IKV++ Technologies AG (1998). Grasshopper. http://
www.grasshopper.de/index.html.

[ITU-T, 1999] ITU-T (1999). Recommendation Z.100: Specification and Description Language
(SDL).

[Jacobson et al., 1999] Jacobson, I., Rumbaugh, J., and Booch, G. (1999). The Unified Software
Development Process. Addison-Wesley.

[Kinny et al., 1996] Kinny, D., Georgeff, M., and Rao, A. (1996). A methodology and modelling
technique for systems of BDI agents. In van der Velde, W. and Perram, J., editors, Agents
Breaking Away: Proc. of the Seventh European Workshop on Modelling Autonomous Agents in
a Multi-Agent World (MAAMAW-96), volume 1038 of LNAI, pages 56–71. Springer-Verlag.

[Laird et al., 1999] Laird, J., Congdom, C. B., and Coulter, K. (1999). The SOAR’s users manual
v.8.2. The Soar Group, Artificial Intelligence Laboratory, University of Michigan.

[Laird et al., 1987] Laird, J., Newell, A., and Rosenbloom, P. (1987). SOAR: an architecture for
general intelligence. Artificial Intelligence, 33(1):1–64.

[Leontiev, 1978] Leontiev, A. (1978). Activity, Consciousness, and Personality. Prentice Hall.
[Lind, 2000] Lind, J. (2000). MASSIVE: Software Engineering for Multiagent Systems. Ph.d.

thesis, University of the Saarland.
[MADKIT, 1999] MADKIT (1999). Multi-Agent Development KIT.
[Mangina, 2002] Mangina, E. (2002). Review of software products for multi-agent systems.

survey, AgentLink.
[Mylopoulos and Castro, 2000] Mylopoulos, J. and Castro, J. (2000). Tropos: A framework for

requirements-driven software development. In Proc. CAISE’00.
[NASA, 2003] NASA (2003). C language integrated production system (CLIPS). http://
www.ghgcorp.com/clips/CLIPS.html.

[Odell et al., 2001] Odell, J., Parunak, V., and Bauer, B. (2001). Representing agent interaction
protocols in UML. In Ciancarini, P. and Wooldridge, M., editors, Agent-oriented software
engineering. Proceedings of the First International Workshop (AOSE-2000), volume 1957 of
LNAI, pages 121–140. Springer-Verlag.

[O’Malley and DeLoach, 2001] O’Malley, S. and DeLoach, S. (2001). Determining when to use
an agent-oriented software engineering paradigm. In Wooldridge, M., Weiß, G., and Ciancarini,
P., editors, Agent-Oriented Software Engineering II, volume 2222 of LNCS, pages 188–205,
2nd International Workshop, AOSE 2001, Montreal, Canada. Springer Verlag.

[OMG, 1999] OMG (1999). Mobile Agent System Interoperability Facility (MASIF). http:
//www.fokus.gmd.de/research/cc/ecco/masif.

[Parunak and Odell, 2002] Parunak, H. V. D. and Odell, J. (2002). Represening social structures
in UML. In Wooldridge, M., Weiß, G., and Cianciarini, P., editors, Agent-Oriented Software
Engineering II: Second International Workshop, volume 2222 of LNCS, pages 17–31. Springer-
Verlag.

[Pavón and Gómez-Sanz, 2003] Pavón, J. and Gómez-Sanz, J. (2003). Agent oriented software
engineering with INGENIAS. In V. Marı́k and J. Müller and M. Pechoucek, editor, Multi-Agent
Systems and Applications III, volume 2691 of LNCS, pages 394–403. 3rd International Central
and Eastern European Conference on Multi-Agent Systems (CEEMAS 2003), Springer Verlag.

[Penczek and Lomuscio, 2003] Penczek, W. and Lomuscio, A. (2003). Verifying epistemic
properties of multi-agent systems via bounded model checking. In Proc. of the second in-
ternational joint conference on Autonomous agents and multiagent systems, pages 209–216.
ACM Press.

[Picard et al., 2002] Picard, G., Bernon, C., Gleizes, M., and Peyruqueou, S. (2002). ADELFE
a methodology for adaptive multi-agent systems engineering. In Petta, P., Tolksdorf, R., and
Zambonelli, F., editors, Engineering Societies in the Agents World III: Third International
Workshop (ESAW 2002), number 2577 in LNCS, pages 156–169. Springer Verlag.

[Rao, 1996] Rao, A. (1996). AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In van der Velde, W. and Perram, J., editors, Agents Breaking Away: Proc. of the Seventh

373Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems



European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-96),
volume 1038 of LNAI, pages 42–55. Springer-Verlag.

[Rao and Georgeff, 1991] Rao, A. and Georgeff, M. (1991). Modeling rational agents within a
BDI-architecture. In Allen, J., Fikes, R., and Sandewall, E., editors, Proc. of the 2nd Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR’91), pages
473–484. Morgan Kaufmann publishers Inc.

[Ricordel and Demazeau, 2002] Ricordel, P. and Demazeau, Y. (2002). Volcano, a vowels-
oriented multi-agent platform. In From Theory to Practice in Multi-Agent Systems, Second In-
ternational Workshop of Central and Eastern Europe on Multi-Agent Systems (CEEMAS 2001),
volume 2296 of Lecture Notes in Computer Science, pages 253–262. Springer.

[Ricordel and Demazeau, 2000] Ricordel, P.-M. and Demazeau, Y. (2000). From analysis to de-
ployment: A multi-agent platform survey. In Working Notes of the First International Workshop
on Engineering Societies in the Agents’ World (ESAW-00), pages 93–105.

[Schreiber et al., 1994] Schreiber, A., Wielinga, J., Akkermans, J., and de Velde, W. V. (1994).
CommonKADS: A comprehensive methodology for KBS development. Technical report, Uni-
versity of Amsterdam, Netherlands Energy Research Foundation ECN and Free University of
Brussels.

[Shapiro et al., 2002] Shapiro, S., Lespérance, Y., and Levesque, H. J. (2002). The cognitive
agents specification language and verification environment for multiagent systems. In Proc. of
the first international joint conference on Autonomous agents and multiagent systems, pages
19–26. ACM Press.

[Shehory and Sturm, 2001] Shehory, O. and Sturm, A. (2001). Evaluation of modeling tech-
niques for agent-based systems. In Proc. of the fifth international conference on Autonomous
Agents. ACM Press.

[University of Waikato, 2004] University of Waikato (2004). WEKA 3. http://www.cs.
waikato.ac.nz/ml/weka/.

[Wooldridge and Ciancarini, 2000] Wooldridge, M. and Ciancarini, P. (2000). Agent-Oriented
Software Engineering: The State of the Art. In Ciancarini, P. and Wooldridge, M., editors, First
International Workshop on Agent-Oriented Software Engineering, volume 1957, pages 1–28.
Springer-Verlag, Berlin.

[Wooldridge et al., 2000] Wooldridge, M., Jennings, N., and Kinny, D. (2000). The Gaia
methodology for agent-oriented analysis and design. Journal of Autonomous Agents and Multi-
Agent Systems, 3:285–312.

[X.900, 1995] X.900 (1995). ISO/IEC IS 10746-x ITU-T Rec. X90x, ODP Reference Model
Part x.

[Yu, 1997] Yu, E. K. (1997). Towards modelling and reasoning support for early-phase require-
ments engineering. In Proc. of 3rd International Symposium on Requirements Engineering,
pages 226–235. IEEE.

[Zambonelli et al., 2002] Zambonelli, F., Bergenti, F., and Dimarzo, G. (2002). Methodologies
and software engineering for agent systems. AgentLink News, 9:23–25.

[Zambonelli and Parunak, 2002] Zambonelli, F. and Parunak, H. V. D. (2002). Signs of a revolu-
tion in computer science and software engineering (esaw 2002). In 3rd International Workshop
on Engineering Societies in the Agents’ World, volume LNCS 2577, pages 13–28. Springer
Verlag.

[ZEUS, 1999] ZEUS (1999). http://www.labs.bt.com/projects/agents/
zeus/index.htm.

374 Gomez-Sanz J., Pavon J.: Methodologies for Developing Multi-Agent Systems


