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Abstract: Lempel-Ziv (LZ) is a popular lossless data compression algorithm that produces 
good compression performance, but suffers from relatively slow processing speed. This paper 
proposes an enhanced version of the Lempel-Ziv algorithm, through incorporation of a neural 
pre-processor in the popular predictor-encoder implementation. It is found that in addition to 
the known dramatic performance increase in compression ratio that multi-stage predictive 
techniques achieve, the results in this paper show that overall processing speed for the multi-
stage scheme can increase by more than 15 times for lossless LZ compression of numeric 
telemetry data. The benefits of the proposed scheme may be expanded to other areas and 
applications. 
 
Keywords: Lempel-Ziv, neural networks, prediction, lossless compression, two-stage 
Categories: H.3.m, E.2 

1 Introduction 

Lossless data compression, emphasizing on the accuracy of compressed data, has 
many well known algorithms ranging from the primitive null suppression [Nelson 
96], to well known statistical techniques such as Huffman [Huffman 52]  and 
arithmetic coding [Langdon 84], and combination strategies, e.g. Sixpack, gzip, ARJ, 
LHA etc. [Nelson 96]. The popular Lempel-Ziv (LZ) [Ziv 77] dictionary algorithm 
scheme (and its many variants) traditionally produce good compression performance 
but at a relatively slow processing speed for use in many practical applications.  

This paper proposes using a neural network predictor in a two-stage scheme to 
speed-up the LZ implementation for lossless data compression. It is known that multi-
stage predictive schemes [McCoy 94] improve compression performance 
dramatically, especially for data that contain repetative sequences or vary gradually. 
Using such an implementation, it is shown by the results in this paper that in addition 
to improved compression performance, the proposed scheme of incorporating a neural 
predictive pre-processor to the LZ is capable of increasing processing speeds 
significantly, even for numeric multi-distribution telemetric data. As LZ algorithms 
are widely used in many applications, a fast and improved implementation would 
have far-reaching benefits. In addition, its incorporation with yet another popular 
scheme of a predictive pre-processor (i.e. neural networks), and the significant merits 
gained through the combination, should prove beneficial for an even wider range of 
applications. 
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2 Lempel-Ziv Algorithm Basics 

A dictionary-type encoder builds a table of characters / words / phrases that have been 
encountered in the input stream, assigning a corresponding codeword to each entry in 
the table. When an instance in the input matches an entry in the table (dictionary), it is 
replaced with the corresponding codeword. Dictionaries may be static (pre-defined) or 
dynamic (built and updated at run-time, possibly initialised with pre-defined common 
matches at start-up).  

The LZ (also known as Ziv-Lempel and LZ77) [Ziv 77] has a text window 
divided into two parts : the body (containing recently encoded text), and a look-ahead 
buffer (that contains the new input to be compressed). The algorithm attempts to 
match the contents of the buffer to a string in the dictionary (body of text window), as 
shown in Fig. 1. Essentially, compression is achieved by replacing variable-length 
text with fixed sized tokens, each consisting of 3 parts : a pointer into the  dictionary, 
the length of the phrase and the first symbol in the buffer that follows the phrase 
(example, Fig. 1(b)). The token is read, the indicated phrase is output and the 
remaining character is appended. The process is repeated until the end of the input.  

 

 
 

Figure 1: Example of Lempel-Ziv Coding (LZ77) 
 
The implementation of LZ77 can cause a bottleneck due to relatively slow string 

comparison that has to be done at every position in the text window. When matching 
strings are not found, the compression cost of using this algorithm is high as the 24-
bit token (three 8-bit characters) is used to encode each unmatched 8-bit character 
(see Fig. 1(c)). Many improved variants of the LZ class of algorithms have been 
created, including LZSS, LZ78, LZW, LZJ, LZT, LZC, LZH and LZARI [Nelson 96, 
Storer 82, Ziv 78].  

Two LZ variations are implemented in this paper. LZSS [Storer 82] updates a 
binary search tree with the phrases moved out of the buffer into the dictionary, 
allowing quick string comparison, thus reducing the performance bottleneck. Wastage 
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is reduced by modifying the token to use a 1-bit prefix to indicate whether an offset 
(length pair, e.g. 17-bit token [0, (11,3)]) or a single symbol (e.g. 9-bit token [1, ‘+’])  
is sent as output. When unmatched, the dummy position 0 and length 0 will not be 
sent, thus saving 15 bits as compared to the implementation in Fig. 1(c). LZARI 
[Nelson 96]  is a multilevel coding technique that uses a two-pass operation - the first 
uses one of the better LZ algorithms, followed by arithmetic coding [Langdon 84] of 
the tokens (code pointers). 
 
 
3 Enhanced Two-Stage Lempel-Ziv 
 
The proposed two-stage LZ scheme integrates a predictor (coupled with a residue 
generator) as a pre-processor to the LZ encoder, as shown in Fig. 2. The 1st stage is a 
pth order predictor which reduces the dynamic range of the input by predicting the 
current input value (Xn) at each iteration, and outputs the corresponding residue, Rn = 
Xn – E(Xn), which is then LZ encoded in the 2nd stage to produce the transmitted 
compressed residue (Yn). 
 

  
 

Figure 2: Two-stage Scheme 
 
 
4 Performance Results 
 
The simulation model in Fig. 3 is set up for performance evaluation, catering for the 
training requirements of the pre-processor to allow for adaptive prediction of the 
varying input patterns. A variety of predictors are evaluated, as described in Section 
4.2. As the LZ algorithm has undergone many improvements over the years since its 
conception, the popular LZSS and LZARI are used instead of the original LZ77, for a 
more realistic implementation. As LZARI is already a multi-stage encoder, its use is 
suitable for also studying the performance effects of further incrementing the number 
of stages in an algorithm. 
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Figure 3: Implementation schematic of the two-stage scheme 

4.1 Test Data 

Evaluation of the scheme is carried out with a data set of typical 1-D numeric 
telemetry data files acquired from the various sensors aboard satellite launch vehicles, 
which contain data of varying magnitude and mixed distribution patterns. General 
characteristics of the test files are provided in Tab. 1 [Rahaman 97].  
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tdata1 252305 28324 520 28324 1 159.9 14.790 157 7131 66.135 3.128 

tdata2 139571 11631 65 11631 1 368.0 13.506 12 7484 1070.249 1.017 

tdata3 55365 6778 65 6778 1 119.9 12.727 43 1438 76.105 4.644 

tdata4 131841 16052 130 16052 1 139.9 13.970 191 3985 50.894 5.387 

tdata5 184774 17232 65 17232 1 349.9 14.073 240 349 4960.000 7.614 

tdata6 74915 8662 65 8662 1 149.9 13.080 6 2840 124.250 2.121 

 
Table 1: Characteristics of the test data files 
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Each test file consists of pairs of values – the first parameter being a reference 
value (e.g. coordinates, time etc.) with semi-linear distribution, and the latter the 
actual measurement of varying distributions, as signified by the frequency and 

entropy (H = -∑
=

n

i
ii PP

1
2 )(log ) information in Tab. 1. As a reference, an example of the 

data distribution of the separate parameters of one of the test files is given in Fig. 4. 
This test set enables more robust testing of the algorithm, as the distribution patterns 
within the input are more difficult to detect and adapt to. 
 

 
Figure 4: Distribution of the separate parameters of test file tdata5 

4.2 Pre-processor Predictor Selection  

A variety of predictors may be used in the 1st stage. The results for some classical and 
artificial neural network (ANN) predictors evaluated are given in this paper, namely: 
ANN - 4th-order single layer perceptron (SLP) and 3rd-order multi-layer perceptron 
(MLP) with 2 hidden nodes [Logeswaran 01]; Classical – 5th-order fixed FIR filter, 
adaptive FIR with normalized least mean squared (NLMS) algorithm and 2-layer 
recursive least squares lattice filter with a-priori estimation errors and error feedback 
(RLSL) [Haykin 91, McCoy 94]. Tests with other predictors were found to produce 
similar conclusions  [Logeswaran 02]. The ANN were trained using the common 
Backpropagation with a learning rate of 0.1. The topology of the pre-processors setup 
were intentionally unoptimized to test the scheme for simple implementation on small 
encoders with minimal overheads. 

To handle the dual distribution of the test data, two predictors are used in the 1st-
stage - one per parameter, to produce the best match of the input pattern. The output 
of the 1st stage is interleaved such that the output (i.e. input to the LZ encoder in the 
2nd stage) is again pairs of numbers of residues of the parameters, in the sequence of 
the original input files. NLMS and RLSL are fully adaptive algorithms, retrained 
(adaptive coefficients) as each new value is presented. For the ANN, training is 
conducted via a block-adaptive technique [Logeswaran 02], where the incoming input 
is split into blocks and the networks are retrained on-the-fly for each block using the 
first 20% of samples in the block. This technique prevents the over-fitting of the ANN 
(thus preventing rigid predictors), yet allows some adaptability to the input patterns. 

 Sample sequence 
  

Sample sequence 

Parameter 1 
  

Parameter 2 
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The static FIR filter is non-adaptive and requires no training - its coefficients are 
determined experimentally [McCoy 94]. 

4.3 Processing Time Results 

The processing time of the encoders in the single-stage (LZ only) and two-stage 
(predictor-LZ combination) schemes is summarized in Tab. 2. It is shown that the 
processing time of the LZSS and LZARI by themselves is large (more than 8 
seconds), but is significantly reduced (down to 5.41 % of the original time) when the 
pre-processing stage is introduced, making the proposed multi-stage implementation 
faster by up to 17.5 times. The training times are not included in the table as in 
conventional implementations, the predictors would be intitialized to optimum 
settings, and adaptive training is handled concurrently during the  prediction process. 
 

LZ only Classical – LZ (Two-stage) ANN – LZ (Two-Stage) 
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tdata1 7.18 7.25 1.52 1.53 0.98 0.98 0.84 0.88 0.61 0.54 0.58 0.58 
tdata2 12.59 12.70 0.65 0.67 0.44 0.45 0.62 0.61 0.56 0.47 0.52 0.51 
tdata3 4.09 3.98 0.46 0.44 0.32 0.33 0.28 0.25 0.44 0.36 0.40 0.40 
tdata4 7.45 7.56 0.92 0.90 0.78 0.78 0.60 0.55 0.50 0.41 0.46 0.45 
tdata5 8.71 8.81 1.57 1.44 1.56 1.93 0.86 0.78 0.73 0.64 0.69 0.68 
tdata6 10.95 10.78 0.61 0.58 0.51 0.48 0.41 0.38 0.44 0.36 0.40 0.40 

Avg. Time 
(sec.) 8.50    8.51    0.96    0.93    0.77    0.83    0.60    0.58    0.55    0.46    0.51    0.50 

% of original 
time 

100 100 11.29 10.93 9.06 10.31 7.06 6.82 6.47 5.41 6.00 5.88 

Speed up 
(no. of times 

faster) 
0 0 7.6 8.1 10.0 8.7 13.2 13.7 14.5 17.5 15.7 16.0 

 
Table 2: Overall encoding processing time (seconds)  for the LZ schemes 

 
From Fig. 5, it is observed that the processing time for the LZSS and LZARI (and 

their two-stage schemes) are similar, but processing time achieved vary between the 
type of predictors used, where the ANN schemes are seen to perform better than the 
classical predictors. It is also important to note that through the use of the pre-
processor, the total processing time for the different files are relatively consistent and 
low, as opposed to the large differences observed for the LZ-only implementations 
across the different distribution patterns in the test files. These patterns do also affect 
predictors in the two-stage scheme, but as the chosen predictors are fast and take up 
only approximately 0.2-0.3 seconds in processing time, the influence on overall 
performance of the two-stage scheme is minimal. 
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Figure 5: Processing time achieved by the encoder-only and two-stage schemes for 
the different test files 
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Time 

tdata1 2.01 0.73 2.74 7.23 2.43 9.66 
tdata2 2.50 0.36 2.86 4.97 1.48 6.45 
tdata3 1.17 0.29 1.46 1.86 0.80 2.66 
tdata4 2.18 0.80 2.98 7.58 2.04 9.62 
tdata5 3.54 1.33 4.87 6.99 2.54 9.53 
tdata6 1.75 0.19 1.94 2.78 0.48 3.26 

Average time  
for separate  parameter 

encoding (seconds) 
2.19 0.62 2.81 5.24 1.63 6.86 

Average time  
for combined encoding 

(seconds) 
- - 8.50 - - 8.51 

Time gained 
(seconds) 

  5.69   1.65 

 
Table 3: Processing time (seconds) for each parameter compressed separately using 

only the LZ algorithm 
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Incidently, results of processing the individual parameters separately are given in 
Tab. 3 to compare the LZ performance for the different types of distribution of the 
input parameters. Whilst the results in Tab. 2 show similar total processing times by 
both the LZSS and LZARI schemes, Tab. 3 shows that there is significant difference 
in speed when the parameters are treated separately. The split allows much faster 
encoding of the each parameter and in the total processing time as a whole, more so in 
LZSS than in LZARI. The separate parameter implementation works faster since the 
matches in the dictionary are located faster as the dictionary for each parameter is 
smaller than the whole put together. The results also suggest that there are more 
unique values in the 1st parameter (based on higher processing time) than in the 2nd 
parameter, in accordance with Tab. 1. In the case of LZARI,  being multi-stage (LZ 
with arithmetic coding), it has larger intrinsic overheads, thus its gain in processing 
speed is comparably less than that of the LZSS. 
 

LZ only Classical - LZ (Two-stage) ANN – LZ (Two-stage) 

FIR -  NLMS - RLSL - SLP - MLP - 
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tdata1 7.83 21.31 5.22 5.22 21.09 21.09 32.32 32.32 21.99 24.63 23.15 25.38 
tdata2 6.49 16.45 5.10 5.10 22.03 22.03 42.88 42.88 18.42 25.34 28.70 34.99 
tdata3 5.54 11.57 2.82 2.82 11.75 11.75 38.31 38.31 38.93 49.57 27.77 45.61 
tdata4 6.53 16.02 4.47 4.47 10.94 10.94 39.78 39.78 36.65 40.32 22.24 27.80 
tdata5 5.54 9.58 2.75 2.75 3.09 3.09 16.36 16.36 5.45 7.40 5.25 6.34 
tdata6 5.79 13.10 3.58 3.58 44.46 44.46 72.17 72.17 55.08 102.06 70.15 132.36 

Average  
CR 

6.29 14.67 3.99 3.99 18.89 18.89 40.30 40.30 29.42 41.55 29.54   45.41 

 
Table 4 : Compression ratio performance achieved by LZ and LZ two-stage schemes 

4.4 Compression Performance Results 

When dealing with compression, it is important to ensure high compression ratios 
(CR) are obtained. The results in Tab. 4, in terms of CR achieved for each test file, 
show that the two-stage scheme produces significant improvement in compression, as 
expected from a multi-stage implementation. In the case of the fixed FIR, 
compression performance deteriorates because the fixed predictor is not able to cope 
with the input pattern well and produced large residues with low frequency 
distribution, thus requiring larger codewords and causing data expansion (where the 
resulting CR are less than those achieved by the single stage LZSS and LZARI 
implementations). The other two-stage schemes performed well, with the classical 
RLSL producing the best results for LZSS and the ANN MLP the best for LZARI, 
obtaining CR of above 40. In addition, as with the experiment for processing time, 
each parameter was coded separately using the LZ algorithms, but no performance 
gains in terms of CR was achieved due to the very little overlap between the values of 
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the 1st and 2nd parameters. The number of entries in the dictionary were not 
observably affected, and neither were the codewords nor the total compression 
performance. 

5 Discussion 

The compression performance results achieved for the multi-stage scheme was higher, 
as expected. However, the performance of the proposed schemes in terms of 
processing time is rather surprising, especially as it was significantly faster despite the 
addition of an additional stage to the LZ algorithm. This was possible as the output of 
the 1st stage is a binary stream in which each input value (Xn) is represented by a 
residue (Rn) that is generally significantly smaller in magnitude than Xn. The LZ 
algorithms used assume input of 16-bit integers, whilst each symbol in the residue 
stream is r bits (residue word size, can be as low as 2 bits long, the 1st being a sign 
bit). In effect, in the two-stage scheme, the LZ algorithms process a number of residue 
symbols at a time to make up the 16 bits, so the total number of iterations of the LZ 
algorithm is reduced, thus speeding up processing.  

A good predictor removes redundancy in the input such that the probability 
density function of the residues has a mean of 0 and a small standard deviation. As the 
range of values of Rn is small, the number of unique patterns passed on to the encoder 
is minimal. The LZ benefits from the reduced size dictionary / lookup table it needs to 
build and use to store these patterns. The processing time for building, lookup and and 
associated I/O processes involved with the dictionary, and in producing output, is thus 
dramatically reduced, especially for long streams of similar residues values. As such, 
the total processing time is significantly reduced through the introduction of a good 
predictive pre-processor. A frequency histogram may be plotted to illustrate the 
performance of the predictor, and the proposed implementation. Fig. 6 shows that the 
number of unique values of data is dramatically reduced, supported by the significant 
increase in frequency of a few values (e.g. from a maximum frequency of 7 per 
symbol to a frequency above 10000 for residue value 0 in the first parameter, and 
from an average frequency of about 100 to above 2500 for certain residue values in 
the second parameter). Improving the predictor implementation would enable the pre-
processor to achieve an even smaller range of Rn, and improve the compression 
performance further. 

The above observations also explain the increases in the compression ratio gained 
by the proposed scheme as a smaller number of symbols are encoded, and a smaller 
number of tokens are output. Since the LZ algorithms do not utilize the distribution 
pattern of the input directly, but rather the actual Xn values, the predictor pre-
processor complements it well and produces the marked performance increase in 
terms of processing time and compression ability achieved. 
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Figure 6:  Frequency histogram of input and the generated residue values of the 

separate parameters of file tdata5 
 
The performance of the two-stage scheme is subject to certain overheads. 

Additional processing power and machine cycles are needed in the 1st stage, along 
with buffer space for storing the p past values. Adaptive predictors require resources 
for training, thus causing a slight increase in processing time. Identical predictors 
must be set up at both the transmitter and receiver ends in order to produce the 
identical predicted values that will be added to the residue to restore the original input 
values. Certain set up information, such as the number of parameters, pseudo-random 
generator key, chosen training algorithm, initial p value to initiate prediction etc. may 
need to be transmitted as preamble for implementation of flexible predictors. Such 
implementation may reduce the compression performance slightly, depending on the 
available resources and amount of hardware and software customisation and 
flexibility required. In most cases, a system for data compression tends to have a 
specific application (e.g. in transmitting telemetry data for a certain application frome 
a remote sensor) and such dedicated systems would be customised, incurring 
minimum processing and setup overheads.  
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Implementing a dynamic residue size for each residue value is costly as there has 
to be an indicator of the number of bits to be read at the receiver end to restore the 
value. To minimize this overhead, past experience with similar types of data is used to 
select an "optimum" word-size (r bits) for the residues (e.g. 3 bits), as undertaken in 
this simulation. If a residue requires a larger word-size (e.g. in the event of signal 
impulse or very irregular input values), the residue is discarded. Instead, the actual 
input value (v bits) is transmitted preceded by an r bit flag (e.g. -0, zero with the sign 
bit set to negative). Each value transmitted is either v or r bits, thus minimizing the 
chances of data expansion (although expansion occurs if r is chosen poorly as many 
flags would be transmitted).  

It must also be noted that the test data sets used were numeric telemetry data, 
which is not best suited for LZ compression. The intentional use of such data was to 
portray a non-optimum scenario for displaying the capabilities of the LZ algorithms in 
compressing such numeric data, and for ease of implementation of the predictors. The 
data chosen was also dual parameter and of varying distribution to better test the 
proposed scheme, as the input values would not follow a predictable sequence due to 
the interleaving of the dramatically different parameter values. For general-purpose 
testing, standard test sets such as those in the cantebury corpus may be used. In 
addition, the predictors used were of low complexity (only containing less than 5 
nodes) for practical implementation of small systems (which would be expected for 
remote sensors acquiring the telemetry data).  

The adhoc training mechanism used was to present the predictors with incoming 
data on-the-fly, training with just the first 20% of a block of data. Such testing of the 
system with no prior knowledge of the data (through random initialization) was 
undertaken to simulate a robust implementation that learns and adapts to non-
standardized input. In conventional systems, there is usually an abundance of past 
data and systems usually need to only cope with a limited set of input patterns. As 
such, initializing the predictor through preparation of a proper training dataset 
containing a good sample of various expected input (and target, for supervised 
training) patterns, extracted through feature analysis, would certainly enable the 
predictor, and thus, the two-stage scheme to preform better.  

6 Conclusion 

In this paper, a two-stage scheme is successfully implemented to improve the 
performance of the Lempel-Ziv (LZ) dictionary-type lossless compression algorithm. 
The method employed is via integration of a predictive pre-processor stage with the 
LZ algorithm. Tests conducted with a number of classical and neural predictors, with 
two LZ algorithms, shows that the multi-stage predictive LZ scheme can significantly 
speed up processing in addition to improving compression performance. The 
simulation results for some small known predictors show that processing speeds of up 
to almost 18 times faster, with compression ratio of more than 45 can be achieved by 
the proposed two-stage scheme as compared to single-stage LZ-only 
implementations. Performance (compression as well as speed) relies on the 
combination of both stages, so the suitability of the predictor in generating an 
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appropriate residue stream for the particular LZ encoder must be mentioned 
[Logeswaran 01, 02].  

Through empirical or analytical means, the number and type of pre- (and possibly 
post-) processing stages used could be determined by the overall performance gains 
versus the resources requirements for the additional integration. The generalized 
scheme presented here may be expanded to larger systems and is expected to produce 
better results with the use of customised predictors. The results recommend that with 
a suitable pre-processor stage, performance of the encoder can be improved 
significantly, when dealing with different data. This is true not just for the test set of 
telemetry data used in this paper, selected for their varying paterns in data 
distribution, but for any data that has patterns in the input that may be predicted.  
Based on the popularity of the LZ algorithms and the predictor-encoder schemes, the 
proposed scheme may prove beneficial for a large domain of applications. It is also 
noteworthy that ANNs tend be faster and more error tolerant than their classical 
counterparts [Logeswaran 00], making then also the more suitable predictors for 
critical systems.  
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