
Coupling-based Testing of O-O Programs

Roger T. Alexander
(Colorado State University, USA
rta@cs.colostate.edu)

Jeff Offutt
(George Mason University, USA

ofut@ise.gmu.edu)

Abstract: As we move from developing procedure-oriented to O-O programs, the complexity
traditionally found in functions and procedures is moving to the connections among components.
More faults occur as components are integrated to form higher level aggregates. Consequently,
we need to place more effort on testing the connections among components. Although O-O tech-
nology provides abstraction mechanisms to build components to integrate, it also adds new com-
positional relations that can contain faults, which must be found during integration testing. This
paper describes new techniques for analyzing and testing the polymorphic relationships that oc-
cur in O-O software. The application of these techniques can result in an increased ability to find
faults and overall higher quality software.
Key Words: object-oriented software, coverage testing
Category: D.2.5

1 Introduction

The emphasis in O-O languages is on defining abstractions such as abstract data types
that model concepts in an application domain [Meyer, 1997]. Although abstract data
types and other O-O concepts can help achieve a higher quality design, how we test
software needs to change. A major factor is that shifting from procedure-oriented soft-
ware to object-oriented software induces a complementary shift where the complexity
of the software resides. Instead of primarily being in the software units, the complexity
is now primarily in the way in which we connect software components. Thus, devel-
opers are finding that we need less emphasis on unit testing and more on integration
testing. Another factor that affects testing of O-O software is due to the inherent com-
plexity in the nature of the relationships found in O-O languages [Binder, 1996].

The compositional relationships of inheritance and aggregation, combined with the
power of polymorphism, makes it harder to detect faults that result from the integration
of components. This is because the way classes and components are integrated is dif-
ferent in O-O languages [Berard, 1993]. Procedure-oriented languages use procedures
and functions as the primary abstraction mechanism. In contrast, both object-based and
O-O languages use data abstraction as the primary mechanism. In addition, O-O lan-
guages use the integration mechanism of inheritance. New types created by inheritance
are descendants of the existing type [Meyer, 1990], but this is not aggregation. A key
difference is that the encapsulation of the inherited type may not be preserved, that is,

Journal of Universal Computer Science, vol. 10, no. 4 (2004), 391-427
submitted: 17/10/03, accepted: 2/2/04, appeared: 28/4/04 © J.UCS

the new type can have access to the internals of the ancestor types. When combined
with inheritance, polymorphism and the associated dynamic binding can strongly affect
component integration. When a call is made to a polymorphic method, which version
is executed depends on the current type of the object [Meyer, 1997].

Thus inheritance and polymorphism provide two forms of integration that must be
dealt with when testing objects, neither of which has a procedure-oriented counter-
part. The first form, integration of representation, addresses the issues associated with
combining the representation chosen for the state space of existing classes to form a
representation for a new class through inheritance. Properties and behaviors that are
inherited, along with state-space definitions, must be carefully combined with new and
overriding methods to ensure consistency in behavior and state. The second form, in-
tegration of abstraction, deals with the effects of aggregation in the presence of inher-
itance and polymorphism. To integrate successfully, the aggregated type and its owner
must work together correctly for all forms of representation that can exist for the ag-
gregated type. This is not just a static language issue; dynamic binding means that the
representation of an aggregated type may change dynamically, i.e, the actual type of the
object reference may change. Thus, several substitutions must be tested to ensure the
type behaves correctly, that is, the code correctly implements the abstraction.

This paper summarizes research on testing for software faults that can arise from the
use of integration of representation and integration of abstraction. [Section 2] presents
background information and concepts, and [Section 3] describes a model of faults that
result from the use of inheritance and polymorphism; [Section 4] presents background
for coupling-based testing and O-O concepts; [Section 5] describes how coupling-based
testing is used to testing polymorphic relationships; [Section 6] presents our criteria for
testing those relationships; we then summarize experimental results from evaluations of
the effectiveness of the coupling-based testing criteria in [Section 7]; we discuss related
work in [Section 8] and conclude the paper with [Section 9].

2 Background

Classes are the fundamental building blocks in O-O software. A class defines new types
and encapsulates state information in a collection of state variables, and has a set of
behaviors that are implemented by methods that use those state variables. Classes define
types that are used to instantiate objects [Meyer, 1997][Parnas et al., 1976].

Classes can be composed to form new types in two ways. In aggregation, one type
contains instances of another type. Previous languages implement aggregation with
records. Inheritance allows the representation of one type to be defined in terms of
the representation of one or more existing types. The new type (the child) has all of
the state and behavior properties of the existing types (parents). Polymorphism allows
the same pointer to reference objects of different types, subject to limitations of the in-
heritance hierarchy. Thus, the type of the object referenced can change at run time. A

392 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

W
−v
+m()
+n()

+m()
+n()

X

+m()

V
−x

(A) (B)

 1. void f (boolean b)
 2. {
 3. W o;
 4. ...
 5. if (b)
 6. o = new V();
 7. else
 8. o = new W();
 9. ...
10. o.m();
11. }

Figure 1: Example class hierarchy in UML

pointer’s declared type is the type used when it is declared, and its actual type is the
type of the object last assigned to the pointer. Most O-O languages require that the type
of the pointer’s object be its declared type or a descendant of its declared type. When
polymorphism is combined with method overriding, the same call can execute differ-
ent methods. This is called dynamic binding. The method that is executed depends on
the actual type of the object when the call is reached. Thus, which method is actually
executed cannot be known statically, and must be determined dynamically (during exe-
cution). As an example, consider the UML class diagram and code fragment shown in
[Fig. 1]. The declared type of o is W, but at line 10, the actual type can be either V or W.
Since V overrides m(), which version of m() is executed depends on whether the input
flag to the method f() was true or false.

2.1 Problems with Overriding and Polymorphism

Consider the simple inheritance hierarchy in [Fig. 2]. The state variables of class A are
protected, and thus are available to the descendants. The arrows on the left show the
overriding: B.h() overrides A.h(), B.i() overrides A.i(), C.i() overrides B.i(),
C.j() overrides A.j(), and C.l() overrides A.l(). The table of the right shows the
state variable definitions and uses of some of the methods.

This small example has some very complex interactions that can yield very difficult
problems. For instance suppose that an instance of A is bound to an object o and a call is
made through o to A.d(), which calls A.g(), which calls A.h(), which calls A.i(),
which finally calls A.j(). In this case, the variables A.u and A.w are first defined, then
used in A.i() and A.j(), which poses no problems. Now suppose that an instance of
B is bound to o, and a call to d() is made. This time B’s version of h() and i() are
called, A.u and A.w are not given values, and thus the call to A.j() can result in a data
flow anomaly.

393Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

Method Defs Uses
{A::u, A::w}

{A::v}
{A::u}
{A::w}
{A::v}

{B::x}

{C::y}
{A::v}

A::h

A::j
A::l
B::h
B::i
C::i
C::j
C::l

{C::y}

{B::x}

A::i

A

C

B

t
u
v
w

+d()
+g()
+h()
+i()
+j()
+l()

x

+h()
+i()
+k()

+i()
+j()
+l()

Figure 2: SDA, SDIH: State definition anomalies

2.2 A Graphical Model for Polymorphic Faults

One of the most difficult aspects of developing O-O software is visualizing the often
complex interactions that can occur in the presence of inheritance, polymorphism, and
dynamic binding [Binder, 1996]. The compositional relationships of inheritance and
aggregation, combined with the power of polymorphism and the inherent undecidability
of dynamic binding, increase the difficulty of modeling software, detecting faults, and
debugging the faults [Berard, 1994].

This section presents a model for visualizing these interactions, particularly with the
idea of understanding actual and potential faults in O-O software. The essential prob-
lems are that of understanding which version of a method will be executed and which
versions can be executed. The fact that execution can sometimes “bounce” up and down
among levels of inheritance has been called the yo-yo effect in [Binder, 1996], where a
preliminary graph was introduced. We have extended this notion as a basis for a graph-
ical representation that we call the “yo-yo graph” to show all possible actual executions
in the presence of dynamic binding. The yo-yo graph is defined on an inheritance hi-
erarchy that has �� as root and descendants �� through ��. For each class ��, all new,
inherited, and overridden methods are shown. Method calls in the source are represented
as arrows from caller to callee. Each class �� is given a level in the yo-yo graph that
shows the actual calls made if an object has the actual type � �. Bold arrows are actual
calls and light arrows are calls that cannot be made due to overriding.

Consider the inheritance hierarchy shown in [Fig. 2]. Assume that in A’s implemen-

394 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

A
+d()
+g()
+h()
+i()
+j()
+l()

B

+h()
+i()
+k()

C
+i()
+j()
+l()

A

B

C

d() g() j()

l()

i()h()

h() i()

i() j()

l()

k()

A

B

C

d() g() j()

l()

i()h()

h() i()

i() j()

l()

k()

A

B

C

d() g() j()

l()

i()h()

h() i()

i() j()

l()

k()

Figure 3: Calls to d() when the object has various actual types

tation, d() calls g(), g() calls h(), h() calls i(), and i() calls j(). Further, assume
that in B’s implementation, h() calls i(), i() calls its parent’s (that is, A’s) version
of i(), and k() calls l(). Finally, assume that in C’s implementation, i() calls its
parent’s (this time B’s) version of i(), and j() calls k(). [Fig. 3] is a yo-yo graph of
this situation and expresses the actual sequence of calls if a call is made to d() through
an instance of actual type A, B, and C. At the top level of the graph, it is assumed that
a call is made to method d() through an object of actual type A. In this case, the se-
quence of calls is simple and straightforward. In the second level, where the object is of
actual type B, the situation starts to get more complex. When g() calls h(), the version
of h() defined in B is executed (the light dashed line from A.g() to A.h() empha-
sizes that A.h() is not executed). Then control continues to B.i(), A.i(), and then to
A.j(). When the object is of actual type C, it becomes clear why the term “yo-yo” is
used. Control proceeds from A.g() to B.h() to C.i(), then back up through B.i()

to A.i(), back to C.j(), back up to B.k(), and finally down to C.l().

3 Inheritance Faults and Anomalies in O-O Programs

The benefits of using inheritance include more creativity, efficiency, and reuse. Unfortu-
nately, it also allows a number of anomalies and potential faults that anecdotal evidence
has shown to be some of the most difficult problems to detect, diagnose, and correct.
This section presents a list of fault types that can be manifested by polymorphism, as
summarized in [Tab. 1]. Most of the types are programming language-independent, al-
though the language that is used will affect how the faults manifest. The examples,
terminology, and many of the specifics are based on Java. We try to point out where the
rules would change for other languages. In all cases, we are concerned with how each

395Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

Acronym Fault or anomaly

ITU Inconsistent Type Use (context swapping)
SDA State Definition Anomaly (possible post-condition violation)
SDIH State Definition Inconsistency (due to state variable hiding)
SDI State Defined Incorrectly (possible post-condition violation)
IISD Indirect Inconsistent State Definition

ACB1 Anomalous Construction Behavior (1)
ACB2 Anomalous Construction Behavior (2)

IC Incomplete Construction
SVA State Visibility Anomaly

Table 1: Faults and anomalies due to inheritance and polymorphism

anomaly or fault is manifested through polymorphism in a context that uses an instance
of the ancestor. Thus, we assume that instances of descendant classes can be substituted
for instances of the ancestor.

3.1 Inconsistent Type Use (ITU)

For this fault type, a descendant class does not override any inherited method. Thus,
there can be no polymorphic behavior. Instances of a descendant class C that is used
where an instance of T is expected can only behave exactly like an instance of T. That
is, only methods of T can be used. Any additional methods specified in C are hidden
since the instance of C is being used as if it is an instance of T. However, anomalous
behavior is still a possibility. If an instance of C is used in multiple contexts, i.e., say first
as a T, then as a C, then as a T again, anomalous behavior can occur if C has extension
methods. In this case, one or more of the extension methods can call a method of T
or directly define a state variable inherited from T. Anomalous behavior will occur if
either of these actions results in an inconsistent inherited state.

As an example, consider the class hierarchy shown in [Fig. 4], which is based on
JDK 1.2. Class Vector encapsulates a sequential data structure that supports direct
access to its elements, and class Stack encapsulates a sequential LIFO data structure.
As shown, Stack uses methods inherited from Vector to implement its behavior. The
top table summarizes the calls made by each method, and the bottom table summa-
rizes the definitions and uses (“d” and “u”, respectively) of the state space of Vec-
tor. The extension method Stack.pop() calls Vector.removeElementAt(), and
Stack.push() calls Vector.insertElementAt(). Clearly, these classes have dif-
ferent semantics. As long as an instance of Stack is used solely as an instance of
Stack, there will be no behavioral problems. Alternatively, the Stack instance could
be used solely as a instance of Vector, again without experiencing behavioral prob-
lems. However, if the use of the instance is mixed between the Stack and Vector, be-

396 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

Vector
−array

+insertElementAt()
+removeElementAt()

Stack

call

Method CalledMethods

Vector::insertElementAt

Vector::removeElementAt

Stack::pop

Stack::push

Vector::removeElementAt

Vector::insertElementAt

Variable

d*, u*

d*, u*

d, u

d, u

array

Vector

Method

Vector::insertElementAt

Vector::removeElementAt

Stack::pop

Stack::push

State Variable Uses and Definitions

+pop () : Object
+push () : Objectcall

Figure 4: ITU: Descendant with no overriding methods

1 public void f(Stack s)
2 {
3 String s1 = "s1";
4 String s2 = "s2";
5 String s3 = "s3";
6 ...
7 s.push(s1);
8 s.push(s2);
9 s.push(s3);

10
11 g(s);
12
13 s.pop();
14 s.pop();
15 // Empty stack!
16 s.pop();
17 ...
18 }

19 public void g(Vector v)
20 {
21 // Remove the last element
22 v.removeElementAt(v.size()-1);
24 }

Figure 5: ITU: Code example showing inconsistent type usage

havioral problems can occur. The code fragment in [Fig. 5] illustrates how behavioral
anomalies can occur. For the method f(), the instance bound to the formal argument s
is used only as a Stack in lines 3 through 9. However, at line 11, s is passed as an ac-
tual argument to method g, which expects an instance of Vector. This is syntactically
correct because an instance of Stack is also an instance of Vector. There is a potential
behavioral problem that begins at line 21 where the last element of s is removed. The
fault is manifested when control returns and reaches the first call to Stack.pop() at
line 14 since the element removed from the stack is not the last element that was added.

397Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

W
v
u

m()
n()

n()

x

X

Y
w

m()

W::m

W::n

X::n

Y::l

Y::m

W::l

W::u X::x Y::wW::v

def

def

def

def

use

use

use

def

Figure 6: Sample class hierarchy

3.2 State Definition Anomaly (SDA)

In general, for a descendant class to be behaviorally compatible with its ancestor, the
state interactions of the descendant must be consistent with those of its ancestor. That is,
the refining methods implemented in the descendant must leave the ancestor in a state
that is equivalent to the state that the ancestor’s overridden methods would have left the
ancestor in. For this to be true, the refining methods provided by the descendant must
yield the same net state interactions as each public method that is overridden. From a
data flow perspective, this means that the refining methods must provide definitions for
the inherited state variables that are consistent with the definitions in the overridden
method or a potential data flow anomaly exists. Whether or not an anomaly actually
occurs depends on the sequences of methods that are valid with respect to the ancestor.

As an example, consider the class hierarchy and tables of definitions and uses shown
in [Fig. 6]. The parent is class W, and it has descendants X, and Y. W defines methods m()
and n(), which have the definitions and uses shown in the table. Assume that a valid
method call sequence is W.m() followed by W.n(). W.m() defines state variable W.v
and W.n() uses it. Now consider the class X and its refining method X.n(). As the table
shows, it also uses state variable W.v, which is consistent with the overridden method
and with the method sequence given above. Thus far, there is no inconsistency in how X

interacts with the state of W. In fact, because a use can never affect future state-dependent
behavior, X.n() could just as easily have used a different variable. Now consider class
Y and the method Y.m(), which overrides W.m() through refinement. Observe that
Y.m() does not define W.v, as W.m() does; but defines Y.w instead. Now, a data flow
anomaly exists with respect to the method sequence m();n() for the state variable

398 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

W.v. When an instance of Y is subjected to this sequence, Y.w is defined first (because
Y.m() executes), but then W.v is used by method X.n(). Thus, the assumption made
by X.n(), that W.v is defined by a call to m() prior to a call to n(), no longer holds.
In this example, a failure occurs since there is no prior definition of W.v when Y is the
type of an instance being used. Note that this is not always true since the controlling
factor in whether a fault has occurred is a function of what prior method invocations
have occurred, any default initializations that were applied, and how individual state
variables are handled during instance construction.

Any extension method that is called by a refining method must also interact with the
inherited variables of the ancestor in a way that is consistent with the ancestor’s current
state. Since the extension method provides a portion of the refining method’s net effects,
to avoid a data flow anomaly the extension must not define inherited state variables in
a way that would be inconsistent with the method being refined. Thus, the net effect of
the extension method cannot be to leave the ancestor in a state that is logically different
from when it was invoked.

3.3 State Definition Inconsistency Due to State Variable Hiding (SDIH)

If a local variable is introduced to a class definition where the name of the variable is the
same as an inherited variable �, the effect is that the inherited variable is hidden from
the scope of the descendant (unless explicitly qualified, as in �������). A reference to
� by an extension or overriding method will refer to the descendant’s �. This is not a
problem if all inherited methods are overridden since no other method could implicitly
reference �, but this is not usual.

As an example, consider again the hierarchy in [Fig. 6]. Suppose the definition of
class Y has the local state variable v that hides the inherited variable W.v. Further sup-
pose method Y.m() defines v, just as W.m() defines W.v. Given the method sequence
m();n(), a data flow anomaly exists between W and Y with respect to W.v.

3.4 State Defined Incorrectly (SDI)

Suppose an overriding method defines the same state variable v that the overridden
method defines. If the computation performed by the overriding method is not semanti-
cally equivalent to the computation of the overridden method with respect to �, then
subsequent state dependent behavior in the ancestor will probably be affected, and
the externally observed behavior of the descendant will be different from the ances-
tor. While this problem is not a data flow anomaly, it is a potential behavior anomaly.

3.5 Indirect Inconsistent State Definition (IISD)

An indirect inconsistent state definition can occur when a descendant adds an extension
method that defines an inherited state variable. For example, consider the class hierar-
chy shown in [Fig. 7.a]. Since e() is an extension method, it cannot be directly called

399Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

T

D

x
y

m()

e()

Defines

Defines

Cannot
Call!

(A)

T

D

x
y

m()

Defines

Defines

Overrides

m()
e()Calls

(B)

Figure 7: IISD: Example of indirect inconsistent state definition

from an inherited method, in this case T.m(), because e() is not visible to the inherited
method. However, if an inherited method is overridden, the overriding method (such as
D.m() in [Fig. 7.b]) can call e() and introduce a data flow anomaly by having an effect
on the state of the ancestor that is not semantically equivalent to the overridden method,
e.g., with respect to variable T.y. Whether an error occurs depends on which state vari-
able is defined by e(), where e() executes in the sequence of calls made by a client,
and what state dependent behavior the ancestor has on the variable defined by e().

3.6 Anomalous Construction Behavior I (ACB1)

Consider the class hierarchy shown in the left half of [Fig. 8]. Class C’s constructor
calls C.f(). Class D contains the overriding method D.f() that defines the local state
variable D.x. There is no apparent interaction between D and C since D.f() does not
interact with the state of C. However, C interacts with D’s state by virtue of the appar-
ent call that C’s constructor makes to C.f(). In some O-O languages, e.g., Java and
C#, constructor calls to polymorphic methods execute the method that is closest to the
instance that is being created. For the class C in the hierarchy in [Fig. 8], the closest ver-
sion of f() to C is specified by C itself, and thus executes when an instance of C is being
constructed. For D, the closest version is D.f(), which means that when an instance of
D is being constructed, the call made to f() in C’s constructor actually executes D.f()
instead of its own locally specified f().

This can easily result in a data flow anomaly if D.f() uses variables defined in the
state space of D. Because of the order of construction, D’s state space will not have been
constructed. Whether or not an anomaly exists depends on whether default initializa-
tions have been specified for the variables used by f(). Furthermore, a fault is likely
to occur if the assumptions or preconditions of D.f() have not been satisfied prior
to construction [Alexander et al., 2000]. This is particularly insidious if D accidentally
overrides f(), which is possible if the programmer does not have access to C’s source.

400 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

f()

D()

C()

f()

class C

class D

call callnew

Client
D

C

Calls

f()

x
Uses

Overrides

C()
f()

Figure 8: ACB1: Example of anomalous construction behavior

3.7 Anomalous Construction Behavior II (ACB2)

Similar to ACB1, the constructor of C calls a locally defined polymorphic method f().
A data flow anomaly can occur if f() is overridden in a descendant class D and if that
overriding method uses state variables inherited from C. The anomaly occurs if the state
variables used by D.f() have not been properly constructed by C.f(). This depends on
the set of variables used by D.f(), the order in which the variables in the state of C are
constructed, and the order in which f() is called by C’s constructor. Note that it is not
generally possible for the programmer of class C to know in advance which version of
f() will actually execute, and which state variables that the executing version depends
on. Thus, the invocation of polymorphic method calls from constructors is unsafe and
introduces non-determinism into the construction process.

3.8 Incomplete (Failed) Construction (IC)

In some programming languages, the value of the variables in the state space of a class
before construction is undefined. The role of the constructor is to establish the initial
state conditions and the state invariant for new instances of the class. By the time the
constructor has finished, the state of the instance should be well defined. There are two
possibilities for faults here: (i) the construction process may have assigned an incorrect
initial value to a state variable, i.e., the computation used to determine the initial value
is wrong; (ii) the initialization of a state variable may have been overlooked, i.e., there
is a data flow anomaly between the constructor and each of the methods that will first
use the variable after construction and any other uses until a definition occurs.

An example of incomplete construction is shown by the code fragment in [Fig. 9].
Class AbstractFile contains the state variable fd that is not initialized. The intent
is that a descendant class provide the definition of fd prior to its use, which is done
by method open() in the descendant class SocketFile. If any descendant that can be
instantiated defines fd, and no method is called that uses fd prior to the definition, there

401Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

1 abstract class AbstractFile
2 {
3 FileHandle fd;
4
5 abstract public
6 void open();
7 public void read()
8 { ... fd.read(); ... }
9 public void write()

10 { ... fd.write(); ... }
11 abstract public
12 void close();
13 }

14 class SocketFile
15 extends AbstractFile
16 {
17 public void open()
18 {
19 fd = new Socket(...);
20 }
21
22 public void close()
23 {
24 fd.flush();
25 fd.close();
26 }
27 }

Figure 9: IC: Incomplete construction of state variable fd

is no problem. However, a fault will occur if either of these conditions is not satisfied.
Observe that while the designer’s intent is for a descendant to provide the necessary
definition, a data flow anomaly exists within AbstractFile with respect to fd for
methods read() and write(). Both of these methods use fd, and if either are called
immediately after construction, a fault will occur. Note that this design introduces an
element of non-determinism into AbstractFile since it is not known at design time
what type of instance fd will be bound to, or if it will be bound at all. Suppose that
the designer of AbstractFile also designed and implemented SocketFile, i.e, he
or she ensures that the data flow anomaly that exists in AbstractFile is avoided by
the design of SocketFile. However, this still does not eliminate the problem of non-
determinism and the introduction of faults since, at some point in time in the future, a
new descendant can be added that fails to provide the necessary definition.

3.9 State Visibility Anomaly (SVA)

Consider the example in [Fig. 10.a], where the state variables in an ancestor class A

are declared private, and a polymorphic method A.m() defines A.v. Furthermore, C
provides an overriding definition of A.m() but B does not. Since A.v has private vis-
ibility, it is not possible for C.m() to properly interact with the state of A by directly
defining A.v. Instead, C.m() must call A.m() to modify v. Now suppose that B also
overrides m [see Fig. 10.b]. Then for C.m() to properly define A.v, C.m() must call
B.m(), which in turn must call A.m(). Thus, C.m() has no direct control on whether
the data flow anomaly is resolved! In general, when private state variables are present,
the only way to be sure of avoiding a data flow anomaly is for every overriding method
in a descendant to call the overridden method in its ancestor class. Failure to do so will
quite possibly result in the manifestation of a fault in the state and behavior of �.

402 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

B

A

m()

−v Private

+m()

C

(A)

Overrides B

A

m()

−v
Private

+m()

C

m()

Overrides

(B)

Over rides

Figure 10: SVA: State visibility anomaly

4 Coupling, Testing, and Polymorphism

Our work in O-O testing builds on [Jin and Offutt, 1998], where the authors introduced
a novel approach to integration testing of procedure-oriented software based on cou-
pling relationships among procedures. Coupling was originally proposed to measure de-
sign [Constantine and Yourdon, 1979] [Page-Jones, 1980][Offutt et al., 1993], and the
original papers presented up to twelve types of coupling in lists that were ordered in
terms of estimated severity. Only three unordered types are needed for testing: param-
eter coupling, shared data coupling, and external device coupling. Parameter couplings
occur whenever one procedure passes parameters to another, shared data couplings oc-
cur when two procedures reference the same global variable, and external device cou-
plings occur when two procedures access the same external storage device. Jin and
Offutt’s approach, called coupling-based testing (CBT), is an application of data flow
testing to the integration level. It requires that programs execute from definitions of a
variable in a caller to a call site, and then to uses of the corresponding formal argu-
ments in the called procedure. The execution path from the definition to the use must
be definition-clear, that is, the variable must not be redefined along the path.

The following CBT definitions are taken from [Jin and Offutt, 1998]:

	� is the set of variables that are referenced by program component P, and
 �

is the set of nodes in � ’s control flow graph. �� and �� are specific program
units, and � and
 are program variables. As in traditional data flow analysis, a
path from node � to � is ��� -����� with respect to � if there is no definition of �

403Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

along the path. A call site is a node � �
�� that contains a call from �� to ��.
A node � �
�� that contains a definition that can reach a use in �� on some
execution path is a ��������-��� . There are three kinds of ��������-����: a
definition of a formal parameter before a call (����-��� -������-����), a defi-
nition of an actual parameter before a return (����-��� -������-������), and a
definition of a shared (global) variable (������-����-���). A ��������-��� is
a node � �
� that contains a use that can be reached by a definition in another
unit on at least one execution path. There are three kinds of ��������-����: A
use of a formal parameter after a call (�����-���-�����-����), a use of an actual
parameter inside a callee (�����-���-��-������), and a use of a shared variable
(������-����-���). A coupling path between two program units is a path from
a ��������-��� to a ��������-���. The path must be ��� -�����.

Traditional data flow and control flow criteria were adapted to specify four coupling-
based testing criteria. If �� and �� are program units, then:

Call coupling: The set of paths executed by a test set must cover all ����-�����.

All-coupling-defs: For each ��������-��� of a variable in ��, the set of paths exe-
cuted by a test set must cover at least one coupling path to at least one reachable
��������-���.

All-coupling-uses: For each ��������-��� of a variable in ��, the set of paths exe-
cuted by a test set must cover at least one coupling path to each reachable ��������-
���.

All-coupling-paths: For each ��������-��� of a variable in ��, the set of tests ex-
ecuted must cover all coupling path sets from the ��������-��� to all reachable
��������-����. A coupling path set is a set of nodes that can appear on sub-paths
through a program unit between a ��������-��� and a ��������-���. This ac-
counts for the case where the program unit has loops. Requiring that all coupling
paths be covered is impractical in general; however, covering all coupling path sets
ensures that each loop body is executed at least once, but does not require all pos-
sible executions.

4.1 Coupling in the Presence of Polymorphism

We extended CBT to apply the data flow criteria to address testing problems that arise
from inheritance, polymorphism and dynamic binding. Identifying the definitions, uses
and couplings is more complex, thus it is necessary to consider the semantics of the
O-O language features very carefully. In the following definitions, o is an identifier
whose type is a reference to an instance of an object, pointing to a memory location that
contains an instance of some type. The reference o can only refer to instances whose
actual instantiated types are either the base type of o or a descendant type.

404 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

(a)

(b)

Base Type Type Family

W { W, X, Y, Z }

{ Z }

{ Y }

{ X, Y }

Z

Y

X

W
w
m ()
l ()

W
v
m ()
n ()

Z

m ()
n ()

X
x

m ()

Figure 11: Sample class hierarchy (a) and associated type families (b)

Programmers can define new types in procedural languages such as C and Pas-
cal and object-based languages such as Ada 83 and Modula-2. Strongly typed O-O
languages such as Java, C++, and Ada 95 not only allow new types, but user defined
types can be grouped into families of types. All members of a given type family share
some common behavior, which allows instances of any member of a type family to be
substituted for an instance of any other member. That is, we assume that instances of
descendant types can be freely used in a context that expects an instance of a parent
type [Liskov and Wing, 1994]. Every type definition by a class defines a type family.
Members of the family include the base type of a hierarchy and all descendants of that
base type. [Fig. 11.a] illustrates this with four type families, each defined by one of the
classes in the hierarchy, and summarized in [Fig. 11.b].

O-O languages allow method calls both with and without respect to an instance.
Instance methods are called with respect to instance variables, and class methods have
no instance. Instance methods can make the instance explicit, as in o.m(), or implicit,
as in p(). For the call o.m(), m() executes in the context of the instance that is bound to
the reference o. For a shorthand convenience, we say that m() executes in the context of
o, or o is m()’s instance context. There must be an implicit object reference for the call
to p(), i.e., p() must appear in the program text of a method that was called through an
explicit instance, and p() must be defined in the same class with o. An object instance o
is considered to be defined when one of the state variables v of the object is defined. An
indirect definition, or �-��� , occurs when a method m defines v. Similarly, an indirect
use (�-���) occurs when m references the value of v.

Again, consider the class diagram shown in [Fig. 11] and assume that W includes
a method FactoryForW() that returns an instance of W. [Fig. 12.a] shows a control
flow fragment with an instance of W bound to o. This is a local definition of the ob-
ject reference o that results from the call to the method FactoryForW(). The table
in [Fig. 12.b] shows that W.m() defines v, so an indirect definition occurs at node 2

405Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

O.n()

Method Definitions Uses
W.m {Wr.v}
W.n {Wr.v}
X.m {Wr.v,Xr.x}
Y.m {Wr.v,Xr.w}
Y.l {Wr.w}
Z.m {Wr.v}
Z.n {Wr.v}

Indirect definitions
and uses for type family W

(b)

O.m()

o = new FactoryForW()

entry

exit

1

3

2

(a)

Figure 12: Control flow graph fragment (a) and associated definitions and uses (b)

through o.m(). Thus, any call to m() with respect an instance of W bound to o results
in an indirect definition of the state the object bound to o. Note that there are no indirect
uses by m(). The table in [Fig. 12.b] also shows all of the indirect definitions and uses
that can occur for any instance that is a member of the type family defined by W. Node
3 contains no ����, but an �-��� of v.

The most difficult part of the problem of data flow analysis of O-O programs is the
static non-determinism introduced by polymorphism and dynamic binding. Polymor-
phism allows one call to refer to multiple methods, depending on the current type of
the object reference, and dynamic binding means that we cannot know which method is
called until run-time. When discussing the indirect definitions and uses that can occur
at call sites through object references, we must also consider the set of methods that
can potentially execute. That set depends on the type of the instance that is bound to the
object reference. However, a key insight is that the set of potential methods is finite and
can be determined statically. To analyze this, we introduce the term satisfying set:

Definition 1. The satisfying set of a polymorphic call to method m() through an object
reference o contains all methods that override m(), plus m() itself.

When considering the set of indirect definitions or indirect uses that can occur at a
call site, it is necessary to determine which methods can satisfy the call. For each such
method, identify all state variables that are defined and used. The result is the set of
definitions and uses for each satisfying method. Returning again to [Figs. 11 and 12.a],
the satisfying set for the call to m() at node 2 is �W.m(), X.m(), Y.m(), Z.m()� and
the �-��� set is the following set of ordered pairs �-��� (2, o, m()) = �(W.m(), �W.v�),
(X.m(), �W.v, X.x�), (Y.m(), �W.v, Y.w�), (Z.m(), �W.v�)�. Each pair indicates a
satisfying method for m() and the corresponding set of state variables that the method
defines. In this example, X.m() defines state variables v from class X and x from W.

406 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

From [Fig. 12.b], the �-��� set for node 2 is the empty set, as none of the satisfying
methods for m() reference any state variable. However, considering node 3, the table
shows that there are two methods that satisfy the call to o.n() and have non-empty
�-��� sets (but their �-��� sets are empty), which yields the following �-��� set: �-���(3,
o, n()) = �(W.n(), �W.v�), (Z.n(), �W.v�)�.

4.2 Differences in Coupling Paths in O-O Programs

From a coupling and integration perspective, the two primary issues are determining
what calls can be executed in the presence of inheritance and polymorphism, and what
effects the calls have on the corresponding state space. In [Alexander, 2001], the calls
are categorized into twelve separate cases, which are summarized here in three cate-
gories. Most method calls in O-O programs are made through explicit instance contexts
or implicit instance contexts as with o.m(). These calls allow polymorphic behavior
because the instance o may be bound to a different type on different executions. These
are called Category I calls. It is also possible to make method calls in the absence of an
instance, for example when using a static method in Java. If a static method call cannot
be polymorphic, it is a Category II call. If a static method call can be polymorphic, it
is a Category III call. Category II cases are handled by the original CBT definitions.
Category I and Category III cases, which involve polymorphism, require extensions to
the definitions and additional analysis techniques.

5 Polymorphism and Coupling-based Testing

The original coupling-based testing definitions in [Jin and Offutt, 1998] were extended
in [Alexander and Offutt, 1999] to account for the various calling contexts that oc-
cur in O-O programs. In the following definitions, ��� refers to a program unit, in-
cluding methods that appear in class specifications. 	� is the set of variables that
are referenced by ���, and
� the set of nodes in the control flow graph for ���.
Each definition is expressed as a function whose domain is given by a set of for-
mal arguments and a range given as a return type. As is usual with data flow analy-
sis [Frankl and Weyuker, 1988][Rapps and Weyuker, 1985], ������� is the set of vari-
ables defined at node � and ������� is the set of variables used. ����
��� refers to the
entry node of method ���, ������� refers to the exit node, �������� refers to the first
node in path �, and ������� refers to the last node in �.

The following definitions are introduced to deal with inheritance and polymor-
phism: the set of classes that belong to the same type family specified by � is �����
���,
where � is the base ancestor class. �
����� is the class that defines method ��� and
�
����� is the class � that is the declared type of variable �. � must refer to an instance
of a class that is in the type family of �. �������� is the set of state variables for class �,
either declared in � or inherited from an ancestor. �-������� is the set of variables that
are indirectly defined within��� and �-������� is the set of variables used by���.

407Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

Coupling
method

i o.m()

k o.n()

j def(o.v)

h def(o)

m()

f()

n()

l use(o.v)

Coupling
Sequenc

e sj,k
with

respect
to o.v

transmission
path[o,o.v]

[o]

i-def path
[o.v]

i-use path
[o.v]

Antecedent
Node

Consequent
Node

Coupling Context

Call site
Call return
Method entry

Statement
Control Flow
Coupling Path

Method exit

Transmission set[...]

Antecedent
Method

Consequent
Method

Figure 13: Control flow schematic for prototypical coupling sequence

5.1 Coupling Sequences

To allow for inheritance and polymorphism, we consider the case where two methods
that define and use the same variable are called by a third method. Both calls must be
made through the same instance, and this is said to make a coupling sequence. The call-
ing method is called the coupling method ���, and it calls ���, the antecedent method
to define �, and ���, the consequent method to use �. Programs in which the antecedent
or consequent method is the same as the coupling method are special cases and are han-
dled implicitly. (Programs in which the antecedent or consequent methods are called
from another method that is called by ��� have not yet been considered.)

Coupling sequences are pairs of nodes within the body of ���. The control flow
schematic shown in [Fig. 13] illustrates our prototypical situation where the coupling
method calls both the antecedent and consequent methods. The schematic abstracts
away the details of the control flow graph and shows only nodes that are relevant to
coupling analysis. The thin line segments represent control flow and the thicker lines
indicate control flow that is part of a coupling path. The line segments can represent
multiple sub-paths. A path may be annotated with a transmission set such as ��� ����,
which contains variables for which the path is definition-clear. Assuming that the in-
tervening sub-paths are ��� -����� with respect to the state variable ���, the path in
[Fig. 13] from � to � to � to � and finally � forms a transmission path with respect to ���.
The object � is called the context variable. Formal derivations of coupling sequences for

408 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

the prototypical situation and special cases were presented in [Alexander, 2001].

5.2 Coupling Variables and Coupling Sets

Every coupling sequence ���� has an associated set of state variables that are defined
by the antecedent method and then used by the consequent method with respect to the
coupling type �. This set of variables is referred to generically as the coupling set � �

����

of ���� and is defined as the intersection of those variables defined by ��� (an �-���)
and used by ��� (an �-���) through the instance context provided by a context variable
� that is bound to an instance of �. Note that which versions of ��� and ��� execute is
determined by the actual type � of the instance bound to �. The members of the coupling
set are called coupling variables.

5.3 Coupling Paths

Coupling sequences require that there be at least one ��� -����� path between each node
in the sequence. Identifying these paths as parts of complete sequences of nodes results
in the set of coupling paths. A coupling path is considered to transmit a definition of a
variable to a use. Each path consists of up to three sub-paths, or segments. The �-���
sub-path is the portion of the coupling path that occurs in the antecedent method ���,
extending from the last (indirect) definition of a coupling variable to the exit node of
���. The �-��� sub-path is the portion of the consequent method ��� that extends from
the entry node of ��� to the first (indirect) use of a coupling variable. The transmission
sub-path is the portion of the coupling path in the coupling method that extends from
the antecedent node to the consequent node, with the requirement that neither the value
of the coupling variable nor the context variable is modified.

For a given coupling sequence, there is a single set of coupling paths for each type
of coupling sub-path. These sets are used to form coupling paths by matching together
elements of each set. The set of coupling paths is formed by combining elements of the
�-��� sub-path set with an element from the transmission sub-path set, and then adding
an element of the �-��� sub-path set. The complete set of coupling paths is formed by
taking the cross product of these sets.

5.4 The Effects of Inheritance and Polymorphism on Coupling

To see the effects of inheritance and polymorphism on path sets, consider the class di-
agram shown in [Fig. 14.a]. The type family contains the classes A, B, and C. Class A
defines methods m() and n() and state variables u and v. Class B defines method l()

and overrides A’s version of n(). Likewise, C overrides A’s version of m(). Definitions
and uses for each of these methods are shown in [Fig. 14.b]. [Fig. 15] shows coupling
paths assuming a coupling method that uses the hierarchy in [Fig. 14.a]. [Fig. 15.a],

409Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

(b)

(a)

A
-u : X
-v : Y
+m ()
+n ()

B
-w : Z
+n ()
+l ()

C

+m ()

Method Defs
A.m ()

A.n ()

B.n ()

B.l ()

{ A.u, A.v }

C.m () { A.u }

Uses

{ A.u }

{ A.v }

{ A.v }

Figure 14: Sample class hierarchy and ��� -��� table

bind(o, A)

o.m()

o.n()

def(A.v) def(A.u)

[A.v] [A.u]

[o]

[o, A.u]

use(A.v)

[A.v

j

i

k

sj,k

 A.m,A.n = {A.v}

Coupling Method
f()

A.m()

A.n()

transmission
paths

Antecedent Method

Consequent Method

Antecedent
Node

Consequent
Node

Declared
type of o is A

Coupling Variable

e f

g

A.m
b

A.m
a

fc

A.nd

def(A.u)

[A.u]

use(A.u)

[A.u]

 C.m,B.n = {A.u}

e

g

C.ma

B.nd

(a) (b)

def(A.v) def(A.u)

[A.v] [A.u]

use(A.u)

[A.u]

 A.m,B.n = {A.u}

A.m()

B.n()

Antecedent Method

Consequent Method

e f

g

A.m
b

A.m
a

B.n
d

C.m()
Antecedent Method

B.n()
Consequent Method

Actual type of
o is B

Actual type of
o is C

Actual type of
o is A

(d)(c)

O O O

Figure 15: Coupling sequence when o is declared as type A (a), bound to an instance
of A (b), B (c) and C (d)

410 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

Type Coupling Path

A �A.m���� A.m������� f����������� f��������� A.n�����
�� A.n����

B �A.m���� A.m������� f����������� f��������� B.n�����
�� B.n����

C �C.m���� C.m������� f����������� f��������� B.n�����
�� B.n����

Table 2: Summary of sample coupling paths

shows the declared type of the coupling variable o is A, and [Fig. 15.b] shows the an-
tecedent and consequent methods when the actual type is also A. The coupling sequence
���� extends from the node � where the antecedent method m() is called to the call site
of the consequent method at node �. As shown, the corresponding coupling set for � ���
when o is bound to an instance of A is �	

����
� �A.v�. Thus, the set consists of the

coupling paths for ���� that extend from node � in A.m() to the exit node of in A.m(),
back to the consequent node � in the coupling method, and through the entry node of
A.n() to node �. There is no coupling path with respect to A.u because A.u does not
appear in the coupling set for A.m() and A.n().

Now, consider the effect on the elements that comprise the set of coupling paths
when o is bound to an instance of B, as shown in [Fig. 15.c]. The coupling set for this
case is different from when o was bound to an instance of A. This is because B provides
an overriding method B.n() that has a different use set than the overridden method
A.n(). Thus, the coupling set is different with respect to the antecedent method A.m()
and the consequent method B.n() yielding �

����
� �A.u�. In turn, this results in a

different set of coupling paths. The set of coupling paths now extends from node �
in A.m() back through the call site at node � in the coupling method, and through
the entry node of B.n() to node � of B.n(). Finally, [Fig. 15.c] depicts the coupling
sequence that results when o is bound to an instance of C. First, observe that execution
of node � in the coupling method results in the invocation of the antecedent method,
which is now C.m(). Likewise, execution of node � results in the invocation of the
consequent method n(). Since C does not override m() and because C is a descendant
of B, the version of n() that is invoked is actually B.n(). Thus, the coupling set for
���� is taken with respect to the antecedent method C.m() and the consequent method
B.n(), which yields ��

����
� �A.u�. The corresponding coupling path set includes the

paths that begin at node � in C.m() and extend to the exit node of C.m(), then back to
node � of the coupling method, and through the entry node of B.n() to node �, also in
B.n().

[Tab. 2] summarizes the coupling paths for the examples shown in [Fig. 15]. Paths
are represented as sequences of nodes. Each node is of the form������������, where
������ is the name of the method that contains the node, and ���� is the node identifier
within the method. Note that the prefixes call- or return- are appended to the names of
nodes that correspond to call or return sites.

411Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

It is possible that some classes in a type family will not be in any coupling se-
quences. This happens when the class does not override any methods that are called in
a coupling sequence. Thus, as an optimization, we can safely ignore consideration of
such classes from the coupling analysis. This is possible since any coupling path that
could be executed through such a class will necessarily be in the coupling paths of other
ancestor classes.

5.5 Polymorphic Coupling Sequences and Coupling Sets

Inheritance increases the number of potential bindings for a given coupling sequence.
When combined with polymorphism, the number of methods that execute and the vari-
ables indirectly defined and used can vary at run-time. Since the depth and breadth of
inheritance is always finite, the actual methods and variables referenced can be tightly
bound. They are limited by the members of the type family of the declared type. The
following subsections present modified definitions of coupling sequences and coupling
sets that take polymorphism into account.

Polymorphic Coupling Sequences: To account for the possibility of polymorphic be-
havior at a call site, the definition of a coupling sequence given in [Section 5.1] must
be changed to handle all methods that can execute. To accomplish this, we introduce
the notion of a binding triple, which consists of the antecedent method ���, the con-
sequent method ���, and the set of coupling variables that result from the binding of
the context variable to an instance of a particular type. The triple matches together a
pair of methods ��� and ��� that can potentially execute as the result of executing the
antecedent and consequent nodes � and �. Neither method is required to be from the
class � that provides the instance context for the coupling sequence. Each may be from
different classes that are members of the type family defined by �, provided that ��� is
an overriding method for ��� or ��� is an overriding method for ���. Note that there
will be exactly one binding triple for each class � in �����
��� that defines an overrid-
ing method for either ��� or ���. Classes that do not define such overriding methods
are excluded. A coupling sequence induces a set of binding triples. This set always in-
cludes the binding triple that corresponds to the antecedent and consequent methods,
even when there is no method overriding. In this case, the only member of the bind-
ing triple set will be the declared type of the context variable, assuming the type is not
abstract. If the type is abstract, an instance of the nearest concrete descendant to the
declared type is used.

As an example, the set of binding triples for the coupling sequence � ��� shown in
[Fig. 15] is given in [Tab. 3]. The first column gives the type t of the context variable
of ����, the next two columns correspond to the antecedent and consequent methods
that actually execute for a particular t, and the final column gives the set of coupling
variables induced when the context variable is bound to an instance of t. The type
hierarchy corresponding to the coupling type t is shown in [Fig. 14].

412 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

t p q S

A A.m() A.n() �A.v�

B A.m() B.n() �A.u�

C C.m() B.n() �A.u�

Table 3: Binding triples for coupling sequence from class hierarchy in [Fig. 14]

Polymorphic Coupling Sets: The original definition of a coupling set only considers
the antecedent and consequent methods in the context of the coupling variable’s de-
clared type. Inheritance and polymorphism makes this insufficient. Instead, the coupling
sets of all possible method combinations must be combined to form an aggregate cou-
pling set for the sequence. Thus, the polymorphic coupling set is defined as the union
of all the coupling sets for each binding triple. The coupling set for a sequence is the
union of all the coupling sets for the individual pairs of methods that could potentially
execute through the call sites at the antecedent and consequent nodes.

5.6 Coupling Paths in O-O Programs

Procedure-oriented programs have couplings that occur between procedures in terms
of parameters or through shared global data [Jin and Offutt, 1998]. O-O programs con-
tain coupling paths that originate at ����-����������� in an antecedent method and
that terminate at �����-���� in a consequent method. There are two general cases in
which coupling paths can occur. The first is when there is no possibility of polymorphic
behavior at the call sites. In this case, the methods that execute are specified by the de-
clared type of the context variable. Second is when there is a possibility of polymorphic
behavior at the call sites. Polymorphic behavior means it is not possible to statically de-
termine which methods will execute. However, it is possible to statically determine the
set of methods that can execute. The following subsections discuss the coupling paths
that result from each of these cases.

Non-Polymorphic Coupling Paths: Consider again the Type I coupling sequence in
[Fig. 13] where the body of method f() contains an object reference o of declared
type T. Assume that o is bound to an instance whose actual type is T. There is no
possibility of polymorphic behavior when the declared and actual types are the same.
An instance coupling occurs wherever an object reference is used to access methods or
state variables of an instance.

If we ignore polymorphism, we are interested in all of the indirect definitions that
can reach indirect uses with respect to a particular instance context. Thus, we desire
to identify all non-polymorphic coupling paths that extend from a node containing a
����-��� in an antecedent method to a node in a consequent method that contains a

413Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

�����-���with respect to the coupling variable of interest. Collectively, this set of paths
is the coupling path set for the coupling sequence � ���. We form these paths by taking
the cross product of the �-��� path set, the �-���� set, and the �-��� path set for a
coupling sequence. Each non-polymorphic coupling path is formed by concatenating
a single path � from each of the coupling path segments (�-��� -�����, �-�����, and
�-���-�����), subject to the constraint that � be ����������-����� with respect to a
particular coupling variable �.

Polymorphic Coupling Paths: The instance coupling paths above do not allow for
polymorphic behavior when the actual type differs from the declared type. This requires
that an instance coupling results in one path set for each member of the type family.
The number of paths is limited by the number of overriding methods, either defined
directly or inherited from another type. The polymorphic coupling paths are formed by
considering each binding triple.

6 O-O Testing Criteria

The analysis in [Section 5] allows coupling definitions and uses to be identified in the
presence of inheritance and polymorphism. This information is used to support testing
by adapting the data flow criteria to define sub-paths in the program to be tested (see
[Frankl and Weyuker, 1988], [Harrold and Rothermel, 1994], [Jin and Offutt, 1998] or
[Rapps and Weyuker, 1985]). Testing criteria can be used to help testers generate tests
(test generation), or to measure the quality of pre-existing tests (coverage analysis).
This work currently assumes the criteria will be used as coverage analyzers, i.e., tests
already exist. When using the testing criteria, it is assumed that the antecedent and
consequent methods have been tested individually before the method containing the
coupling sequence. This allows the developer to assume that any discovered failures are
related to the interfaces.

6.1 O-O Coupling Criteria

In this section, we present four coupling-based test adequacy criteria for O-O pro-
grams [Alexander and Offutt, 2000]1. The first criterion builds on an assumption that
each coupling sequence should be covered during integration testing. It requires that
every coupling sequence in ��� be covered by at least one test case.

Definition 2 All-Coupling-Sequences (ACS). For each coupling sequence � ��� in ���,
there is at least one test case � � ����� such that there is a coupling path induced by � ���
that is a sub-path of the execution trace of ����.
� In the definitions, ��� represents a method being tested, ���� is a coupling sequence in ����

where � and � are nodes in the control flow graph of ���, and ����� represents a set of test cases
created to satisfy ����.

414 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

ACS does not consider inheritance or polymorphism, so this criterion is added to
include instance contexts of calls. This is achieved by ensuring there is at least one test
for every class that can provide an instance context for each coupling sequence. The
idea is that the coupling sequence should be tested with every possible type substitution
that can occur in a given coupling context. Thus, this criterion requires that, for each
���, there is at least one test case � for every combination ������ ��, where � is in the
type family defined by the instance context of � ���. The combination (����, �) is feasible
if and only if � is the same as the declared type of the context variable for � ���, or �
is a child of the declared type and defines an overriding method for the antecedent or
consequent method. That is, only classes that override the antecedent or consequent
methods are considered.

Definition 3 All-Poly-Classes (APC). For each coupling sequence � ��� in method ���,
and for every class in the family of types defined by the context of � ���, there is at least
one test case � such that when ��� is executed using �, there is a path � in the set of
coupling paths of ���� that is a sub-path of the execution trace of ����.

ACS requires that coupling sequences be covered but does not consider the state
interactions that can occur when multiple coupling variables are involved. Thus some
definitions or uses of coupling variables may not be covered during testing. This crite-
rion addresses these limitations by requiring that every ����-��� of a coupling variable
� in an antecedent method of ���� reaches every first use of � in a consequent method
of ����. Thus, there must be at least one test case that executes each feasible coupling
path � with respect to each coupling variable � 2. That is, every feasible coupling path
between each coupling-definition and coupling-use pair for � must be executed by at
least one test case.

Definition 4 All-Coupling-Defs-Uses (ACDU). For every coupling variable � in each
coupling ���� of �, there is a coupling path � induced by � ���, such that � is a sub-path
of the execution trace of ���� for at least one test case � � ����� .

APC requires multiple instance contexts to be used, and ACDU requires definitions
to reach uses. The final criterion merges these requirements. In addition to inheritance
and polymorphism, this criterion requires that all coupling paths be executed for every
member of the type family defined by the context of a coupling sequence.

Definition 5 All-Poly-Coupling-Defs-Uses (APDU). For each coupling sequence � ���
in method ���, for every class in the family of types defined by the context of � ���, for
every coupling variable � of ����, for every node � that has a ����-��� of � and every
node � that has a �����-��� of �, there is at least one test case � such that when ��� is
executed using �, there is a path � in the coupling paths of � ��� that is a sub-path of the
trace of ���.

� Coupling path � is not feasible if no input exists that results in the execution of �.

415Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

All-Poly-Defs-and-Uses (APDU)

All-Coupling-Sequences (ACS)

All-Coupling-Defs-and-Uses (ACDU)All-Poly-Classes (APC)

Figure 16: O-O coupling testing subsumption hierarchy

6.2 Subsumption of the Criteria

A well-known method to compare different testing criteria is the subsumption rela-
tionship [Frankl and Weyuker, 1988][Weiss, 1989][Zhu, 1996]. Criterion � subsumes
criterion if and only if every test set that satisfies � also satisfies . Although there
are certainly exceptions, the common assumption is that criteria at higher levels in a
subsumption hierarchy have more testing power, but come at a higher cost. The sub-
sumption hierarchy for the criteria presented in this paper is shown in [Fig. 16].

7 Evaluation

This section summarizes some of the experimental results. One controlled experiment
evaluated ACS, APC and APDU with Branch Coverage used as the control. Branch
testing is a unit-level white box testing technique, and seeks to execute enough tests to
assure that every branch alternative has been executed at least once [Beizer, 1990].

7.1 Experimental Design

There are many questions about the efficacy of these criteria. The most immediate ques-
tion is whether tests derived from these criteria will help software testers find O-O
faults. Beyond that, it is important to understand whether they will help find faults
better than existing techniques do, and also how much difference there is among the
criteria. The following sections describe the design of an experiment to address these
questions.

Subject Programs: The subject programs are collections of classes that are integrated
with a client method under test. Each class includes at least one method that has one
or more coupling sequences with respect to a particular class hierarchy, referred to as
the subject hierarchy. [Tab. 4.a] summarizes the subject programs used in these ex-
periments. Column “f” identifies the method under test, and �� ���� is the number of
coupling sequences contained within f. Each coupling sequence has a context variable
that defines a type family. Column “!���” gives the number of classes in the type fam-
ily (inheritance hierarchy) for the program. The term program includes f (the method

416 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

f �������� !�� Description

�� 4 4 Polymorphic Example
�� 5 5 Polymorphic Example
�� 1 5 Polymorphic Example
�� 1 4 Student Developer
�� 3 4 Polymorphic Example
�� 3 5 Polymorphic Example
�� 6 4 Professional Developer
�� 20 5 Professional Developer
�	 11 16 Open Source (ANTLR)
��� 7 9 Open Source (JMK)

f ACS APC APDU BC
�� 2 4 6 1
�� 2 5 320 2
�� 2 5 80 2
�� 1 3 3 1
�� 2 5 75 1
�� 2 5 105 1
�� 1 2 64 1
�� 4 2 42 4
�	 6 15 95 6
��� 4 9 27 4

Total 26 55 817 23
(a) (b)

Table 4: Subject program characteristics (a) and number of test cases per subject pro-
gram and criterion (b)

under test), the class that specifies f, and all classes in the type family specified by the
context variable of each coupling sequence. Column “Description” indicates the source
from which each program was obtained. Five programs (� �, ��, ��, ��, and ��) were
examples created specifically to ensure that all of the subject faults were tested by at
least one experiment. Of the remaining five subject programs, one was developed by a
graduate student (��), two were developed by a professional programmer with 15 years
of experience (�� and ��) and the others are open source products: ANTLR (a parser
generator) and JMK (a build system, similar to make).

Test Data: The test data used in the experiments were created randomly according to
a uniform distribution. The data itself was produced from custom test data generators
developed in Perl for each criterion. Enough tests were generated to achieve 100%
coverage for each criterion. The strategy used to select test cases is similar to how
test cases are normally selected for the Branch Coverage test adequacy criterion. For
each coupling sequence, the path expression [Beizer, 1990] necessary to execute the
sequence was identified. These expressions were then used to create Perl programs that
would generate the test data necessary to execute the set of sequences for the method
under test. A similar procedure was followed to test the state space interactions between
antecedent and consequent methods. These path expressions ensured that the required
coupling paths were covered.

[Tab. 4.b] summarizes the number of test cases for each combination of subject
program and test adequacy criterion. For ACS, the number of test cases is determined
by the number of coupling sequences and control flow paths present in the method under

417Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

test. For APC, the number of test cases is also determined by the size of the type family
for the coupling variable. Finally, for APDU, it is determined by adding the number of
control flow paths in the antecedent and consequent methods to the test cases for APC
and ACS.

7.2 Conduct of Experiments

The testing and evaluation procedure consisted of four steps: the first step created a
test oracle that can be used to evaluate the results of subsequent tests; the second step
injected faults into each subject program; the third step executed each subject program
on each test case; the final step used the test oracle to determine if the outcome of each
execution for the corresponding test case detected a fault.

Test Oracle Derivation: For each combination of subject program and criterion (� , ")
and each coupling sequence ���� in � , the following procedure was used:

1. Execute � using at least one test case � � #��� taken from the test set #��� , such
that the context variable � of ���� is bound to an instance of the declared type of �.

2. Record this result and add it to the test oracle for � , $� .

3. For the ���-���
-"������ and ���-���
-%�� -&��� execute � with at least one
test case � � #��� for each combination of ��� �� �
 � �
� ��, where � is a descendant
of the declared type of the context variable of � ���, � is a variable in ����’s coupling
set, �
 is a last definition of � by the antecedent method of � ���, �
 is a first use of
� in the consequent method of ����, and � is a ��� -����� path from �
 to �
.

4. For ���-���
-"������ and ���-���
-%�� -&��� record the combination of � and
� in $� . Also, for ���-���
-%�� -&���, include the state of the instance bound to
the context variable after execution of the antecedent method and immediately after
each �����-��� in the consequent method.

Fault Injection: For each coupling sequence ���� in a subject program � and each type
� that is a subtype of the declared type � of ����’s coupling variable, the following
procedure was used:

1. Inject faults into each method of � that overrides the antecedent or consequent meth-
ods of ����. This yields the fault-seeded subtype of � and results in a shadow in-
heritance hierarchy rooted at � [see Fig. 17]. The shadow hierarchy mirrors the
original hierarchy in structure below the root, but is seeded with faults.

2. For ���-���
-%�� -&���, for each coupling variable in � ���, inject faults into the
antecedent and consequent methods, yielding the fault seeded type � �� (also a sub-
type of �). This results in a shadow inheritance hierarchy rooted at � [see Fig. 18].

418 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

A

B

C

B'

C'

Declared type
of context
variable

Type
family

defined
by
A

Seeded types

Shadow
Hierarchy

Figure 17: Seeded shadow hierarchy

A

B

C

1::BvB
2::BvB :: nBvB

1::CvC
2::CvC :: nCvC

Seeded
shadow

types

,
One per coupling variable

jk

B
sv

,
One per coupling variable

jk

C
sv

Type
family

defined
by
A

One test case

Figure 18: Seeded shadow hierarchy for ���-���
-%�� -&���

Test Execution: For each coupling sequence ���� in � , and each type � that is a subtype
of the declared type � of ����’s coupling variable:

1. Execute � using a test case � that binds ����’s context variable to the corresponding
fault-seeded type ��. Record the result in the test result set for � , '� .

2. For each test case � � #��� execute � using �, and record the state of the instance
bound to ����’s context variable for the pairs of last-definitions and first-uses of
each coupling variable. Add this result to '� .

419Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

Result Evaluation: For each coupling sequence ���� in � , and each type � that is a
subtype of the declared type � of ����’s coupling variable:

1. Compare each test result in '� with the corresponding result in the test oracle $� .
If the two results are equal, then the test passed. This ascertains whether or not an
instance of the descendant type � can be substituted freely for an instance of the
declared type � of the context variable.

2. For ���-���
-%�� -&���, compare each test result in '� for each coupling vari-
able � in ���� with the corresponding pair in the test oracle $� . If the results are
equal, the test passed. This ascertains if the method under test preserves the fidelity
of the interactions between the antecedent and consequent methods when the con-
text variable � is bound to an instance of a particular type that is a subtype of the
declared type of �.

7.3 Experimental Results

The results for the experiments are shown in [Tab. 5]. For each of the five fault types,
the columns show the number of faults seeded, the number of faults detected, and the
detection effectiveness (percentage found). The last column presents the average num-
ber of faults found over the five types. The rows represent the criteria applied to each
program. For example, for ��, APDU found 82% of all faults, while BC did not find
any. Some subject programs did not exhibit the structural characteristics necessary to
support the syntactic pattern for the fault type. Empty cells represent combinations of
programs and fault types that were not tested. The last group of rows in the table sum-
marizes the total number of faults that were seeded, the total number of faults detected,
and the average detection effectiveness for each criterion.

[Fig. 19] shows a plot of the detection effectiveness per criterion for each fault type
averaged (using the mean) over all programs. The individual data points were weighted
to reflect the differences in the number of faults seeded for each combination of program
and test adequacy criterion. Thus, the data points are comparable. A cursory examina-
tion of the plot reveals that the most effective coupling-based test adequacy criterion is
���-���
-%�� -&���, which has average detection effectiveness across fault types of
(��� � ����. The other coupling-based criteria have average detection effective-
ness of ���	 (APC) and ��	
 (ACS), with Branch Coverage having the lowest detection
effectiveness of ����.

All three of the coupling-based testing criteria exhibit a similar fault detection pat-
tern. For example, they do reasonably well at detecting faults of type IC and IIS, with
the corresponding detection effectiveness across this sequence being monotonically in-
creasing. In contrast, all three are much less effective at detecting faults of type DSDA,
SDI, and SDIH. Note that in all cases, across all fault types, all four criteria appear

420 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

Program Criterion SDA IC SDI IISD SDIH SDA IC SDI IISD SDIH SDA IC SDI IISD SDIH Average
APDU 9 6 3 3 7 0 3 3 3 0.78 0.50 1.00 1.00 0.82
ACS 9 6 3 3 7 0 3 3 3 0.78 0.50 1.00 1.00 0.82
APC 9 6 3 3 7 0 3 3 3 0.78 0.50 1.00 1.00 0.82
BC 9 6 3 3 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00

APDU 39 6 39 39 10 3 10 10 0.26 0.50 0.26 0.26 0.32
ACS 39 6 39 39 0 0 0 0 0.00 0.00 0.00 0.00 0.00
APC 39 6 39 39 5 3 1 3 0.13 0.50 0.03 0.08 0.18
BC 39 6 39 39 8 0 9 9 0.21 0.00 0.23 0.23 0.17

APDU 36 3 33 36 36 3 30 36 1.00 1.00 0.91 1.00 0.98
ACS 36 3 33 36 7 3 3 7 0.19 1.00 0.09 0.19 0.37
APC 36 3 33 36 9 3 5 12 0.25 1.00 0.15 0.33 0.43
BC 36 3 33 36 0 0 0 0 0.00 0.00 0.00 0.00 0.00

APDU 24 24 18 11 12 8 0.46 0.50 0.44 0.47
ACS 24 24 18 0 4 0 0.00 0.17 0.00 0.06
APC 24 24 18 11 12 8 0.46 0.50 0.44 0.47
BC 24 24 18 5 5 2 0.21 0.21 0.11 0.18

APDU 36 3 36 36 36 3 31 33 1.00 1.00 0.86 0.92 0.94
ACS 36 3 36 36 7 0 8 6 0.19 0.00 0.22 0.17 0.15
APC 36 3 36 36 8 3 10 7 0.22 1.00 0.28 0.19 0.42
BC 36 3 36 36 0 0 0 0 0.00 0.00 0.00 0.00 0.00

APDU 18 18 18 18 13 18 1.00 0.72 1.00 0.91
ACS 18 18 18 0 0 0 0.00 0.00 0.00 0.00
APC 18 18 18 13 13 16 0.72 0.72 0.89 0.78
BC 18 18 18 0 0 0 0.00 0.00 0.00 0.00

APDU 55 30 37 26 0.67 0.867 0.77
ACS 55 30 32 26 0.58 0.867 0.72
APC 55 30 34 26 0.62 0.867 0.74
BC 55 30 14 8 0.25 0.267 0.26

APDU 76 30 34 23 0.45 0.767 0.61
ACS 76 30 5 2 0.07 0.067 0.07
APC 76 30 12 2 0.16 0.067 0.11
BC 76 30 30 21 0.39 0.7 0.55

APDU 42 42 12 42 38 37 12 39 0.90 0.88 1.00 0.93 0.93
ACS 42 42 12 42 4 10 7 15 0.10 0.24 0.58 0.36 0.32
APC 42 42 12 42 15 26 12 31 0.36 0.62 1.00 0.74 0.68
BC 42 42 12 42 3 9 2 5 0.07 0.21 0.17 0.12 0.14

APDU 27 27 6 27 27 26 6 23 1.00 0.96 1.00 0.85 0.95
ACS 27 27 6 27 6 12 5 7 0.22 0.44 0.83 0.26 0.44
APC 27 27 6 27 12 17 6 8 0.44 0.63 1.00 0.30 0.59
BC 27 27 6 27 4 7 3 5 0.15 0.26 0.50 0.19 0.27

APDU 231 12 356 21 279 183 9 233 21 219 0.80 0.83 0.67 1.00 0.80 0.82
ACS 231 12 356 21 279 31 3 77 15 66 0.19 0.33 0.23 0.81 0.29 0.37
APC 231 12 356 21 279 80 9 133 21 116 0.42 0.83 0.42 1.00 0.49 0.63
BC 231 12 356 21 279 20 0 74 5 50 0.08 0.00 0.16 0.22 0.16 0.12

P4

P5

P6

P7

Summary

Faults Detected Detection EffectivenessFaults Seeded

P1

P2

P3

P8

P9

P10

Table 5: Experimental results

to exhibit an ordering with respect to the average detection effectiveness across fault
types, i.e., BC) ACS) APC) APDU.

Explanation of Effects: The variation in the detection effectiveness among the cou-
pling criteria is of no surprise. ACS, the weakest criterion, does not consider the effects
on state space interactions caused by inheritance and polymorphism, and this could
account for its relatively poor performance as compared to the others. According to
the first condition of the fault/failure model [DeMillo and Offutt, 1991][Morell, 1988],
a location that contains a fault must be reached before the fault can manifest a fail-
ure. The shortcoming of ACS is that not all locations that can contain faults due to
inheritance and polymorphism will be executed. By their very nature, these faults will
be located within the hierarchy associated with the objects being integrated, not in the

421Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

Detection Effectiveness per Test Adequacy Criterion
for each Fault Type averaged over all Subject Programs

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

SDA IC SDI IISD SDIH

Fault Type

E
ff

ec
tiv

en
es

s

APDU

APC

ACS

BC

Figure 19: Average detection effectiveness by fault type

method under test. Thus, faults at these locations will not necessarily be executed as
a result of testing according to the ACS criterion. As expected, the APC criterion per-
forms better than ACS since it requires that all possible type substitutions be tested for
each coupling sequence appearing in the method under test. Thus, the possibility of
executing a fault located in the hierarchy being integrated is increased simply because
control flow enters each type at least once. However, this is not sufficient to ensure all
feasible locations containing faults will be executed.

The most effective of the three coupling-based test adequacy criteria is APDU,
which is not surprising since it requires that all state interactions be tested with respect
to the coupling variable for each coupling sequence, and for all types of instances that
can be bound to the coupling variable. This supports our theory that state interactions
need to be explicitly tested.

Hypothesis Tests: Log-linear analysis permits categorical data to be analyzed in much
the same manner as in analysis of variance. The distribution underlying [Tab. 6] is a
product of independent multinomials. According to [Bishop et al., 1975], the kernel of
the appropriate likelihood function is the same as that for a simple multinomial or a
simple Poisson. Therefore the estimation procedures for the simpler sampling distri-
butions may be used, at least for large samples. The resulting estimates are close to
the correct maximum likelihood estimates and the usual goodness of fit statistics are
asymptotically chi-square.

The data were analyzed by first fitting the experimental results to a model that cor-

422 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

 Hypothesis *� �� +*� +�� Conclusion

� ,�: APDU is not more effective than BC 91.74 164 816.74 36 Reject ,�

,� �APDU is more effective than BC

2 ,� �APC is not more effective than BC 35.93 68 175.00 12 Reject ,�

,� �APC is more effective than BC

3 ,� �ACS is not more effective than BC 19.00 63 97.94 12 Reject ,�

,� �ACS is more effective than BC

4 ,� �APDU is not more effective than APC 51.87 68 441.47 12 Reject ,�

,� �APDU is more effective than APC

5 ,� �APDU is not more effective than ACS 47.89 68 103.88 12 Reject ,�

,� �APDU is more effective than ACS

6 ,� �APC is not more effective than ACS 69.28 68 256.97 12 Reject ,�

,� �APC is more effective than ACS

Table 6: Results of hypothesis tests

responded to a 4-way contingency table with the � and � marginals fixed. The model
consists of the dimensions Fault, Response, Fault, Program, Criterion, Response, and all
lower level nested factors. The factor Response consists of two levels, each correspond-
ing to success or failure of a particular test case. We represent these four factors by ��
(Program),�� (Fault Type), �	 (Criterion), and �
 (Response), and represent cell counts
by��������, where �, �, �, and � correspond to the four factors. The best fitting model was
found to be ������������� � ��� � � �.
The terms with one subscript represent the main effects; the terms with two subscripts
represent two-factor interactions; and the terms with three subscripts represent three-
factor interactions. [Fig. 20] shows that the fitted cell counts closely match the observed
cell counts.

8 Related Work

Several testing issues are unique to O-O software. Several researchers have asserted
that a number of traditional testing techniques are not effective for O-O software sys-
tems [Berard, 1994][Firesmith, 1993][Hayes, 1994] and that traditional software test-
ing methods test the wrong things. Specifically, methods tend to be smaller and less
complex, so path-based testing techniques are often less valuable. Additionally, inheri-
tance and polymorphism introduce undecidability [Barbey and Strohmeier, 1994]. The
execution path is no longer a function of the class’s static declared type, but a function
of the dynamic type that is not known until run-time.

Usually, classes are the basic unit of O-O testing. In [Harrold and Rothermel, 1994],
the authors defined three levels of testing: (i) intra-method testing, in which tests are

423Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

Observed versus Fitted Cell Frequencies

Fitted Cell Frequencies

O
bs

er
ve

d
C

el
l F

re
qu

en
ci

es

45

-5

Fault x Response, Fault x Program, Program x Criterion x Response
(and all lower-level nested factors)

155 453525
-5

15

35

25

5

Figure 20: Observed versus fitted cell frequencies

constructed for individual methods; (ii) inter-method testing, in which multiple meth-
ods within a class are tested in concert; and (ii) intra-class testing, in which tests are
constructed for a single class, usually as sequences of calls to methods within the class.
In [Gallagher and Offutt, 2004] inter-class testing was added. Much of the early re-
search in O-O testing focused on the inter-method and intra-class levels [Fiedler, 1989]
[Harrold and Rothermel, 1994][Smith and Robson, 1990]. Later research focused on the
testing of interactions between single classes and their users [Overbeck, 1994] and
system-level testing of O-O software [Jorgenson and Erickson, 1994]. Problems asso-
ciated with the essential language features of inheritance and polymorphism cannot be
addressed at the inter-method or intra-class levels. These require multiple classes that
are coupled through inheritance and polymorphism, which can only be addressed via
inter-class testing.

Most research in O-O testing has focused on one of two problems. One is the order-
ing in which classes should be integrated and tested [Briand et al., 2003] and the other
is developing techniques and coverage criteria for selecting tests. This paper presents
results on the latter problem, specifically focusing on problems caused by the use of
inheritance and polymorphism. The result is a collection of inter-class testing criteria,
which is a type of integration testing [Beizer, 1990].

9 Conclusions and Future Work

This paper summarizes research on O-O software that combines two streams of con-
cepts that originated in the 1970s. Parnas introduced the basic notions of data abstrac-
tion, which eventually led to O-O design and programming [Parnas, 1972], then Con-
stantine and Yourdon introduced the idea of coupling as a fundamental way to evalu-
ate the integration relations among modules [Constantine and Yourdon, 1979]. The O-
O testing criteria in this paper build on several key insights. Our first insight was to base

424 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

integration tests of functional software on the data and control couplings among meth-
ods. A subsequent insight was that inheritance and polymorphism can introduce new
kinds of faults that were not well understood before. A final insight was that couplings
can also be used to test software that uses inheritance and polymorphism.

This paper has summarized new data flow analysis techniques for O-O software,
new testing criteria to address problems that can arise from using inheritance and poly-
morphism, and results from experimental validations. The traditional notion of software
coupling has been updated to apply to O-O software, handling the relationships of ag-
gregation, inheritance and polymorphism. This allows the introduction of a new inte-
gration analysis and testing technique for data flow interactions within O-O software.
A key contribution is a technique for analyzing and testing polymorphic relationships.
The foundation of this technique is the coupling sequence, which is a new abstraction
for representing state space interactions between pairs of method invocations. The cou-
pling sequence provides the analytical focal point for methods under test, and is the
foundation for the algorithms for identifying and representing polymorphic relation-
ships for both static and dynamic analysis. With this abstraction and the algorithms,
both testers and developers of O-O programs can now analyze and better understand
the interactions within their software. Though the coupling sequence has been cast for
testing problems involving inheritance and polymorphism, is generally applicable to
any program that makes uses of encapsulated data types, e.g. Modula-2 or Ada 83. We
also summarized a set of test-adequacy criteria that take inheritance and polymorphism
into account. These criteria provide the tester and developer with a way of judging when
a testing goal has been achieved. The criteria naturally vary in their effectiveness, but
this variation also correlates with the required level of testing effort and is reflected by
the subsumptive relationship among the criteria. In ideal circumstances, the effort re-
quired to achieve perfect or near-perfect software would be expended. In this case, only
a single criterion would be necessary. However, in practice, limited amounts of effort
can be expended. The variation of the criteria allow the tester and developer to develop
test requirements that reflect this reality.

This paper has focused on testing polymorphic relationships that are manifested
through state space interactions that result from pairs of method invocations within the
same method. However, as described in [Section 5], there are other interactions that can
occur between methods that are not invoked from the same methods. These are inter-
method coupling sequences and represent interactions that occur indirectly as the result
of two or more separate method invocations. To accommodate this, the definition of the
types of coupling sequences described in [Section 5.1] must be expanded along with
the definitions for the coupling method, antecedent node and method, and consequent
node and method. This can result in the ability to detect more faults, but the analysis
will be more expensive. Another key area of related research is automatic generation
of test cases. The research reported in this paper relied on hand generated tests. While
this is acceptable for a scientific investigation, it is of limited applicability in practical

425Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

settings. These techniques cannot be used in practice without automatic test generation.
A number of questions naturally result from the application of the coupling-based

testing approach, such as how effective is the testing effort expended thus far, how much
effort is required to test a given program using a criterion, and so on. The coupling-
based testing approach naturally yields a number of artifacts, and O-O programs also
have a distinct set of artifacts. There is the potential to combine these and use them as
the basis of a measurement theory for the approach. For example, there may be a strong
positive correlation between the depth of an inheritance hierarchy and the number of
overridden methods with the number of test requirements generated from the coupling-
based test adequacy criteria. Having this theory along with a practical process for its
use would add significantly to the practical application of the coupling-based testing
approach.

References

[Alexander, 2001] Alexander, R. T. (2001). Testing the Polymorphic Relationships of Object-
Oriented Programs. Ph.D. Dissertation, George Mason University.

[Alexander et al., 2000] Alexander, R. T., Bieman, J. M., and Viega, J. (2000). Coping with
Java programming stress. Computer, 33(4):30–38.

[Alexander and Offutt, 1999] Alexander, R. T. and Offutt, J. (1999). Analysis techniques for
testing polymorphic relationships. In Proceedings of the 30th International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS30), pages 104–114, Santa
Barbara, CA.

[Alexander and Offutt, 2000] Alexander, R. T. and Offutt, J. (2000). Criteria for testing poly-
morphic relationships. In Proceedings of the 11th International Symposium on Software Reli-
ability Engineering, pages 15–23, San Jose CA. IEEE Computer Society Press.

[Barbey and Strohmeier, 1994] Barbey, S. and Strohmeier, A. (1994). The problematics of test-
ing object-oriented software. In Proceedings of the 2nd Conference on Software Quality Man-
agement, volume 2, pages 411–426, Edinburgh, Scotland, UK.

[Beizer, 1990] Beizer, B. (1990). Software Testing Techniques. Van Nostrand Reinhold, New
York, New York.

[Berard, 1994] Berard, E. (1994). Issues in the testing of object-oriented software. In Proceed-
ings of Electro’94 International, pages 211–219. IEEE Computer Society Press.

[Berard, 1993] Berard, E. V. (1993). Essays on Object-Oriented Software Engineering, vol-
ume 1. Prentice Hall.

[Binder, 1996] Binder, R. V. (1996). Testing object-oriented software: A survey. Journal of
Software Testing, Verification & Reliability, 6(3/4):125–252.

[Bishop et al., 1975] Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1975). Discrete
Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, Massachusetts.

[Briand et al., 2003] Briand, L. C., Labiche, Y., and Wang, Y. (2003). An investigation of graph-
based class integration test order strategies. IEEE Transactions on Software Engineering,
29(7):594–607.

[Constantine and Yourdon, 1979] Constantine, L. L. and Yourdon, E. (1979). Structured De-
sign. Prentice-Hall, Englewood Cliffs NJ.

[DeMillo and Offutt, 1991] DeMillo, R. A. and Offutt, A. J. (1991). Constraint-based automatic
test data generation. IEEE Transactions on Software Engineering, 17(9):900–910.

[Fiedler, 1989] Fiedler, S. P. (1989). Object-oriented unit testing. Hewlett-Packard Journal,
40(2):69–75.

[Firesmith, 1993] Firesmith, D. G. (1993). Testing object-oriented software. In Proceedings of
the 11th International Conference on Technology of Object-Oriented Languages and Systems
(TOOLS USA, ’93), pages 407–426. Prentice-Hall, Englewood Cliffs, New Jersey.

426 Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

[Frankl and Weyuker, 1988] Frankl, P. G. and Weyuker, E. J. (1988). An applicable family of
data flow testing criteria. IEEE Transactions on Software Engineering, 14(10):1483–1498.

[Gallagher and Offutt, 2004] Gallagher, L. and Offutt, A. J. (2004). Integration testing of object-
oriented components using finite state machines. Software Testing, Verification and Reliability.
To be published.

[Harrold and Rothermel, 1994] Harrold, M. J. and Rothermel, G. (1994). Performing data flow
testing on classes. In Software Engineering of the Second ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, pages 154–163. ACM Press, New York, New York.

[Hayes, 1994] Hayes, J. H. (1994). Testing of object-oriented programming systems (OOPS):
A fault-based approach. In Urban, E. B. and S., editors, Object-Oriented Methodologies and
Systems, volume LNCS 858. Springer-Verlag.

[Jin and Offutt, 1998] Jin, Z. and Offutt, A. J. (1998). Coupling-based criteria for integration
testing. The Journal of Software Testing, Verification, and Reliability, 8(3):133–154.

[Jorgenson and Erickson, 1994] Jorgenson, P. C. and Erickson, C. (1994). Object-oriented inte-
gration testing. Communications of the ACM, 37(9):30–38.

[Liskov and Wing, 1994] Liskov, B. and Wing, J. M. (1994). A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems, 16(6):1811–1841.

[Meyer, 1990] Meyer, B. (1990). Introduction to the Theory of Programming Languages. Pren-
tice Hall.

[Meyer, 1997] Meyer, B. (1997). Object-Oriented Software Construction. Prentice Hall, Engle-
wood Cliffs, New Jersey.

[Morell, 1988] Morell, L. J. (1988). Theoretical insights into fault-based testing. In Software
Engineering of the 2nd Symposium on Software Testing Analysis and Verification (TAV2), pages
45–62, Banff Alberta.

[Offutt et al., 1993] Offutt, A. J., Harrold, M. J., and Kolte, P. (1993). A software metric system
for module coupling. The Journal of Systems and Software, 20(3):295–308.

[Overbeck, 1994] Overbeck, J. (1994). Integration Testing for Object-Oriented Software.
Ph.D. Thesis, Vienna University of Technology.

[Page-Jones, 1980] Page-Jones, M. (1980). The Practical Guide to Structured Systems Design.
YOURDON Press, New York, NY.

[Parnas, 1972] Parnas, D. (1972). On the criteria to be used in decomposing a system into mod-
ules. Communications of the ACM, 15(12):1053–1058.

[Parnas et al., 1976] Parnas, D. L., Shore, J. E., and Weiss, D. (1976). Abstract types defined
as classes of variables. In Proceedings of Conference on Data: Abstraction, Definition and
Structure, pages 22–24, Salt Lake City, UT, USA.

[Rapps and Weyuker, 1985] Rapps, S. and Weyuker, W. J. (1985). Selecting software test data
using data flow information. IEEE Transactions on Software Engineering, 11(4):367–375.

[Smith and Robson, 1990] Smith, M. D. and Robson, D. J. (1990). Object-oriented program-
ming: The problems of validation. In Proceedings of the 6th International Conference on
Software Maintenance, pages 272–282. IEEE Computer Society Press, Los Alamitos, CA.

[Weiss, 1989] Weiss, S. N. (1989). What to compare when comparing test data adequacy crite-
ria. ACM SIGSOFT Notes, 14(6):42–49.

[Zhu, 1996] Zhu, H. (1996). A formal analysis of the subsume relation between software test
adequacy criteria. IEEE Transactions on Software Engineering, 22(4):248–255.

427Alexander R.T., Offutt J.: Coupling-Based Testing of 0-0 Programs

