Journal of Universal Computer Science, vol. 10, no. 7 (2004), 872-891
submitted: 16/2/04, accepted: 21/6/04, appeared: 28/7/04 © J.UCS

MetaJ: An Extensible Environment for Metaprogramming
in Java

Ademir Alvarenga de Oliveira
(Federal University of Minas Gerais, Brazil
ademirao@dcc.ufmg.br)

Thiago Henrique Braga
(Federal University of Ouro Preto, Brazil
thiagohb@iceb.ufop.br)

Marcelo de Almeida Maia
(Federal University of Ouro Preto, Brazil
marcmaia@iceb.ufop.br)

Roberto da Silva Bigonha
(Federal University of Minas Gerais, Brazil
bigonha@dcc.ufmg.br)

Abstract: MetalJ is a programming environment that supports metaprogramming in
the Java language. The environment is designed to allow extensions via plug-ins which
permit the user to manipulate programs written in different languages. This facilities
concern only syntactic aspects. Semantics aspects are language-dependent and are not
addressed here, but could be tackled with other tools, which could even be layered
on the top of MetaJ. Accessing patterns by example inside ordinary Java programs
is a major feature of MetaJ programming. This paper presents a conceptual descrip-
tion of the environment, implementation details and three applications on analysis,
restructuring and generation of programs.

Key Words: metaprogramming, metaprogramming tools, refactoring, program trans-
formation, generative programming, Java, object-oriented frameworks

Category: D.1.5, D.3.3, D.2.6

1 Introduction

Computer programs define internal data structures to abstract from the
entities of a problem domain. Since it is potentially possible to abstract
from almost every existing concrete entity, one may write programs to rea-
son about almost everything, even other programs, excluding, of course, the
class of undecidable problems. Metaprograms are special programs (meta le-
vel programs) whose problem domain are another programs (base level pro-
grams). Some applications of metaprogramming are program translation from
one language to another, program transformation, program refactoring, pro-
gram comprehension, program optimization, partial evaluation, program ve-

deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ... 873

rification, type inference/checking, design patterns detection/application, pro-
gram slicing [Partsch and Steinbriiggen, 1983] [Oppen, 1980] [Mens et al., 2001]
[Rugaber, 1995] [Sheard, 2001] [Tip, 1995].

In principle, a metaprogram can be written in any general-purpose program-
ming language. Generally, input programs are represented internally as (abs-
tract) syntax trees, which are either records in procedural languages, or objects
in object-oriented languages, or terms in functional languages or rewriting sys-
tems [Cameron and Ito, 1984]. Using such representation is not a comfortable
task because: (i) there is a large conceptual gap between concrete programs
and the operations used to compose and decompose such structures; (ii) meta-
programs are not meant to be written only by programmers with expertise in
compilation techniques [Visser, 2002].

Metaprogramming is hard because programs are complex. Programmers may
have to resort to specialized many features to manage this complexity. These fe-
atures are often built into programming languages and include: type-systems (to
catch syntactically correct, yet semantically meaningless programs), scoping me-
chanisms (to localize the names one needs think about), and abstraction mecha-
nisms (like functions, class hierarchies, and module systems to hide implementa-
tion details). These features add considerably to the complexity of the languages
they are embedded in, but they generally worth the cost. Writing programs to
manipulate programs means dealing with this complexity twice [Sheard, 2001].

A possible solution to alleviate the inherent difficulty of metaprogramming is
the use of metaprogramming-specific languages. One approach for constructing
these meta-level languages is by extending a general-purpose language, but this
generally presents, two major drawbacks: it is required from the metaprogram-
mer a great effort for expressing queries on the source code; and the developed
metaprograms, usually, lack extensibility and are hard to mantain [Klint, 2003].
Another approach is the definition of a new metalanguage, which provides built-
in functionality for expressing high-level operations on the source code, thus
yielding simpler metaprograms. On the other hand, a new language is more dif-
ficult to learn than a new library for a known language. This difficulty is even
more dramatic if the language paradigm is not widely popular. It is also more
difficult building a new language from the scratch rather than building a new
library.

Cordy and Shukla [Cordy and Shukla, 1992] highlight two difficulties concer-
ning the metaprogramming process: the lack of a general approach for developing
metaprogramming languages, and the difficulty in learning metalanguages. Klint
[Klint, 2003] argues that despite the similarities between compilation, restruc-
turing and comprehension of programs, the last two processes do not apply the
same well-known techniques. Some differences can be pointed out: (i) compila-
tion generally deals with only one source language, while restructuring and com-

874 deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ...

prehension may involve several languages; (ii) a compiler abstracts the source
code generating a suitable internal representation. On the other hand, in restruc-
turing, it is necessary to keep a link between the internal representation and the
source code because the latter may have to be rewritten. Program comprehension
requires user interaction while compilation is usually batch processed. Program
comprehension and restructuring are used for reverse engineering, while compi-
lers are used in forward engineering.

Since providing a desirable metaprogramming tool is still a challenge, some
requirements to which such a system should satisfy are: expressiveness, reada-
bility, analysis, generation, manipulation, transformation, easiness of learning,
program patterns by example, guarantee of syntactic consistency and multiple
base languages.

The sections that follow present MetaJ, an extensible environment for develo-
ping metaprograms in Java. Section 2 shows a general picture of the environment,
its design decisions, and how it can be used. In Section 3, implementation details
are discussed. Section 4 shows some applications that are being carried out with
MetalJ. In Section 5, MetaJ is compared with another metaprogramming tools.
Finally, conclusions and future work are presented.

2 The MetaJ Environment

MetaJ embodies a set of concepts that are independent of the base language:
syntax trees, code references, code iterators and code templates. It defines a
framework which supports this independence by isolating the features common
to most languages, defining generic operations for them and allows plugging
components that are language dependent. Metaprograms are written in Java,
and access the generic concepts of MetaJ, dealing with the syntax of specific
base languages.

2.1 Internal Representation of Base Programs

Base programs are represented as syntax trees. The type of the tree nodes are
derived from the nonterminal symbols of the base language grammar, which may
have to be extended to include important node types as nonterminals, i.e., the
node types that the metaprogram may have access.

All tree nodes are accessed by means of the interface Reference. Thus, refe-
rences are used to manipulate fragments of base language code, hide tree nodes
and provide only operations that preserves the syntax consistence of the resulting
tree. The most important operations of the Reference interface are:

— String toString(): returns the corresponding source code of the sub-tree;

— boolean match(Reference): performs structural comparison of sub-trees;

deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ... 875

— void set(Reference): updates the value of a reference;
— Iterator getIterator():returns an iterator to traverse the node sub-tree.

The iterator [Gamma et al., 1995] object returned by getIterator method
allows traversing the tree node encapsulated by the reference. During the traver-
sal, reference operations are possibly used to test or modify fragments of base
code. Despite of usefulness and flexibility, iterators are low-level components
and demand expertise in the base language grammar. Next section will describe
another way of exploring programs.

2.2 Templates and Variables

A first requirement for a metaprogramming language is providing high-level abs-
tractions to hide the internal representation of base programs. MetaJ allows plug-
ging small domain-specific languages for writing program patterns by example,
called templates’. Each template language is specific for a base language and
is generated from it. In this sense, a language of templates is a superset of the
base language. Templates are abstractions that encapsulate a program pattern
written by example.

A template has a name, a type and a body. An example of a template
is shown in Listing 1 (a). It has name MyTempl, and type CompilationUnit.
In the template body (bounded by braces) is defined a program pattern.
The syntax used to describe a program pattern was borrowed from the JaTS
[Castor and Borba, 2001] syntax. The type of a template must be one of the
node types defined by the base language grammar. The body of a template
must include a sentential form, which must match any sentence that can be
derived from the nonterminal that defines the respective type of that template.
A sentential form can be written with appropriate terminals, metavariables and
delimiters of optional sentential sub-forms (#[... 1#).

Metavariables store references to code fragments. They have types which
must be one of the node types, just as templates. The types of metavariables are
classified as single-valued or multivalued, the latter ended with suffix List. For
example, ImportDeclaration denotes a type of a reference to one import de-
claration. ImportDeclarationList denotes a type of reference to multiple import
declarations, and has additional operations for inserting and removing elements.

A sentential subform only can be delimited by optional delimiters (#[and
1#) if the original grammar of the base language allows it to be optional in a
program (like package declarations are optional in a Java program).

As an example, it can be noticed that the pattern described in the body
of the template MyTempl has an optional PackageDeclaration which can be

! In Section 5 templates are usually referred as patterns. Templates were preferred to
avoid confusion with homonymous concept in software engineering design patterns

876 deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ...

package myTemplates;

language = Java // plug-in name

template #CompilationUnit MyTempl{
[#PackageDeclaration:pck]#
[#ImportDeclarationlList:imps]#
class MyTempl { ... }
#TypeDeclaration:td

(a) The template MyTempl.

package myTemplates;
import metaj.framework.AbstractTemplate;
public class MyTempl extends AbstractTemplate{
public final Reference imps, td, pck;
... // Implementation of superclass abstract methods

(b) The corresponding Java code.

Listing 1: An example of template

bound to any reference with type PackageDeclaration and has a class whose
signature exactly equals the fragment with tokens class followed by MyTempl.

A template is translated into a Java class, which has the same name of the
template. Listing 1 (b) exhibits the translation into a Java class of the tem-
plate of the Listing 1 (a). Each template can be arbitrarily instantiated. Each
instance of a template has its own environment, i.e., its own binding from me-
tavariables to references. The metavariables occurring in templates are available
in the corresponding template instances. The API available to manipulate the
template has the following methods:

— String toString(): returns the corresponding source code of the template.
Requires all variables to be bound;

— boolean match(Reference): pattern-matching with a syntax tree. Binds all
metavariables to Reference objects on the tree. If a metavariable is already
bound, it verifies if the corresponding references match;

— void setXXX(Reference): these methods are available for each metavaria-
ble in the template, where XXX is the name of the metavariable with its first
letter capitalized.

— void addInXXX(Reference, int):idem as previous, but adds a child refe-
rence to a multivalued metavariable named XXX.

The intensive use of templates to specify program restructuring is quite enti-
cing. However, the more complex is a template, the more specific is the program

deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ... 877

structure it can match, thus reducing its reusability and generality. It is the me-
taprogrammer’s responsability to determine the adequate balance of templates
and iterators to achieve a better result. In Section 4, examples of how templates
may be used is presented .

3 Implementation Details

MetaJ environment has three major components: the MetaJ framework, base
language plug-ins, and the template compiler. In order to introduce a new plug-
in into the environment, a context-free grammar processor is available. Figure 1
shows the MetaJ elements and their respective interdependence.

Framework operations
| Matcher | | Printer |
|

Grammar
Processor ! MetaJ Framework
Plug-in~ — < |-
\RUg-R |Temp|ate Ccfmpller
MetaJd Environment
Legend
A Dependence between components [ll Implemented by the meta-programmer
Generation flow N\ Implemented by the plug-in developer

Figure 1: The relationship between MetaJ elements

The grammar-processing tool generates a template language grammar from
a specific base language grammar. A template language is a superset of the base
language because it can accept any base program, i.e., a template containing no
metavariables. The generated grammar is the source code to a parser generator,
which produces the template language parser. The MetaJ environment uses this
parser to build both the template body and the base program syntax trees. The
current implementation is a fagade for the Cup parser generator [Hudson, 1999].

The grammar generated is an extension of the base language grammar. It
has new productions that allow meta-constructions to be combined with base
language constructions. There are two kinds of new productions: metavariables

878 deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ...

productions, which allow declaration of metavariables, and productions that de-
fine the usage of optional marks. In the former case, the user specifies information
about which types of metavariables are allowed. In latter case, the decision on
which base language structures can be delimited by optional marks is made
through the detection of nullable symbols, i. e., symbols that can produce an
empty string (A).

Some base language grammar adjustments may be necessary in order to let
the user achieve the desired metalanguage grammar. The usual kinds of adjust-
ments are: addition and deletion of nonterminal symbols and the restructuring of
some productions of the base language’s grammar. These adjustments simplify
template definition by allowing new useful types of metavariables or by remo-
ving useless metavariables types. In the case of Java, these adjustments have
proved to be very simple. Basically, it was necessary to add the new produc-
tion (identifier — IDENTIFIER), and to replace all ocurrences of the terminal
IDENTIFIER by identifier. This adjustment allows the declaration of metava-
riables of type identifier to occur in some Java structures like class signatures
(see Listing 4), declarations of fields and methods.

The MetalJ framework encapsulates all MetaJ concepts that are not base lan-
guage specific. Concepts which depend on the base language should be provided
by the plug-ins. The framework provides abstract and concrete base elements
used to develop plug-ins and metaprograms. The main generic operations car-
ried out by the framework are matching and printing.

The matcher is the component which verifies if a base program is in accor-
dance with a pattern encapsulated by a template. The result of this operation is
a table that defines a value for each metavariable of the pattern. Metavariables
values can be accessed by means of references.

The matching operation acts on two parameters: the pattern p (a template
body) and the input base language code c¢. The matcher starts aligning the
beginnings of p and ¢, and follows comparing each reached structure from p with
the corresponding structure of ¢. The pattern p guides the matching process. The
matcher determines its next action based on the kind of the current structure of
p, so that:

1. If the current structure of p is a base language fragment of code and this
fragment of code occurs on the current position of ¢, then the matching
process continues on the next structure of p and c¢; otherwise a matching
error occurs;

2. If the current structure of p is delimited by optional marks then the matching
process proceeds without this structure. If matching the following segment
results in error, then matching is tried again using the delimited structure;

3. If the current structure of p is a simple variable, then the compatibility

deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ... 879

between the type of the p current structure and the type of the ¢ current
structure is verified. If they are compatible, then the matching follows ve-
rifying next structures of p and c;

4. If the current structure of p is a list variable, then the smallest number of
structures of ¢, which are compatible with the type of current structure of
p, and succeeding the matching continuation, are matched with the list. If
no structure is matched, then a matching error occurs.

The printer is capable of rebuilding the program source code from a syntax
tree. The print operation expects only one parameter: the pattern or base lan-
guage code syntax tree to be printed. If the tree represents a base language code,
then the printer just prints its corresponding code. When the tree is a pattern,
then all occurrences of metavariables are replaced by their respective value. It
goes throughout the syntax tree and takes its decisions about what to do based
on the kind of reached structure:

1. If the current structure is a base language fragment of code, it is converted
to its textual representation. The printer outputs each token stored in the
subtree of the structure.

2. If the current structure is a metavariable (simple or list), then its value is
printed.

3. If the current structure is delimited by optional marks, then it is printed,
if and only if, all metavariables used in this structure have a defined value.
Optional marks are not printed.

If any metavariable without a defined value is reached, and if it is not deli-
mited by optional marks, then a printing error is issued.

Plug-ins implement the language specific interfaces and abstract methods of
the framework. The framework components related to the plug-in construction
are: template language parser interface and syntax tree nodes. The framework
does not define a specific parser. It just provides an interface which should be
implemented by the template language parser. The most important plug-in com-
ponent is the template language parser. This parser should build syntax trees
for templates bodies and base language programs using the syntax tree nodes
provided by the framework. The template language parser uses these elements
to build syntax trees. There are three kinds of nodes: (1) simple nodes, which
are used to represent base code fragments; (2) variable nodes, which represent
metavariables occurrences, and (3) optional marks, which are nodes that mark
optional fragments of code.

A MetalJ program is a Java program that uses MetaJ components. Templates
are translated into Java classes, so they could be accessed in the metaprogram.

880 deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ...

Although the template compiler depends on the template language parser, the
plug-in developer does not implement it. The template compiler is a language-
independent compiler that uses the template language parser interface to access
the parser implemented by the plug-in developer aided by the grammar proces-
sor tool. The template compiler is an automatic way to implement the abstract
methods of the class AbstractTemplate provided by the framework. The con-
crete methods of this class act as a front-end of the framework. They hide details
about how to use the framework operations. In addition to implementing the abs-
tract methods of the class AbstractTemplate, the compiler generates methods
to access a reference to the value of each template metavariable (see Section 2).

4 Metad Validations

MetaJ has been applied in the development of a few applications. Here are
shortly presented some examples that range over analysis, transformation and
generation of programs.

4.1 Metrics Collector

Any software tool that requires source code analysis usually produces, inter-
nally, a suitable representation for the code. Figure 2 shows a class diagram as
an example of how one could model a Java system. This representation usually

Memberinfo
"N

Typelnfo Igrocedurelnfo

5 R a

JavaUnit

SystemlInfo

JavaFilelnfo

Packagelnfo

ExternTypelnfo

' : g Interfacelnfo
oiaes ||~ [Classinio] | [merfaceinfo

N

Packages | g - Fieldinfo
<<interface>>
Type
<<interface>> yp |Nested|nterface|nfo| Methodlnfol

<<interface>
Import Statementinfo NestedCIassInfol ConstructorInfo

Figure 2: A possible (partial) metamodel for Java systems

requires more expressiveness than that already available in a syntax tree. For
instance, for program slicing tools, it is necessary to have a control flow graph

deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ... 881

[Tip, 1995]. Another example could be an expert tool for detecting specific re-
factorings, which represent opportunities for enhancing the internal quality of a
system. A required infrastructure to develop this kind of tool is a collector of sys-
tem metrics that enables the definition of a quality function for the system code.
Most of the implementation of such a collector can be driven by the syntactic
representation of the code. In this case, MetaJ appears to be a useful environ-
ment to extract the skeleton of the code. This skeleton could be represented by
the metamodel shown in Figure 2. In Listing 2, it is presented a method that
given any possible class member identifies member’s type and creates the respec-
tive concrete object for that member (one of the possible concrete classes that
extend the MemberInfo class, colored in Figure 2). Matching the member with
an appropriate template for each possibility identifies the member kind (nested
class or interface, field, method or constructor). The class FieldInfoCollector
creates an object FieldInfo and updates it with the information extracted with
other appropriate templates.

public class MemberInfoCollector {
private String member;
private MemberInfo memberInfo;
public void execute() {
VerifyFieldDecl tvfd = new VerifyFieldDecl();
VerifyMethodDecl tvmd = new VerifyMethodDecl();
VerifyConstructorDecl tvcd = new VerifyConstructorDecl();
VerifyNestedClassDecl tvncd = new VerifyNestedClassDecl();
VerifyNestedInterfaceDecl tvnid =
new VerifyNestedInterfaceDecl();
// FieldDeclaration
if (tvfd.match(member)) {
FieldInfoCollector fic = new FieldInfoCollector (member) ;
fic.execute();
memberInfo = fic.getFieldInfo();
}else
// MethodDeclaration
if (tvmd.match(member)) {
... //idem

Listing 2: A method that collects information of a class member

Constructing metrics collectors from the scratch is not a simple task. The de-
veloper should build the parser (using a parser generator), to represent internally
the program (using (abstract) syntax trees) and to extract code informations by

882 deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ...

exploring the internal representation (using visitors [Gamma et al., 1995]). Me-
taJ encapsulates this task by providing a standard way to represent and explore
programs. Allowing code pattern matching makes easier to write and understand
the process of collecting source code information. Patterns written by example
are more readable and easier to maintain than other common approaches used
to extract code information (such as visitors or semantics actions added to the
parser). In addition, MetaJ abstractions hide the program’s internal representa-
tion and provide operations to traverse (using code iterators), decompose and
check (using pattern-matching) the source code.

4.2 Programmable Refactoring

Refactorings are semantics-preserving transformations on the source
code [Opdyke, 1992] [Fowler, 1999]. They are used to enhance the internal
quality of the system. It is commonly accepted that refactoring tools are
extremely important when it is necessary to proceed with a considerable system
reengineering. There are already some tools that provide built-in refactoring
capabilities [Mens et al., 2003]. In MetaJ approach, refactorings are performed
as ordinary Java classes, and thus can be composed into more elaborated
transformations. They can also be reused in any part of a system and integrated
into development environments that provide open APIs, such as JBuilder and
Eclipse. Listing 3 shows an adapted version of the Mowve Field refactoring
[Fowler, 1999]. A field will be moved from a source class to a target class, and
the dependences of this movement will be properly arranged. The instance
variables are configuration parameters of the refactoring. There are certain
preconditions that must be satisfied, for example, the field to be moved must
exist in the source class.

This precondition is verified by matching the ClassWithField template
shown in Listing 4 with the input file containing the source class. Then, the
field is encapsulated in the source class. This implementation potentially wri-
tes the modified source class to a different file, depending on the values of the
respective instance variables. For this task it is called another refactoring, the
EncapsulateField.

The template for (re)writing a file used in the EncapsulateField refactoring
is shown in Listing 5. After encapsulating the field in the source class, the bodies
of the newly created methods are modified to access the field using an instance
of the target class. The transformation RedirectMeth is responsible for this
action. Note that a new instance variable of the target class is created, if no
one is encountered. Next, the field is removed from the source class, but not
the get and set methods. After that, the field and corresponding get and set
methods are inserted in the target class using the class AddEncapsulatedField.
Finally, it is checked if there is any instance variable in the target class with the

deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ... 883

public class MoveField {
String isf, osf; // Input/Output file with source class
String itf, otf; // Input/Output file with target class
String sc, tc; // Source/Target class
String fn; // Field name
public void execute() throws ActionException {
ClassWithField vf = new ClassWithField();
vf.setClassName(sc); vf.setFieldName(fn);
if (vf.match(...isf...)){
// If the source class has the field
EncapsulateField ef = new EncapsulateField(isf,osf,sc,fn);
ef.execute();
RedirectMeth rm = new RedirectMeth(osf,osf,sc,
ef .getSetMeth(),tc);
rm.execute(); // Update Set method body
rm.setMethodName (ef . getGetMeth()) ;
rm.execute(); // Update Get method body
RemoveField rf=new RemoveField(osf,osf,sc,fn);
rf.execute();
AddEncapsulatedField aef = new AddEncapsulatedField(...);
aef.execute();
vf.unBindA11(Q);
vf.setClassName (getIdTC());
vf.setType(getType(sc));
if (vf.match(...otf...)) {
//1f there is field of source type in the target
new RedirectClass(otf,otf,tc,sc,...).execute();
}
}else
throw new ActionException("Field not found in " + sc);

Listing 3: Java class for the Move Field refactoring

type of the source class. If so, all accesses to the recently moved field qualified
by that variable must be updated by means of the proper method call. The
transformation RedirectClass is responsible for this action.

Implementing the proposed refactoring MoveField is not a very simple task
even using MetaJ features. But, using code iterators, pattern matching and Me-
taJ abstractions, analysis and code generation become easier and safer (no invalid
syntactic construction is generated) than doing that by using tree visitors or an
open abstract syntax tree library, and directly accessing the internal representa-
tion of the program. MetaJ components allow the manipulation of source code
without explicitly handling the internal representation.

884 deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ...

template #CompilationUnit ClassWithField {
#[#PackageDeclaration:pck]#
[#ImportDeclarationlList:ids]#
#[#TypeDeclarationList:tds]#
#[#ClassModifiers:cm]# class #Identifier:className
#[#Extends:cel# #[#Implements:impc]#{
#[#ClassBodyDeclarationList:cbds]#
#[#FieldModifiers:fm]# #Type:type #Identifier:fieldName
#[#VariableInitializer:vil#;
#[#ClassBodyDeclarationList:cbds2]#
}
#[#TypeDeclarationlList:tds2]#

Listing 4: Template representing a class with a field

template #CompilationUnit ClassWithFieldAndGetAndSet {
[#PackageDeclaration:pck]#
[#ImportDeclarationList:ids]#
#[#TypeDeclarationList:tds]#
#ClassSignature:cs {
#[#ClassBodyDeclarationList:cbds]#
#[#FieldModifiers:fm2]# #Type:type #fieldName
#[#VariableInitializer:vil# ;
#[#ClassBodyDeclarationList:cbds2]#
public void #setMethod (#Type:type arg){
#fieldName = arg;
}
public #Type:type #getMethod (O{ return #fieldName; }
}
[#TypeDeclarationList:tds2]#

Listing 5: Template used in the Encapsulate Field Refactoring

4.3 Generative Programming

This case study presents the implementation of a generative domain model
[Czarnecki and Eisenecker, 2000] that constructs data-driven applications from
simplified entity-relationship specifications. A framework instantiation is gene-
rated from configuration parameters written with a domain-specific language.
The generation process is implemented using MetaJ templates.

deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ... 885

4.3.1 The Application Framework

Firstly, it will be presented a framework for four-tier database applications. Since
a generated application is a specialization of this framework, the architectures
of both the application and the framework are the same. The framework defines
abstract classes that are to be extended by concrete generated classes, which
implement application specific behaviors for template methods declared in fra-
mework abstract classes. The applications generated follow a four-tier architec-
ture: presentation (user interface), logic, communication, and data access. The
generation process implemented in the generative domain model is divided in
two parts: logic and data access generation process and presentation generation
process.

In this case study, some constraints are imposed by the generative domain
model. The model only generates desktop applications with predefined user inter-
face. New applications are generated from a simplified entity-relationship speci-
fication and are constructed in a four-tier architecture: presentation, logic, com-
munication and data access tiers. Generated applications accesses a relational
database.

Design patterns [Gamma et al., 1995] are used in all layers of both applica-
tion and framework, so the generated system is expected to have satisfactory
internal quality, and thus can be manually customized.

The configuration knowledge is specified in a domain-specific high-level con-
figuration language. From the above restrictions, it was introduced just a data
configuration language. Below, it is shown an example of specification. It is sup-
posed that a corresponding database with three tables has already been created.
Figure 3 shows the overall architecture of framework specialization generators.

Entities:
Client(code:Integer; name:String;
address:String; age:Integer)
Account (number: Integer; balance: Real)
Relationships:
AcountClient: One to many (1..%*) from Client to Account
Fields: code:Integer; number:Integer;

Algorithmic generation methods receive, externally, parameters that repre-
sent the configuration knowledge. These methods define values for the metava-
riables of associated rules and use each print template operation to generate
code.

The requirement specification is translated into a method which calls the
algorithmic generation methods, shown in Listing 6. Since there is no way to
specify user interface layout, some standard behaviors were defined. For each
entity, a form is generated. Text fields representing each entity field compose this
form. There is a navigation panel to browse the entities. Relationships result on

886 deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ...

| Configuration Knowledg(-d
/ CreateEntity)
—P' MainCreateEntity E=—— ﬁ CreateType J
—>| RemoveType J
CreateRelationship J
—>~ MainCreateRelationship PutToManyReIationShiu

PutToOneRelationShip |

Logic classes generators
Ul classes generators

’| MainCreateEntityFormH MainCreateEntityForm)

CreateToManyReIshipSubForm)
| MainCreateRelationshipSubForm CreateToOneReIshipSubForm)

Legend
{D Pure Java program [) Meta-J metaprogram — Association

Figure 3: The architecture of the generators

insertion of a child entity form into the parent entity form. In Listing 7, it is
shown classes which configure and call the generators. The class EntityBuilder
is the fagade that, in fact, is the implementation of a high-level specification
language. This class encapsulates the calls to the generators. A generator is
composed of a class that instantiates and assigns values to all manipulation
variables (e.g. ComposedCreateEntity in Listing 7), and a rule that can be seen
as a template of the generated source file (e.g. CreateEntity in Listing 8). This
harder and complex problem shows the scalability of MetaJ expressive power.

5 Related Work

Traditional compiler generation tools such as Cup [Hudson, 1999] could be seen
as a starting point for MetaJ. These tools free programmers from the burden of
having to worry about the intricacies of parsing algorithms. Nonetheless, they
are still limited to help the verification of syntax rules and the syntax tree
construction. MetaJ provides higher-level abstractions for manipulating source
code. Indeed, MetaJ concepts are not entirely new. There have been develo-
ped several systems that provide facilities for metaprogramming. Some of them
are self-contained metaprogramming systems based on the rewriting paradigm.
TXL [Cordy et al., 1988], Refine [Kotik and Markosian, 1989], and ASF+SDF

deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ... 887

public static void main(String[] args)throws ActionException{
EntityBuilder client = new EntityBuilder ("Client");
client.setBdUrl ("jdbc:cloudscape:rmi:DataBank");
client.addField("Integer","code",20,true);
client.addField("Integer","age",20,false);
client.addField("String","name",20,false);
client.addField("String","address",20,false);
client.createEntity();
EntityBuilder account = new EntityBuilder ("Account");
account.setBdUrl ("jdbc:cloudscape:rmi:DataBank");
account.addField("Integer", "number",20,true);
account.addField("Integer","balance",20,false);

account.createEntity();

//Relationships and forms
client.createEntityToManyRelationship(account) ;
account.createEntityToOneRelationship(client);
client.createEntityForm(); account.createEntityForm();
client.createEntityToManyRelationshipSubForm(account) ;

Listing 6: Code Generator for High-Level Specifications

class EntityBuilder{
public void createEntity ()throws ActionException {
ComposedCreateEntity cce = new ComposedCreateEntity ();
cce.setEntityName (entityName) ;
cce.setEntityDAOName (getEntityDAOName ()) ;
cce.setEntityDatalnterface(getEntityDatalnterfaceName()) ;
cce.setEntityTableName (getEntityTableName()) ;
cce.setFields (fields);
cce.execute();
Yoo
}
class ComposedCreateEntity {
public void execute ()throws ActionException {
AbstractTemplate create = new CreateEntity ();
if (entityName!= null && !entityName.equals(""))
create.setEntityName (entityName) ;
else throw new ActionException("Name non specified.");
// set manipulation variables of the CreateEntity Template
... create.print(); // generate the file
}.o.o

Listing 7: Some methods for calling generators and the CreateEntity facade

888 deOliveira AA., Braga T.H., de Almeida Maia M., da Slva Bigonha R.: MetaJ: ..

template #CompilationUnit CreateEntity {
package #Name:entitySchema;
#ImportDeclarationlList:entityDependencies
import generation.x*;
import java.sql.x*;
public class #entityName #ClassExtends:entExt
implements Entity{
private #entityDAOName #entityDAOId;
private #entityName (#eDataName _entidade,
#entityDAOName _edn){
#setEntity (_entidade);
#entityDAOId = _edn;
}
#ClassBodyDeclarationList:cbdsEntityData
public static #entityName create (#eDataName data)
throws. ..{
#entityDAOName dao = new #eImpDAOName () ;
dao.create (data);
return new #entityName (data , dao);
}
public static #entityName[] findAll ()throws ...{
#entityDAOName dao = new #eImpDAOName ();
Datalnterface[] data = dao.findAll ();
if (data !'= null){
#entityName[] entities =
new #entityName [data.length];
for (int i = 0; i < data.length; i++)
entities[i] = new #entityName ((#eDataName)datal[i],

new #eImpDAOName ());
return entities;

} else return null;

Listing 8: MetaJ template for specifying an entity generator

[van den Brand et al., 2001] are examples of such systems. Even if these systems
can define patterns based on predefined context-free languages and use them to
define transformation rules, writing by-example patterns is not directly possible.
Even so, the generality of such tools enables this possibility defining additional
modules [Cordy and Shukla, 1992] [Sellink and Verhoef, 1998]. The main disad-
vantage of these tools is necessity of learning a new paradigm, which may be
undesirable in some industrial environments.

SCRUPLE [Paul and Prakash, 1994] is a framework that uses a pattern lan-
guage to define queries on the source code. Pattern languages can be derived
extending the base language with pattern-matching symbols, such as wildcards,
set variables, sequence variables. The pattern language design seems to be car-

deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ... 889

ried in an ad-hoc basis since it includes some semantic dependent features, which
may cause difficulties when extending the framework for different languages. Set
variables, named wildcards and matching equivalent statements are examples of
such semantic dependent features. Another example of framework for source code
analysis is Genoa [Devanbu, 1999]. Both SCRUPLE and Genoa only provide me-
chanisms for querying the code, allowing neither transformation nor generation,
differently from Metal.

A* [Ladd and Ramming, 1995] and TAWK [Griswold et al., 1996] are
pattern-action languages that extend the lexical pattern syntax of AWK, sa-
ving the programmer the effort of emulating parsing with regular expressions.
A* has mechanisms for specifying the order (preorder, postorder) of the im-
plicit loop for traversing trees. Also, matches can be interleaved with actions.
Wildcards and variables are missing in A*. TAWK is built on top of the Ponder
toolset [Griswold and Atkinson, 1995], which provides facilities for manipulating
AST’s. Extending TAWK to a new base language requires retargeting Ponder.
Both A* and TAWK take the consequences of being embedded in a untyped
language such as AWK, advantageous for rapid prototyping, but unsafe for large
projects.

JPearl is a pattern-action language for Java [Maia and Oliveira, 2002]. It de-
fines two specialized languages for describing restructurings of Java programs. A
primitive transformation is described in a rule language, which has four optional
sections: input pattern, input actions, output pattern, and output actions. A
composed transformation is described in a language, which is a mixture of Java
code and mechanisms to instantiate and execute primitive transformations and
to access its pattern variables. Furthermore, JPearl is too verbose and cannot
be extended for other base languages.

6 Conclusions

MetalJ, at first sight, may appear to be a simple metaprogramming utility. In-
deed, we expect this feature to be a positive one in the sense that it confirms
its easiness of use. But also, the applications developed in MetaJ environment
show that reasonably large applications can be developed with less effort than
using traditional compiler generation tools, and thus confirming its expressive-
ness. However, MetaJ is still far from being a definitive metaprogramming tool.
Its simple and elegant design is charged on the absence of highly expressive fe-
atures present in fully featured metaprogramming systems such as TXL, Refine
and ASF+4+SDF. In MetaJ, much of the metaprogramming work is done in Java.
This can be an advantage if we consider that it can be applied all successful
knowledge acquired developing reusable, robust object-oriented system, but also
can be seen as a disadvantage if we consider that the metaprograms are mos-

890 deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ...

tly written in a imperative style, to the detriment of the declarative style of
templates. We expect to introduce such declarative features to Metal.

References

[Cameron and Ito, 1984] Cameron, R. and Ito, M. (1984). Grammar-based definition
of metaprogramming systems. ACM Transactions on Programming Languages and
Systems, 6(1):20-54.

[Castor and Borba, 2001] Castor, F. and Borba, P. (2001). A language for specifying
java transformations. In VI Brazilian Symposium on Programming Languages, pages
236251, Curitiba, Brazil.

[Cordy et al., 1988] Cordy, J., Halpern, C., and Promislow, E. (1988). TXL: A rapid
prototyping system for programming language dialects. In Proc. of Int’l Conf. of
Computer Languages, pages 9—13.

[Cordy and Shukla, 1992] Cordy, J. and Shukla, M. (1992). Practical metaprogram-
ming. In Proc. of the IBM Centre for Advanced Studies Conference, pages 215-224.

[Czarnecki and Eisenecker, 2000] Czarnecki, K. and Eisenecker, U. (2000). Generative
Programming. Addison-Wesley.

[Devanbu, 1999] Devanbu, P. (1999). GENOA - a customizable, front-end-retargetable
source code analysis framework. ACM TOSEM, 8(2):177-212.

[Fowler, 1999] Fowler, M. (1999). Refactoring-Improving the Design of Existing Code.
Addison-Wesley.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns - Elements of Reusable Object Oriented Software. Addison Wesley.

[Griswold and Atkinson, 1995] Griswold, W. and Atkinson, D. (1995). Managing de-
sign trade-offs for a program understanding and transformation tool. Journal of
Systems and Software, 30:99-116.

[Griswold et al., 1996] Griswold, W., Atkinson, D., and McCurdy, C. (1996). Fast,
flexible syntactic pattern matching and processing. In WPC ’96: Proceedings of the
IEEE Fourth Workshop on Program Comprehension, pages 144-153. IEEE Computer
Society Press.

[Hudson, 1999] Hudson, S. E. (1999). Cup LALR par-
ser generator for Java - User’s Manual. Available at
http://www. cs.princeton.edu/ appel/modern/java/CUP /manual.html.

[Klint, 2003] Klint, P. (2003). How understanding and restructuring differ from com-
piling: a rewriting perspective. In Proc. of the 11th Int’l Workshop on Program
Comprehension (IWPC03), pages 2-12.

[Kotik and Markosian, 1989] Kotik, G. and Markosian, L. (1989). Automating soft-
ware analysis and testing using a program transformation system. ACM SIGSOFT
Software Engineering Notes, 4(8).

[Ladd and Ramming, 1995] Ladd, D. and Ramming, C. (1995). A*: A language for
implementing language processors. I[IEEE Transaction on Software Engineering,
21(11):894-901.

[Maia and Oliveira, 2002] Maia, M. and Oliveira, A. (2002). JPearl - a language for
defining Java program restructurings (in portuguese). In VI SBLP, pages 166-179,
Rio de Janeiro, Brazil.

[Mens et al., 2001] Mens, K., Michiels, I., and Wuyts, R. (2001). Supporting software
development through declaratively codified programming patterns. Journal on Fx-
pert Systems with Applications, 234(4):405-413.

[Mens et al., 2003] Mens, T., Demeyer, S., Bois, B. D., Stenten, H., and Gorp, P. V.
(2003). Refactoring:current research and future trends. In Bryant, B. and Saraiva,
J., editors, FElectronic Notes in Theoretical Computer Science, volume 82. Elsevier.

[Opdyke, 1992] Opdyke, W. (1992). Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign.

deOliveira AA., Braga T.H., de Alimeida Maia M., da Slva Bigonha R.: MetaJ: ... 891

[Oppen, 1980] Oppen, D. (1980). Prettyprinting. ACM TOPLAS, 2(4):465-483.

[Partsch and Steinbriiggen, 1983] Partsch, H. and Steinbriiggen, R. (1983). Program
transformation systems. ACM Computing Surveys, 15(3):199-236.

[Paul and Prakash, 1994] Paul, S. and Prakash, A. (1994). A framework for source
code analysis using program patterns. IEEE Transactions on Software Engineering,
20(6):463-475.

[Rugaber, 1995] Rugaber, S. (1995). Program comprehension. In Dekker, M., editor,
Encyclopedia of Computer Science and Technology, pages 341-368.

[Sellink and Verhoef, 1998] Sellink, M. P. A. and Verhoef, C. (1998). Native patterns.
In Proc. 5th Working Conference on Reverse Engineering, pages 89-103. IEEE Com-
puter Society Press.

[Sheard, 2001] Sheard, T. (2001). Accomplishments and research challenges in meta-
programming. In Proc. of 2nd Intl. Workshop on Semantics, Applications, and Im-
plementation of Program Generation, LNCS 2196, pages 2—44, Italy.

[Tip, 1995] Tip, F. (1995). A survey of program slicing techniques. Journal of Pro-
grammang Languages, 3(3):11-189.

[van den Brand et al., 2001] van den Brand, M., van Deursen, A., Heering, J., de Jong,
H. A., de Jonge, M., Kuipers, T., Klint, P., Moonen, L., Olivier, P. A., Scheerder, J.,
Vinju, J. J., Visser, E., and Visser, J. (2001). The ASF+SDF meta-environment:a
component-based language development environment. In Computational Complezity,
pages 365-370.

[Visser, 2002] Visser, E. (2002). Meta-programming with concrete object syntax. In
Generative Programming and Component Engineering (GPCE’02), LNCS 2487, pa-
ges 299-315.

