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Abstract: We propose an alternative solution to the problems solved in [1]. Our aim is
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1 Introduction

The application of Boolean equations in various fields such as logic, logical de-
sign, biology, grammars, graph theory, chemistry, law, medicine, operations re-
search or spectroscopy, is well known. Boolean equations occur either directly
or as a tool in the problem of decomposing a Boolean function. This problem
is very important in the design of logic circuits. See e.g. [2], [3], [6], [8] and the
literature cited therein.

Although the algebraic theory of Boolean equations is much developed and
has powerful results [6], [8], most researchers interested in Boolean equations use
tabular methods. In a series of papers [4], [5], [7], [9], among which [4], [7] refer to
the decomposition of Boolean functions, we advocated the efficiency of algebraic
methods by solving algebraically the Boolean equations solved by others using
tabular methods. In the present article we do the same thing with respect to the
paper [1].

In order to state the problem studied in [1], we first settle a matter of ter-
minolgy. By a Boolean function of n variables over an arbitrary Boolean algebra
(B;∨, ·,′ , 0, 1) we mean a function ϕ : Bn −→ B which can be constructed from
variables and constants by superpositions of the basic operations ∨, ·,′, while
a function f : {0, 1}n −→ {0, 1} will be termed a truth function or switching
function. According to a well-known theorem, every truth function is Boolean.
Although nowadays the unique term Boolean function seems to prevail, we pre-
fer to make the distinction between the general and the particular case, as was
the use in the fifties. In particular, by a Boolean (truth) equation we mean an
equation expressed in terms of Boolean (truth) functions.

The decomposition of switching functions is an important concept which
has been studied since the beginning of switching theory. According to Bibilo
[1], it can be given the following formulation (in our terminology). Suppose
f : {0, 1}n ◦−→ {0, 1} is a partially defined truth function, that is, f is defined on
a (proper or improper) subset of {0, 1}n, and let X be the set of its arguments.
A decomposition of f is an identity of the form
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(1) f(X) � g(h1
11(Y

1), . . . , h1
1p1

(Y 1), . . . , hk
k1(Y

k), . . . , hk
kpk

(Y k), Z) ,

where g, h1
11, . . . , h

k
kpk

are truth functions, Y 1, . . . ,Kk, Z are (not necessarily
disjoint) sets of arguments covering X , and ϕ(X) � ψ(X) means that ϕ is
a restriction of ψ. The sets Y 1, . . . , Y k, Z being given, two types of problem
are considered: I) determine g, h1

11, . . . , h
k
kpk

which satisfy (1) (possibly which
optimize the decomposition (1) according to a certain criterion), and II) given
g, find h1

11, . . . , h
k
kpk

such that (1) holds. The problem is expressed in graph-
theoretical terms and this intermediate problem is further reduced to the solution
of a system of truth equations. A few concrete examples are worked out which
illustrate the technique devised by the author.

On the other hand, there is a direct approach which transforms a functional
Boolean equation into a system of ordinary Boolean equations; it has numerous
applications [6], [8], in particular to the decomposition of Boolean functions. In
the sequel we advocate the advantages of this technique by applying it to the
concrete problems solved in [1]. We begin by recalling the prerequisites we are
going to use; for details see e.g. [6] or [8].

A Boolean function ϕ : Bn −→ B satisfies the Boole expansion

(2) ϕ(x1, . . . , xn) =
∨

α1,...,αn∈{0,1} ϕ(α1, . . . , αn)xα1
1 · . . . · xαn

n ,

where
∨

denotes iterated disjunction ∨ and xα is defined by x1 = x and x0 = x′;
the 2n coefficients ϕ(α1, . . . , αn) are called the discriminants of the function ϕ
(cf. Whitehead (1898)). The expansion (2) implies the Müller-Löwenheim veri-
fication theorem, which states that a Boolean function is completely determined
by its discriminants and, more generally, an equality between Boolean functions
holds identically if and only if it is satisfied for all possible values 0–1 given to
the variables. So, the solution of a functional Boolean equation amounts to the
solution of a system of Boolean equations in thediscriminants of the unknown
functions.

Recall also that a system of equations of the form ϕj = 1 (j = 1, . . . ,m) is
equivalent to the single equation ϕ1 · . . . · ϕm = 1. The Boolean equation in one
unknown

(3.1) ϕ(x) ≡ ϕ(1)x ∨ ϕ(0)x′ = 1

has solutions if and only if

(4.1) ϕ(1) ∨ ϕ(0) = 1 ,

in which case the solutions are given by the inequalities

(5.1) ϕ′(0) ≤ x ≤ ϕ(1) .

This is the base for the method of successive elimination of variables. For in-
stance, in the case n = 2 it runs as follows. The equation

(3.2) Φ(x, y) ≡ Φ(1, 1)xy ∨ Φ(1, 0)xy′ ∨ Φ(0, 1)x′y ∨ Φ(0, 0)x′y′ = 1

is written in the form

(Φ(1, 1)x ∨ Φ(0, 1)x′)y ∨ (Φ(1, 0)x ∨ Φ(0, 0)x′)y′ = 1 ,
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whose consistency condition with respect to y is

(Φ(1, 1) ∨ Φ(1, 0))x ∨ (Φ(0, 1) ∨ Φ(0, 0))x′ = 1 ,

which we solve as an equation in x: we obtain the consistency condition

(4.2) Φ(1, 1) ∨ Φ(1, 0) ∨ Φ(0, 1) ∨ Φ(0, 0) = 1 ,

which is also the consistency condition for the original equation (3.2), while the
solutions are described by the system of recurrent inequalities

(5.2.1) Φ′(0, 1)Φ′(0, 0) ≤ x ≤ Φ(1, 1) ∨ Φ(1, 0) ,

(5.2.2) Φ′(1, 0)x ∨ Φ′(0, 0)x′ ≤ y ≤ Φ(1, 1)x ∨ Φ(0, 1)x′ .

2 Examples

We can apply the technique described above because condition (1) means that
the equality

(6) f(X) = g(h1
11(Y

1), . . . , h1
1p1

(Y 1), . . . , hk
k1(Y

k), . . . , hk
kpk

(Y k), Z)

holds for all those X ∈ {0, 1}n for which f(X) is defined.
All the examples given in [1] refer to the function f of four variables defined

in Table 1 below.
x1 x2 x3 x4 f
0 0 0 0 1
0 0 0 1 1
1 0 0 0 1
1 0 0 1 1
1 1 0 1 1
1 1 1 1 1
0 0 1 0 0
1 1 0 0 0
0 1 1 1 0

Table 1

The instance of problem I (cf. Introduction) solved in [1] is k = 2, Y 1 =
{x1, x2}, Y 2 = {x2, x3, x4}, Z = O/ . In the following we solve the case k =
2, Y 1 = {x2, x3}, Y 2 = {x1, x2, x4}, Z = O/ , which seems to have the same
degree of difficulty, but which will facilitate the study of the other examples
given in [1].

So, the decomposition (6) becomes

(7) f(x1, x2, x3, x4) = g(h1(x2, x3), h2(x1, x2, x4))

for the vectors (x1, x2, x3, x4) depicted in Table 1.
We use the Boole expansions of the unknown functions g, h1, h2:

(8) g(x, y) = axy ∨ bxy′ ∨ cx′y ∨ dx′y′ ,
(9) h1(x2, x3) = px2x3 ∨ qx2x

′
3 ∨ rx′2x3 ∨ sx′2x′3 ,
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(10)
h2(x1, x2, x4) = Ax1x2x4 ∨Bx1x2x

′
4 ∨ Cx′1x2x4 ∨Dx′1x2x

′
4∨

∨Ex1x
′
2x4 ∨ Fx1x

′
2x

′
4 ∨Gx′1x′2x4 ∨Hx′1x′2x′4 .

In the sequel we assume that the function f is given in Table 1, while g, h1

and h2 are of the form (8), (9) and (10), respectively.

Proposition1. The function f is decomposed in the form

(11) f(x1, x2, x3, x4) � g(h1(x2, x3), h2(x1, x2, x4))

if and only if

(12) a(bc′ ∨ b′c) ∨ a′b′c′ ≤ d ≤ a(b′ ∨ c′) ∨ a′bc ∨ b′c′ ,
(13.1) cd ∨ c′d′ ≤ p ≤ ab′ ∨ a′b ,

(13.2)
(a ∨ b′ ∨ c ∨ d′)(a′ ∨ b ∨ c′ ∨ d)p ∨ (cd ∨ c′d′)p′ ≤ q ≤

≤ (ab′ ∨ a′b)p ∨ (a′bc′d ∨ ab′cd′)p′ ,

(14.1) (a′ ∨ c)(b′ ∨ d) ≤ r ≤ a′c ∨ b′d ,
(14.2) (a ∨ c′)(b ∨ d′) ∨ r′ ≤ s ≤ (ac′ ∨ bd′)r′ ,
(15.1) b′(p ∨ q) ∨ d′(p ∨ q′) ≤ A ≤ (ap ∨ cp′)(aq ∨ cq′) ,
(15.2) bq ∨ dq′ ≤ B ≤ a′q ∨ c′q′ ,
(15.3) bp ∨ dp′ ≤ C ≤ a′p ∨ c′p′ ,
(15.4) b′s ∨ d′s′ ≤ E ≤ as ∨ cs′ ,
(15.5) b′s ∨ d′s′ ≤ F ≤ as ∨ cs′ ,
(15.6) b′s ∨ d′s′ ≤ G ≤ as ∨ cs′ ,
(15.7) br ∨ dr′ ∨ b′s ∨ d′s′ ≤ H ≤ (as ∨ cs′)(a′r ∨ c′r′) ,
while a, b, c,D remain arbitrary.

Comment. Formulas (12)–(15), via (8)–(10), provide a recursive construction
of the set of solutions to the functional equation (11).
Proof. Taking into account (8)–(10), we write down the relation

g(h1(x2, x3), h2(x1, x2, x4)) = f(x1, x2, x3, x4)

for the 9 vectors (x1, x2, x3, x4) in Table 1:

(16.1) (as ∨ cs′)H ∨ (bs ∨ ds′)H ′ = 1 ,

(16.2) (as ∨ cs′)G ∨ (bs ∨ ds′)G′ = 1 ,

(16.3) (as ∨ cs′)F ∨ (bs ∨ ds′)F ′ = 1 ,
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(16.4) (as ∨ cs′)E ∨ (bs ∨ ds′)E′ = 1 ,

(16.5) (aq ∨ cq′)A ∨ (bq ∨ dq′)A′ = 1 ,

(16.6) (ap ∨ cp′)A ∨ (bp ∨ dp′)A′ = 1 ,

(16.7) (ar ∨ cr′)H ∨ (br ∨ dr′)H ′ = 0 ,

(16.8) (aq ∨ cq′)B ∨ (bq ∨ dq′)B′ = 0 ,

(16.9) (ap ∨ cp′)C ∨ (bp ∨ dp′)C′ = 0 ,

and we have to solve the system of Boolean equations (16).
The subsystem (16.5), (16.6) is equivalent to the single equation

(17) (ap ∨ cp′)(aq ∨ cq′)A ∨ (bp ∨ dp′)(bq ∨ dq′)A′ = 1 ,

obtained by multiplication. Then we transform the equations (16.7)–(16.9) by
complementation:

(16.7′) (a′r ∨ c′r′)H ∨ (b′r ∨ d′r′)H ′ = 1 ,

(18) (a′q ∨ c′q′)B ∨ (b′q ∨ d′q′)B′ = 1 ,

(19) (a′p ∨ c′p′)C ∨ (b′p ∨ d′p′)C′ = 1 ,

and finally we reduce (16.1) and (16.7′) to the single equation

(20) (as ∨ cs′)(a′r ∨ c′r′)H ∨ (bs ∨ ds′)(b′r ∨ d′r′)H ′ = 1 .

Thus, the original system (16) has been transformed into the equivalent sys-
tem (17), (18), (19), (16.4), (16.3), (16.2), (20). We can solve these equations
separately as equations in a single unknown, namely A,B,C,E, F,G and H ,
respectively. The solutions of the form (5.1) are (15.1)–(15.7), while the corre-
sponding consistency conditions (14.1) are

(21.1) (ap ∨ cp′)(aq ∨ cq′) ∨ (bp ∨ dp′)(bq ∨ dq′) = 1 ,

(21.2) (a′ ∨ b′)q ∨ (c′ ∨ d′)q′ = 1 ,

(21.3) (a′ ∨ b′)p ∨ (c′ ∨ d′)p′ = 1 ,

(21.4) (a ∨ b)s ∨ (c ∨ d)s′ = 1 ,

(21.5) (as ∨ cs′)(a′r ∨ c′r′) ∨ (bs ∨ ds′)(b′r ∨ d′r′) = 1 ,

and it remains to solve the system (21). We can solve separately the subsystem
(21.1), (21.2), (21.3) with respect to the unknowns p, q and the subsystem (21.4),
(21.5) with respect to the unknowns r, s.

We write (21.1) in the form

(a ∨ b)pq ∨ (ac ∨ bd)pq′ ∨ (ac ∨ bd)p′q ∨ (c ∨ d)p′q′ = 1 ;

1298 Rudeanu S.: On the Decomposition of Boolean Functions via Boolean Equations



this equation and (21.2) are equivalent to the single equation

(ab′ ∨ a′b)pq ∨ (ac ∨ bd)(a′ ∨ b′)p′q ∨ (ac ∨ bd)(c′ ∨ d′)pq′
∨(cd′ ∨ c′d)p′q′ = 1 ,

while this equation and (21.3) are equivalent to the equation

(ab′ ∨ a′b)pq ∨ (a′bd ∨ ab′c)(c′ ∨ d′)pq′ ∨ (bc′d ∨ acd′)(a′ ∨ b′)p′q
∨(cd′ ∨ c′d)p′q′ = 1 ,

so that the system (21.1), (21.2), (21.3) is equivalent to the single equation

(ab′ ∨ a′b)pq ∨ (a′bc′d ∨ ab′cd′)pq′ ∨ (a′bc′d ∨ ab′cd′)p′q
∨(cd′ ∨ a′d)p′q′ = 1 .

Since

(a′bc′d ∨ ab′cd′)′(cd′ ∨ c′d)′ = (a ∨ b′ ∨ c ∨ d′)(a′ ∨ b ∨ c′ ∨ d)(cd ∨ c′d′)
= (a ∨ b′ ∨ c ∨ d′)(cd ∨ c′d′) = cd ∨ c′d′ ,

formulas (5.2.1) and (5.2.2), which describe the solutions, become (13.1) and
(13.2), respectively, while the consistency conditions (4.2) reduce to

(22.1) ab′ ∨ a′b ∨ cd′ ∨ c′d = 1 .

Now we write (21.5) in the form

(21.5′) (a′c ∨ b′d)rs′ ∨ (ac′ ∨ bd′)r′s = 1

and observe that this equation implies (21.4). So the subsystem (21.4), (21.5)
is equivalent to the single equation (21.5′), whose solutions of the form (5.2.1),
(5.2.2) are precisely (14.1), (14.2), provided the consistency condition

(22.2) a′c ∨ ac′ ∨ b′d ∨ bd′ = 1

is fulfilled.
Finally it remains to solve the system (22). We obtain by multiplication

ab′c′ ∨ a′bc ∨ ab′d ∨ a′bd′ ∨ a′cd′ ∨ bcd′ ∨ ac′d ∨ b′c′d = 1 ,

or equivalently,

(a′bc ∨ ab′ ∨ ac′ ∨ b′c′)d ∨ (ab′c′ ∨ a′b ∨ a′c ∨ bc)d′ = 1

and since

(ab′c′ ∨ a′(b ∨ c) ∨ bc)′ = (a(b ∨ c) ∨ a′b′c′)(b′ ∨ c′) = a(bc′ ∨ b′c) ∨ a′b′c′ ,
the solutions of the last equation are given by formula (12), while the consistency
condition is fulfilled:

ab′∨ac′∨b′c′∨a′b∨a′c∨bc = (ab′∨a′b∨a′∨b)c∨(ab′∨a∨b′∨a′b)c′ = c∨c′ = 1 .

�

In the sequel we resume the examples of type II (cf. Introduction) given in
[1], that is, those with prescribed function g.
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Proposition2. The function f is decomposed in the form

(23) f(x1, x2, x3, x4) � h1(x2, x3) + h2(x1, x2, x4)

if and only if the functions h1 and h2 are of the form

(24) h1(x2, x3) = px2 + (r + x′3)x′2 ,

(25) h2(x1, x2, x4) = px2(x1 + x4) + p′x1x2x4 +Dx′1x2x
′
4 + rx′2 .

Proof. The decomposition (23) is of the form (11) with g(x, y) = x + y, that
is, a = d = 0 and b = c = 1. These values satisfy condition (12), hence de-
compositions (23) do exist. We obtain all of them by introducing the above
values into (13), (14) and (15). Since cd ∨ c′d′ = (a′ ∨ c)(b′ ∨ d) = 0 and
ab′ ∨ a′b = a′c ∨ b′d = 1, it follows from (13.1) and (14.1) that p and r re-
main arbitrary, while (13.2) yields p ≤ q ≤ p, that is, p = q, and similarly,
s = r′, A = p′, B = p, C = p, E = F = G = r, H = r. Thus formulas (9) and
(10) yield

h1(x1, x2) = px2 ∨ (rx3 ∨ r′x′3)x′2 ,
h2(x1, x2, x4) = p′x1x2x4 ∨ px1x2x

′
4 ∨ px′1x2x4 ∨Dx′1x2x

′
4 ∨ rx′2

= p′x1x2x4 ∨ px2(x1x
′
4 ∨ x′1x4) ∨Dx′1x2x

′
4 ∨ rx′2 ,

which coincide with (24) and (25), respectively. �

Proposition3. The unique decomposition of the form

(26) f(x1, x2, x3, x4) � h1(x2, x3) ∨ h2(x1, x4)

is

(27) f(x1, x2, x3, x4) � x′2x
′
3 ∨ x1x4 .

Proof. We are looking for a decomposition of the form (11) such that g(x, y) =
x ∨ y and the function h2 does not actually depend on x2. This amounts to
the following conditions on the solutions (12)–(15): a = b = c = 1, d = 0 and
A = E, B = F, C = G, D = H .

The above values of a, b, c, d satisfy (12) and conditions (13)–(15) imply in
turn p = 0, q = 0, r = 0, s = 1, A = 1, B = 0, C = 0, E : arbitrary, F :
arbitrary, G : arbitrary, H = 0. So we can take E = A = 1, F = B = 0, G =
C = 0, H = D = 0 and obtain h1(x2, x3) = x′2x

′
3 and h2(x1, x4) = x1x4. �

Proposition4. There is no decomposition of the form

(28) f(x1, x2, x3, x4) � h1(x2, x3)h2(x1, x4) .

Proof. We are looking for solutions (12)–(15) satisfying a = 1, b = c = d = 0
and again A = E, B = F, C = G, D = H . From (13.1)–(14.2) we obtain in turn
p = 1, q = 1, r = 0, s = 1, hence (15.2) yields B = 0, while (15.5) reduces to
F = 1, therefore B �= F . �

Remark. As we mentioned it, the example of type I (cf. Introduction) solved in
[1] is in fact

(29) f(x1, x2, x3, x4) � g(h1(x2, x3), h2(x1, x4)) .

The reader is urged to solve this equation in a proposition similar to Proposition 1
and to obtain Propositions 3 and 4 as corollaries, in the same way as Proposition
2 was obtained from Proposition 1.
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3 Conclusions

This paper, like [4], [7], [9], is a pleading for the direct algebraic approach to
the decomposition of truth functions via truth equations. The versatility of this
procedure is illustrated by the quick way in which Propositions 2-4 have been
obtained from the general result in Proposition 1.
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