
Fast Two-Stage Lempel-Ziv Lossless Numeric Telemetry
Data Compression Using a Neural Network Predictor

Rajasvaran Logeswaran
(Multimedia University, Malaysia.

loges@ieee.org)

Abstract: Lempel-Ziv (LZ) is a popular lossless data compression algorithm that produces
good compression performance, but suffers from relatively slow processing speed. This paper
proposes an enhanced version of the Lempel-Ziv algorithm, through incorporation of a neural
pre-processor in the popular predictor-encoder implementation. It is found that in addition to
the known dramatic performance increase in compression ratio that multi-stage predictive
techniques achieve, the results in this paper show that overall processing speed for the multi-
stage scheme can increase by more than 15 times for lossless LZ compression of numeric
telemetry data. The benefits of the proposed scheme may be expanded to other areas and
applications.

Keywords: Lempel-Ziv, neural networks, prediction, lossless compression, two-stage
Categories: H.3.m, E.2

1 Introduction

Lossless data compression, emphasizing on the accuracy of compressed data, has
many well known algorithms ranging from the primitive null suppression [Nelson
96], to well known statistical techniques such as Huffman [Huffman 52] and
arithmetic coding [Langdon 84], and combination strategies, e.g. Sixpack, gzip, ARJ,
LHA etc. [Nelson 96]. The popular Lempel-Ziv (LZ) [Ziv 77] dictionary algorithm
scheme (and its many variants) traditionally produce good compression performance
but at a relatively slow processing speed for use in many practical applications.

This paper proposes using a neural network predictor in a two-stage scheme to
speed-up the LZ implementation for lossless data compression. It is known that multi-
stage predictive schemes [McCoy 94] improve compression performance
dramatically, especially for data that contain repetative sequences or vary gradually.
Using such an implementation, it is shown by the results in this paper that in addition
to improved compression performance, the proposed scheme of incorporating a neural
predictive pre-processor to the LZ is capable of increasing processing speeds
significantly, even for numeric multi-distribution telemetric data. As LZ algorithms
are widely used in many applications, a fast and improved implementation would
have far-reaching benefits. In addition, its incorporation with yet another popular
scheme of a predictive pre-processor (i.e. neural networks), and the significant merits
gained through the combination, should prove beneficial for an even wider range of
applications.

Journal of Universal Computer Science, vol. 10, no. 9 (2004), 1199-1211
submitted: 9/11/03, accepted: 9/6/04, appeared: 28/9/04 © J.UCS

2 Lempel-Ziv Algorithm Basics

A dictionary-type encoder builds a table of characters / words / phrases that have been
encountered in the input stream, assigning a corresponding codeword to each entry in
the table. When an instance in the input matches an entry in the table (dictionary), it is
replaced with the corresponding codeword. Dictionaries may be static (pre-defined) or
dynamic (built and updated at run-time, possibly initialised with pre-defined common
matches at start-up).

The LZ (also known as Ziv-Lempel and LZ77) [Ziv 77] has a text window
divided into two parts : the body (containing recently encoded text), and a look-ahead
buffer (that contains the new input to be compressed). The algorithm attempts to
match the contents of the buffer to a string in the dictionary (body of text window), as
shown in Fig. 1. Essentially, compression is achieved by replacing variable-length
text with fixed sized tokens, each consisting of 3 parts : a pointer into the dictionary,
the length of the phrase and the first symbol in the buffer that follows the phrase
(example, Fig. 1(b)). The token is read, the indicated phrase is output and the
remaining character is appended. The process is repeated until the end of the input.

Figure 1: Example of Lempel-Ziv Coding (LZ77)

The implementation of LZ77 can cause a bottleneck due to relatively slow string

comparison that has to be done at every position in the text window. When matching
strings are not found, the compression cost of using this algorithm is high as the 24-
bit token (three 8-bit characters) is used to encode each unmatched 8-bit character
(see Fig. 1(c)). Many improved variants of the LZ class of algorithms have been
created, including LZSS, LZ78, LZW, LZJ, LZT, LZC, LZH and LZARI [Nelson 96,
Storer 82, Ziv 78].

Two LZ variations are implemented in this paper. LZSS [Storer 82] updates a
binary search tree with the phrases moved out of the buffer into the dictionary,
allowing quick string comparison, thus reducing the performance bottleneck. Wastage

1200 Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

is reduced by modifying the token to use a 1-bit prefix to indicate whether an offset
(length pair, e.g. 17-bit token [0, (11,3)]) or a single symbol (e.g. 9-bit token [1, ‘+’])
is sent as output. When unmatched, the dummy position 0 and length 0 will not be
sent, thus saving 15 bits as compared to the implementation in Fig. 1(c). LZARI
[Nelson 96] is a multilevel coding technique that uses a two-pass operation - the first
uses one of the better LZ algorithms, followed by arithmetic coding [Langdon 84] of
the tokens (code pointers).

3 Enhanced Two-Stage Lempel-Ziv

The proposed two-stage LZ scheme integrates a predictor (coupled with a residue
generator) as a pre-processor to the LZ encoder, as shown in Fig. 2. The 1st stage is a
pth order predictor which reduces the dynamic range of the input by predicting the
current input value (Xn) at each iteration, and outputs the corresponding residue, Rn =
Xn – E(Xn), which is then LZ encoded in the 2nd stage to produce the transmitted
compressed residue (Yn).

Figure 2: Two-stage Scheme

4 Performance Results

The simulation model in Fig. 3 is set up for performance evaluation, catering for the
training requirements of the pre-processor to allow for adaptive prediction of the
varying input patterns. A variety of predictors are evaluated, as described in Section
4.2. As the LZ algorithm has undergone many improvements over the years since its
conception, the popular LZSS and LZARI are used instead of the original LZ77, for a
more realistic implementation. As LZARI is already a multi-stage encoder, its use is
suitable for also studying the performance effects of further incrementing the number
of stages in an algorithm.

1201Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

Figure 3: Implementation schematic of the two-stage scheme

4.1 Test Data

Evaluation of the scheme is carried out with a data set of typical 1-D numeric
telemetry data files acquired from the various sensors aboard satellite launch vehicles,
which contain data of varying magnitude and mixed distribution patterns. General
characteristics of the test files are provided in Tab. 1 [Rahaman 97].

 Parameter 1 Parameter 2

Test
File

F
ile

 S
iz

e

(b
yt

es
)

T
ot

al
 n

o.
 o

f
sy

m
bo

ls

(e
ac

h
pa

ra
m

.)

Sa
m

pl
e

ra
te

(s

ym
bo

ls
 /

se
c.

)

N
um

be
r

of

di
st

in
ct

 s
ym

bo
ls

M
ax

. f
re

q.

of
 a

 s
ym

bo
l

M
ax

. v
al

ue
 o

f
a

sy

m
bo

l

So
ur

ce
 E

nt
ro

py

(b
it

s
pe

r
sy

m
bo

l)

N
um

be
r

of

di
st

in
ct

 s
ym

bo
ls

M
ax

. f
re

q.

of
 a

 s
ym

bo
l

M
ax

. v
al

ue

of
 a

 s
ym

bo
l

So
ur

ce
 E

nt
ro

py

(b
it

s
pe

r
sy

m
bo

l)

tdata1 252305 28324 520 28324 1 159.9 14.790 157 7131 66.135 3.128

tdata2 139571 11631 65 11631 1 368.0 13.506 12 7484 1070.249 1.017

tdata3 55365 6778 65 6778 1 119.9 12.727 43 1438 76.105 4.644

tdata4 131841 16052 130 16052 1 139.9 13.970 191 3985 50.894 5.387

tdata5 184774 17232 65 17232 1 349.9 14.073 240 349 4960.000 7.614

tdata6 74915 8662 65 8662 1 149.9 13.080 6 2840 124.250 2.121

Table 1: Characteristics of the test data files

1202 Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

Each test file consists of pairs of values – the first parameter being a reference
value (e.g. coordinates, time etc.) with semi-linear distribution, and the latter the
actual measurement of varying distributions, as signified by the frequency and

entropy (H = -∑
=

n

i
ii PP

1
2)(log) information in Tab. 1. As a reference, an example of the

data distribution of the separate parameters of one of the test files is given in Fig. 4.
This test set enables more robust testing of the algorithm, as the distribution patterns
within the input are more difficult to detect and adapt to.

Figure 4: Distribution of the separate parameters of test file tdata5

4.2 Pre-processor Predictor Selection

A variety of predictors may be used in the 1st stage. The results for some classical and
artificial neural network (ANN) predictors evaluated are given in this paper, namely:
ANN - 4th-order single layer perceptron (SLP) and 3rd-order multi-layer perceptron
(MLP) with 2 hidden nodes [Logeswaran 01]; Classical – 5th-order fixed FIR filter,
adaptive FIR with normalized least mean squared (NLMS) algorithm and 2-layer
recursive least squares lattice filter with a-priori estimation errors and error feedback
(RLSL) [Haykin 91, McCoy 94]. Tests with other predictors were found to produce
similar conclusions [Logeswaran 02]. The ANN were trained using the common
Backpropagation with a learning rate of 0.1. The topology of the pre-processors setup
were intentionally unoptimized to test the scheme for simple implementation on small
encoders with minimal overheads.

To handle the dual distribution of the test data, two predictors are used in the 1st-
stage - one per parameter, to produce the best match of the input pattern. The output
of the 1st stage is interleaved such that the output (i.e. input to the LZ encoder in the
2nd stage) is again pairs of numbers of residues of the parameters, in the sequence of
the original input files. NLMS and RLSL are fully adaptive algorithms, retrained
(adaptive coefficients) as each new value is presented. For the ANN, training is
conducted via a block-adaptive technique [Logeswaran 02], where the incoming input
is split into blocks and the networks are retrained on-the-fly for each block using the
first 20% of samples in the block. This technique prevents the over-fitting of the ANN
(thus preventing rigid predictors), yet allows some adaptability to the input patterns.

 Sample sequence

Sample sequence

Parameter 1

Parameter 2

1203Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

The static FIR filter is non-adaptive and requires no training - its coefficients are
determined experimentally [McCoy 94].

4.3 Processing Time Results

The processing time of the encoders in the single-stage (LZ only) and two-stage
(predictor-LZ combination) schemes is summarized in Tab. 2. It is shown that the
processing time of the LZSS and LZARI by themselves is large (more than 8
seconds), but is significantly reduced (down to 5.41 % of the original time) when the
pre-processing stage is introduced, making the proposed multi-stage implementation
faster by up to 17.5 times. The training times are not included in the table as in
conventional implementations, the predictors would be intitialized to optimum
settings, and adaptive training is handled concurrently during the prediction process.

LZ only Classical – LZ (Two-stage) ANN – LZ (Two-Stage)
Test
File

L
Z

SS

L
Z

A
R

I

F
IR

 -

L
Z

SS

F
IR

 -

L
Z

A
R

I

N
L

M
S

-
L

Z
SS

N
L

M
S

-
L

Z
A

R
I

R
L

SL
 -

L

Z
SS

R
L

SL
 -

L

Z
A

R
I

SL
P

 -

L
Z

SS

SL
P

 -

L
Z

A
R

I

M
L

P
 -

L

Z
SS

M
L

P
 -

L

Z
A

R
I

tdata1 7.18 7.25 1.52 1.53 0.98 0.98 0.84 0.88 0.61 0.54 0.58 0.58
tdata2 12.59 12.70 0.65 0.67 0.44 0.45 0.62 0.61 0.56 0.47 0.52 0.51
tdata3 4.09 3.98 0.46 0.44 0.32 0.33 0.28 0.25 0.44 0.36 0.40 0.40
tdata4 7.45 7.56 0.92 0.90 0.78 0.78 0.60 0.55 0.50 0.41 0.46 0.45
tdata5 8.71 8.81 1.57 1.44 1.56 1.93 0.86 0.78 0.73 0.64 0.69 0.68
tdata6 10.95 10.78 0.61 0.58 0.51 0.48 0.41 0.38 0.44 0.36 0.40 0.40

Avg. Time
(sec.) 8.50 8.51 0.96 0.93 0.77 0.83 0.60 0.58 0.55 0.46 0.51 0.50

% of original
time

100 100 11.29 10.93 9.06 10.31 7.06 6.82 6.47 5.41 6.00 5.88

Speed up
(no. of times

faster)
0 0 7.6 8.1 10.0 8.7 13.2 13.7 14.5 17.5 15.7 16.0

Table 2: Overall encoding processing time (seconds) for the LZ schemes

From Fig. 5, it is observed that the processing time for the LZSS and LZARI (and

their two-stage schemes) are similar, but processing time achieved vary between the
type of predictors used, where the ANN schemes are seen to perform better than the
classical predictors. It is also important to note that through the use of the pre-
processor, the total processing time for the different files are relatively consistent and
low, as opposed to the large differences observed for the LZ-only implementations
across the different distribution patterns in the test files. These patterns do also affect
predictors in the two-stage scheme, but as the chosen predictors are fast and take up
only approximately 0.2-0.3 seconds in processing time, the influence on overall
performance of the two-stage scheme is minimal.

1204 Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

0.1

1

10

100

td
at

a1

td
at

a2

td
at

a3

td
at

a4

td
at

a5

td
at

a6

Test Files

P
ro

ce
ss

in
g

 T
im

e
(l

o
g

-s
ca

le
) LZSS

FIR-LZSS

NLMS-LZSS

RLSL-LZSS

SLP-LZSS

MLP-LZSS

LZARI

FIR-LZARI

NLMS-LZARI

RLSL-LZARI

SLP-LZARI

MLP-LZARI

Figure 5: Processing time achieved by the encoder-only and two-stage schemes for
the different test files

 LZSS LZARI

Test
File

Pa
ra

m
et

er
 1

(s

em
i-

li
ne

ar
)

Pa
ra

m
et

er
 2

(v

ar
ie

d)

Total
Time

Pa
ra

m
et

er
 1

(s

em
i-

li
ne

ar
)

Pa
ra

m
et

er
 2

(v

ar
ie

d)

Total
Time

tdata1 2.01 0.73 2.74 7.23 2.43 9.66
tdata2 2.50 0.36 2.86 4.97 1.48 6.45
tdata3 1.17 0.29 1.46 1.86 0.80 2.66
tdata4 2.18 0.80 2.98 7.58 2.04 9.62
tdata5 3.54 1.33 4.87 6.99 2.54 9.53
tdata6 1.75 0.19 1.94 2.78 0.48 3.26

Average time
for separate parameter

encoding (seconds)
2.19 0.62 2.81 5.24 1.63 6.86

Average time
for combined encoding

(seconds)
- - 8.50 - - 8.51

Time gained
(seconds)

 5.69 1.65

Table 3: Processing time (seconds) for each parameter compressed separately using

only the LZ algorithm

1205Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

Incidently, results of processing the individual parameters separately are given in
Tab. 3 to compare the LZ performance for the different types of distribution of the
input parameters. Whilst the results in Tab. 2 show similar total processing times by
both the LZSS and LZARI schemes, Tab. 3 shows that there is significant difference
in speed when the parameters are treated separately. The split allows much faster
encoding of the each parameter and in the total processing time as a whole, more so in
LZSS than in LZARI. The separate parameter implementation works faster since the
matches in the dictionary are located faster as the dictionary for each parameter is
smaller than the whole put together. The results also suggest that there are more
unique values in the 1st parameter (based on higher processing time) than in the 2nd
parameter, in accordance with Tab. 1. In the case of LZARI, being multi-stage (LZ
with arithmetic coding), it has larger intrinsic overheads, thus its gain in processing
speed is comparably less than that of the LZSS.

LZ only Classical - LZ (Two-stage) ANN – LZ (Two-stage)

FIR - NLMS - RLSL - SLP - MLP -

Test
File

L
Z

SS

L
Z

A
R

I

L
Z

SS

L
Z

A
R

I

L
Z

SS

L
Z

A
R

I

L
Z

SS

L
Z

A
R

I

L
Z

SS

L
Z

A
R

I

L
Z

SS

L
Z

A
R

I

tdata1 7.83 21.31 5.22 5.22 21.09 21.09 32.32 32.32 21.99 24.63 23.15 25.38
tdata2 6.49 16.45 5.10 5.10 22.03 22.03 42.88 42.88 18.42 25.34 28.70 34.99
tdata3 5.54 11.57 2.82 2.82 11.75 11.75 38.31 38.31 38.93 49.57 27.77 45.61
tdata4 6.53 16.02 4.47 4.47 10.94 10.94 39.78 39.78 36.65 40.32 22.24 27.80
tdata5 5.54 9.58 2.75 2.75 3.09 3.09 16.36 16.36 5.45 7.40 5.25 6.34
tdata6 5.79 13.10 3.58 3.58 44.46 44.46 72.17 72.17 55.08 102.06 70.15 132.36

Average
CR

6.29 14.67 3.99 3.99 18.89 18.89 40.30 40.30 29.42 41.55 29.54 45.41

Table 4 : Compression ratio performance achieved by LZ and LZ two-stage schemes

4.4 Compression Performance Results

When dealing with compression, it is important to ensure high compression ratios
(CR) are obtained. The results in Tab. 4, in terms of CR achieved for each test file,
show that the two-stage scheme produces significant improvement in compression, as
expected from a multi-stage implementation. In the case of the fixed FIR,
compression performance deteriorates because the fixed predictor is not able to cope
with the input pattern well and produced large residues with low frequency
distribution, thus requiring larger codewords and causing data expansion (where the
resulting CR are less than those achieved by the single stage LZSS and LZARI
implementations). The other two-stage schemes performed well, with the classical
RLSL producing the best results for LZSS and the ANN MLP the best for LZARI,
obtaining CR of above 40. In addition, as with the experiment for processing time,
each parameter was coded separately using the LZ algorithms, but no performance
gains in terms of CR was achieved due to the very little overlap between the values of

1206 Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

the 1st and 2nd parameters. The number of entries in the dictionary were not
observably affected, and neither were the codewords nor the total compression
performance.

5 Discussion

The compression performance results achieved for the multi-stage scheme was higher,
as expected. However, the performance of the proposed schemes in terms of
processing time is rather surprising, especially as it was significantly faster despite the
addition of an additional stage to the LZ algorithm. This was possible as the output of
the 1st stage is a binary stream in which each input value (Xn) is represented by a
residue (Rn) that is generally significantly smaller in magnitude than Xn. The LZ
algorithms used assume input of 16-bit integers, whilst each symbol in the residue
stream is r bits (residue word size, can be as low as 2 bits long, the 1st being a sign
bit). In effect, in the two-stage scheme, the LZ algorithms process a number of residue
symbols at a time to make up the 16 bits, so the total number of iterations of the LZ
algorithm is reduced, thus speeding up processing.

A good predictor removes redundancy in the input such that the probability
density function of the residues has a mean of 0 and a small standard deviation. As the
range of values of Rn is small, the number of unique patterns passed on to the encoder
is minimal. The LZ benefits from the reduced size dictionary / lookup table it needs to
build and use to store these patterns. The processing time for building, lookup and and
associated I/O processes involved with the dictionary, and in producing output, is thus
dramatically reduced, especially for long streams of similar residues values. As such,
the total processing time is significantly reduced through the introduction of a good
predictive pre-processor. A frequency histogram may be plotted to illustrate the
performance of the predictor, and the proposed implementation. Fig. 6 shows that the
number of unique values of data is dramatically reduced, supported by the significant
increase in frequency of a few values (e.g. from a maximum frequency of 7 per
symbol to a frequency above 10000 for residue value 0 in the first parameter, and
from an average frequency of about 100 to above 2500 for certain residue values in
the second parameter). Improving the predictor implementation would enable the pre-
processor to achieve an even smaller range of Rn, and improve the compression
performance further.

The above observations also explain the increases in the compression ratio gained
by the proposed scheme as a smaller number of symbols are encoded, and a smaller
number of tokens are output. Since the LZ algorithms do not utilize the distribution
pattern of the input directly, but rather the actual Xn values, the predictor pre-
processor complements it well and produces the marked performance increase in
terms of processing time and compression ability achieved.

1207Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

Figure 6: Frequency histogram of input and the generated residue values of the

separate parameters of file tdata5

The performance of the two-stage scheme is subject to certain overheads.

Additional processing power and machine cycles are needed in the 1st stage, along
with buffer space for storing the p past values. Adaptive predictors require resources
for training, thus causing a slight increase in processing time. Identical predictors
must be set up at both the transmitter and receiver ends in order to produce the
identical predicted values that will be added to the residue to restore the original input
values. Certain set up information, such as the number of parameters, pseudo-random
generator key, chosen training algorithm, initial p value to initiate prediction etc. may
need to be transmitted as preamble for implementation of flexible predictors. Such
implementation may reduce the compression performance slightly, depending on the
available resources and amount of hardware and software customisation and
flexibility required. In most cases, a system for data compression tends to have a
specific application (e.g. in transmitting telemetry data for a certain application frome
a remote sensor) and such dedicated systems would be customised, incurring
minimum processing and setup overheads.

fr
eq

ue
nc

y

Parameter 2

residue value

fr
eq

ue
nc

y

-14 -12 -10 -8 -6 -4 -2 0 2
x 10 5

0

2000

4000

6000

8000

10000

12000
Parameter 1

residue value

(a) input data

(b) residue (output of 1st-stage)

fr
eq

ue
nc

y

fr
eq

ue
nc

y

Parameter 1 Parameter 2

Sample value Sample value

1208 Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

Implementing a dynamic residue size for each residue value is costly as there has
to be an indicator of the number of bits to be read at the receiver end to restore the
value. To minimize this overhead, past experience with similar types of data is used to
select an "optimum" word-size (r bits) for the residues (e.g. 3 bits), as undertaken in
this simulation. If a residue requires a larger word-size (e.g. in the event of signal
impulse or very irregular input values), the residue is discarded. Instead, the actual
input value (v bits) is transmitted preceded by an r bit flag (e.g. -0, zero with the sign
bit set to negative). Each value transmitted is either v or r bits, thus minimizing the
chances of data expansion (although expansion occurs if r is chosen poorly as many
flags would be transmitted).

It must also be noted that the test data sets used were numeric telemetry data,
which is not best suited for LZ compression. The intentional use of such data was to
portray a non-optimum scenario for displaying the capabilities of the LZ algorithms in
compressing such numeric data, and for ease of implementation of the predictors. The
data chosen was also dual parameter and of varying distribution to better test the
proposed scheme, as the input values would not follow a predictable sequence due to
the interleaving of the dramatically different parameter values. For general-purpose
testing, standard test sets such as those in the cantebury corpus may be used. In
addition, the predictors used were of low complexity (only containing less than 5
nodes) for practical implementation of small systems (which would be expected for
remote sensors acquiring the telemetry data).

The adhoc training mechanism used was to present the predictors with incoming
data on-the-fly, training with just the first 20% of a block of data. Such testing of the
system with no prior knowledge of the data (through random initialization) was
undertaken to simulate a robust implementation that learns and adapts to non-
standardized input. In conventional systems, there is usually an abundance of past
data and systems usually need to only cope with a limited set of input patterns. As
such, initializing the predictor through preparation of a proper training dataset
containing a good sample of various expected input (and target, for supervised
training) patterns, extracted through feature analysis, would certainly enable the
predictor, and thus, the two-stage scheme to preform better.

6 Conclusion

In this paper, a two-stage scheme is successfully implemented to improve the
performance of the Lempel-Ziv (LZ) dictionary-type lossless compression algorithm.
The method employed is via integration of a predictive pre-processor stage with the
LZ algorithm. Tests conducted with a number of classical and neural predictors, with
two LZ algorithms, shows that the multi-stage predictive LZ scheme can significantly
speed up processing in addition to improving compression performance. The
simulation results for some small known predictors show that processing speeds of up
to almost 18 times faster, with compression ratio of more than 45 can be achieved by
the proposed two-stage scheme as compared to single-stage LZ-only
implementations. Performance (compression as well as speed) relies on the
combination of both stages, so the suitability of the predictor in generating an

1209Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

appropriate residue stream for the particular LZ encoder must be mentioned
[Logeswaran 01, 02].

Through empirical or analytical means, the number and type of pre- (and possibly
post-) processing stages used could be determined by the overall performance gains
versus the resources requirements for the additional integration. The generalized
scheme presented here may be expanded to larger systems and is expected to produce
better results with the use of customised predictors. The results recommend that with
a suitable pre-processor stage, performance of the encoder can be improved
significantly, when dealing with different data. This is true not just for the test set of
telemetry data used in this paper, selected for their varying paterns in data
distribution, but for any data that has patterns in the input that may be predicted.
Based on the popularity of the LZ algorithms and the predictor-encoder schemes, the
proposed scheme may prove beneficial for a large domain of applications. It is also
noteworthy that ANNs tend be faster and more error tolerant than their classical
counterparts [Logeswaran 00], making then also the more suitable predictors for
critical systems.

Acknowledgements

The author acknowledges the contributions and guidance of Prof. C. Eswaran and M.U. Siddiqi
of Multimedia University, Malaysia in conducting this work.

References

[Haykin 91] Haykin, S.: “Adaptive filter theory”; Prentice Hall International, New Jersey
(1991)

[Huffman 52] Huffman, D.A.: “A method for the construction of minimum redundancy codes”;
Proc. of the IRE, 40 (1952), 1098-1101.

[Langdon 84] Langdon, G.G.: “An introduction to arithmetic coding”; J. IBM R&D (1984)

[Logeswaran 00] Logeswaran, R. and Siddiqi, M.U.: “Error Tolerance in Classical and Neural
Network Predictors”; IEEE TenCon, 1 (2000), 7-12

[Logeswaran 01] Logeswaran, R. : “Transmission Issues of Artificial Neural Networks in a
Prediction-based Lossless Data Compression Scheme”; IEEE Int. Conf. on
Telecommunications, 1 (2001), 578-583

 [Logeswaran 02] Logeswaran, R.: “A Prediction-Based Neural Network Scheme for Lossless
Data Compression”; IEEE Trans. on Systems, Man, and Cybernetics - Part C: Applications and
Reviews, 32, 4 (2002), 358-365

[McCoy 94] McCoy, J.W., Magotra, N. and Stearns, S.: “Lossless predictive coding”; IEEE
Midwest Symp. on Circuits and Systems (1994), 927-930

[Nelson 96] Nelson, M. and Gailly, J.L.: “The data compression book”; M&T Books, New
York (1996)

[Rahaman 97] Rahaman, F.: “Adaptive entropy coding schemes for telemetry data
compression”; Project Report No. EE95735, Indian Institute of Technology, Madras, India
(1997)

1210 Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

[Storer 82] Storer, J.A. and Szymanski, T.G.: “Data compression via textual substitution”; J.
ACM, 29, 4 (1982), 928-951

[Ziv 77] Ziv, J. and Lempel, A.: “A universal algorithm for sequential data compression”;
IEEE Trans. on Information Technology, 23, 3 (1977), 337-343

[Ziv 78] Ziv, J. and Lempel, A.: “Compression of individual sequences via variable-rate
coding”; IEEE Trans. for Information Technology, 24, 5 (1978), 530-536

1211Logeswaran R.: Fast Two-Stage Lempel-Ziv Lossless Numeric Telemtry Compression ...

