
ADDS: A Document-Oriented Approach for Application
Development

José Luis Sierra
(Dpto.Sistemas Informáticos y Programación, Fac. Informática, Universidad Complutense

Madrid, Spain
jlsierra@sip.ucm.es)

Alfredo Fernández-Valmayor
(Dpto.Sistemas Informáticos y Programación, Fac. Informática, Universidad Complutense

Madrid, Spain
alfredo@sip.ucm.es)

Baltasar Fernández-Manjón

(Dpto.Sistemas Informáticos y Programación, Fac. Informática, Universidad Complutense
Madrid, Spain

balta@sip.ucm.es)

Antonio Navarro
(Dpto.Sistemas Informáticos y Programación, Fac. Informática, Universidad Complutense

Madrid, Spain
anavarro@sip.ucm.es)

Abstract: This paper proposes a document oriented paradigm to the development of content-
intensive, document-based applications (e.g. educational and hypermedia applications, and
knowledge based systems). According to this paradigm, the main aspects of this kind of
applications can be described by means of documents. Afterwards, these documents are marked
up using descriptive domain-specific markup languages and applications are produced by the
automatic processing of these marked documents. We have used this paradigm to improve the
maintenance and portability of content-intensive educational and hypermedia applications.
ADDS (Approach to Document-based Development of Software) is an approach to software
development based on the document oriented paradigm. A key feature of ADDS is that
formulation of domain-specific markup languages is a dynamic and eminently pragmatic
activity, and markup languages evolve according to the authoring needs of the different
participants in the development process (domain experts and developers). The evolutionary
nature of markup languages in ADDS leads to OADDS (Operationalization in ADDS), the
proposed operationalization model for the incremental development of modular markup
language processors. Finally, the document-oriented paradigm can also be applied in the
construction of OADDS processors that are also described using marked documents. This paper
presents our ADDS approach, including the operationalization model and its implementation as
an object-oriented framework. The application of our document-oriented paradigm to the
construction of OADDS processors is also presented.

Keywords: Software Development Approach, Domain-Specific Markup Languages, Software
Maintenance, Software Evolution, Modular Language Processors, XML
Categories: D.3.2, D.3.4, D.2.13, D.1.0, D.3.3, D.2.3, D.2.7, I.7.2

Journal of Universal Computer Science, vol. 10, no. 9 (2004), 1302-1324
submitted: 30/1/04, accepted: 15/9/04, appeared: 28/9/04 © J.UCS

1 Introduction

Documents are the basic tool for regulating and structuring communication inside a
large number of organizations and are the basis for a broad class of software
applications (e.g. educational and hypermedia applications, and knowledge based
systems). The adoption of what we call a document-oriented paradigm for application
development takes advantage of this fact. According to this paradigm, the main
aspects of these applications (e.g. their data and the relevant parts of their behaviors)
can be described using documents. Therefore, the applications themselves can be built
by the automatic processing of these documents. The feasibility of this paradigm
depends on the existence of mechanisms capable of making the structure of the
documents describing the applications explicit for people and machines. Descriptive
domain-specific markup languages [Coombs,87] provide these mechanisms.

The approach described in this paper was formerly suggested in [Fernández-
Manjón,97a][Fernández-Manjón,97b] as a vehicle to improve the development and
the maintenance of educational applications. The work in [Fernández-Valmayor,99]
reports on the application of these ideas in the context of the EU LINGUA project
Galatea. The main methodological goal of Galatea was the provision of a set of
guidelines governing the development of educational applications. The instructional
goal was to obtain comprehension of texts written in a foreign language close to the
mother tongue of the student. In Galatea the communication between the two main
actors in the development process, linguists and software developers, was articulated
via marked documents. Indeed, after evaluating the application, the linguists could
include their modifications in the documents, and mark up these documents with
easy-to-use descriptive markup languages specific to this domain. Then the marked
documents were automatically processed by the developers to incorporate the
modifications in the final application.

The experience in Galatea led us to generalize the approach in the broader field
of hypermedia domain. The result was the PlumbingXJ approach for the fast
prototyping of hypermedia applications [Navarro,02][Navarro,03][Navarro,
04a][Navarro, 04b]. In this approach, prototypes for complex hypermedia applications
can be easily characterized by marked documents and they can be automatically
produced from these documents using a prototype generator. This facilitates the
interaction between domain experts and developers during the prototyping stage in the
development of complex content-intensive hypermedia.

This paper presents a step by step overview of ADDS (Approach to Document-
based Development of Software), an implementation of the document-oriented
paradigm that underlies the works in Galatea and PlumbingXJ. Previous work in
ADDS, including several experimental developments applied to different domains,
can be found in [Navarro,00][Sierra,00][Sierra,01][Sierra,02][Sierra,03][Sierra,04].
According to ADDS, the development of an application starts with the provision of a
domain-specific descriptive markup language (DSML) that will be used to make the
semantic structure and the relevant data of the document describing the application
explicit. Next, this document is written and marked up using the DSML provided. The
application itself is obtained by the automatic processing of this marked document
with a suitable processor for the DSML defined. Then application development
evolves iteratively while the document is modified and refined. This iterative process

1303Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

can lead to the modification and/or extension of the DSML. In this way, the use of
markup languages in ADDS is dynamic and pragmatic: DSMLs are not conceived as
static entities, but evolve along with the expressive needs of designers and developers.

DSML evolution implies, in its turn, the evolution of its associated processors.
Consequently, to facilitate this evolution, a suitable mechanism for the incremental
development of these processors must be provided. OADDS (Operationalization in
ADDS) is the ADDS model for the incremental construction of processors. OADDS
encourages the construction of modular processors from components that can be
combined and extended as the associated DSMLs evolve.

OADDS is independent of any specific implementation technology. Nevertheless,
OADDS can easily be implemented as an object-oriented framework. The main
advantage of this implementation is that it promotes its integration with widely used
object-oriented frameworks for document processing [Birbeck,01]. Finally, OADDS
processors can themselves be described by documents. Therefore, the document-
oriented paradigm can be applied in the construction of these processors.

Select station of origin on the map

Reset

Exit

Origin

Destination

Figure 1: Sketch of a user interface for a route-searching application in subway
networks. Users select the stations of origin and destination on the map, and the

application computes and visualizes a route between the selected stations

The structure of the paper is as follows: Section 2 describes the ADDS approach.
Section 3 describes the OADDS operationalization model. Section 4 presents an
object-oriented framework implementing OADDS. Section 5 outlines OADDSML
(OADDS Markup Language), a (meta) DSML for marking up OADDS processor
documents. Section 6 describes some related work. Finally, section 7 gives some
conclusions and future work. Throughout the paper, we will use the domain of the
applications for searching for routes in subway networks as a case study to exemplify
the different aspects described in our approach. Figure 1 depicts a proposed user
interface for this type of applications.

1304 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

2 The ADDS Approach

The ADDS approach introduces a set of guidelines for the analysis, construction and
maintenance of document-based applications. Figure 2a shows the activities
considered in ADDS and the sequencing of these activities. Figure 2b illustrates the
products produced and consumed by these activities. Figure 2c shows the participants
in these activities, together with the roles they play. The following subsections
describe several of these aspects in detail.

DSML
Provision

[needs for changes
in the DSML]

Application
Documentation

Operationalization

[document ready to
be processed]

[application
acepted]

[needs for
application
modification]

Application
Document

Repository of
DSMLs

Application
DSML

Operacionalization

DSML
provision

Application
Documentation

Application

document
domain
aspects

DSML
Provision

Domain experts

provide the
DSML

Application
Documentation

Operationalization

Developers

help

- document operational
 aspects
- help domain experts
- identify new markup
 needs

help

provide the
processor

(c)

Application
Production

Processor
Application
Production

Application
Production

(a) (b)

evaluate

evaluate

Figure 2: (a) Activities in ADDS and their sequencing, (b) products in ADDS and
their production/consumption relationships with the activities, (c) participants in

ADDS and their roles in the activities

1305Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

Turing Ave.

 Knuth St. Gödel Sq.

Church St

(a)

 (b)

 <TransferTimes>
 <TransferTimesInStation station="TURINGAVE">
 <Transfer origin="BLUE" destination="RED"
 time="4"/>
 </TransferTimesInStation>
 <TransferTimesInStation station="CHURCHST">
 <Transfer origin="BLUE" destination="RED"
 time="5"/>
 </TransferTimesInStation>
 </TransferTimes>
 </Dynamics>
 </Network>
 <UserInterface>
 <Title>Route searching in subway networks</Title>
 <ExitButton>Exit</ExitButton>
 <ResetButton>Reset Application</ResetButton>
 <OriginLabel>Origin</OriginLabel>
 <DestinationLabel>Destination</DestinationLabel>
 <Map loc="toysubwayEN.jpg"/>
 <InformativeMessages>
 <FirstStationSelection>Click on the first
 station</FirstStationSelection>
 <SecondStationSelection>Click on the second
 station</SecondStationSelection>
 <RouteVisualization>Route being visualized
 on the map</RouteVisualization>
 </InformativeMessages>
 <Coordinates>
 <Coordinate station="TURINGAVE" x="65" y="157"/>
 <Coordinate station="KNUTHST" x="157" y="29"/>
 <Coordinate station="GÖDELSQ" x="328" y="33"/>
 <Coordinate station="CHURCHST" x="365" y="135"/>
 </Coordinates>
 </UserInterface>
</Subway>

<Subway>
 <Network>
 <Structure>
 <Stations>
 <Station id="TURINGAVE">Turing Ave.</Station>
 <Station id="KNUTHST">Knuth St.</Station>
 <Station id="GÖDELSQ">Gödel Sq.</Station>
 <Station id="CHURCHST">Church St.</Station>
 </Stations>
 <Lines>
 <Line id="BLUE">
 <Name>Blue Line</Name>
 <Link origin="TURINGAVE"
 destination="KNUTHST"
 length="5"/>
 <Link origin="KNUTHST"
 destination="GÖDELSQ"
 length="10"/>
 <Link origin="GÖDELSQ"
 destination="CHURCHST"
 length="500"/>
 </Line>
 <Line id="RED">
 <Name>Red Line</Name>
 <Link origin="TURINGAVE"
 destination="CHURCHST"
 length="10"/>
 </Line>
 </Lines>
 </Structure>
 <Dynamics>
 <Speeds>
 <Speed line="BLUE" value="50"/>
 <Speed line="RED" value="80"/>
 </Speeds>
 <WaitingTimes>
 <WaitingTime line="BLUE" value="10"/>
 <WaitingTime line="RED" value="5"/>
 </WaitingTimes>

Figure 3: (a) A fictitious little subway network, (b) marked document describing the
route-searching application for the network in (a)

2.1 Products

The construction of an application according to ADDS comprises the following kinds
of products:

• The application document is a document describing the main application
aspects. Such aspects include the contents (data) used by the application and
other relevant aspects of the application (e.g. the structure of the GUI, and
even some aspects regarding application behavior). This document is marked
up and evolves throughout the development process. Usually, this document
can include two different types of aspects: (i) domain aspects, information
related to the domain of the problem solved by the application, and (ii)

1306 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

operational aspects, information not directly related to the problem domain,
but required to produce the final application. In our case study, this
document will include domain aspects concerning the network structure (e.g.
list of stations and links in each line) and dynamics (e.g. average speeds and
waiting times in each line, and transfer times for each station).This document
will also include operational aspects concerning high-level variability of the
user interface (e.g. button and label names, informative messages and station
coordinates on the subway map). Figure 3a drafts a fictitious little subway
network and Figure 3b shows the document of the route-searching
application for this.

• The application DSML. Description, using a document grammar1, of the
domain-specific descriptive markup language used to make the structure and
the data of the application document explicit. This language could evolve
during the development of the application to accommodate the evolution of
its requirements. In our example application domain, the application DSML
will enable the kind of markup outlined in Figure 3b.

Processor for the
DSML

<Subway>
 <Network>
 <Structure>
 <Stations>
 <Station id="TURINGAVE">Turing Ave.</Station>
 <Station id="KNUTHST">Knuth St.</Station>
 <Station id="GÖDELSQ">Gödel Sq.</Station>
 <Station id="CHURCHST">Church St.</Station>
 </Stations>
............

Application
Document

Application

Figure 4: Applications are produced by the automatic processing of the documents
describing them with suitable processors

• The repository of DSMLs. Descriptions of descriptive markup languages
already available that can be combined and/or extended to achieve new
DSMLs. The grammar-based declarative description of DSMLs in ADDS
eases the combination and extension of simpler languages to yield more
complex ones. Therefore, this repository helps to decrease the cost
associated with the formulation of new languages. In our application domain,
this repository will include the different sublanguages that constitute the
application DSML (e.g. a sublanguage for marking up tables documenting
subway network structures, another for subway network dynamics, a third
one for the variability of the user interface, etc).

• The processor. Processor for the application DSML. This processor enables
the production of the application from its document.

• The application. Application produced by processing the application
document with the processor for the DSML used to mark it up (Figure 4).

1 ADDS uses a grammatical formalism based on XML DTDs [W3C], although the approach can easily be

adapted to any other document grammar formalism (e.g. [Lee,00]).

1307Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

2.2 Participants

ADDS differentiates between two kinds of participants in the construction of an
application:

• Domain experts. They are experts on different aspects of the application’s
problem domain. Hence, they are responsible for documenting and
maintaining the aspects of the application related to their domain of
expertise, although they could also understand and modify some of the
operational aspects. The kind of experience expected from such experts
strongly depends on the application domain. Because the same application
can integrate aspects from different knowledge areas, this community of
experts is interdisciplinary in nature. In our application domain, there are
experts in network organization, able to document net structure and
dynamics, but also there are experts able to deal with operational aspects,
such as experts in graphic design, who may provide the subway maps, and
experts in application customization, who can adapt the application to
different use scenarios by modifying the documentation of the operational
aspects.

• Developers. They are experts in computer science. Their main
responsibilities are the formal definition of the application DSML, using an
appropriate grammar formalism, and the construction of the processor for
this DSML. They are also responsible for documenting the operational
aspects in the application document. Like the domain experts, it is possible
to distinguish different kinds of developers. Software experts are experts in
the development of the software infrastructure for the operations in the
application domain (e.g. graph-searching algorithms in the subway domain).
DSML experts are experts in the formulation and maintenance of the
DSMLs. Experts in language processors are experts in the provision and
maintenance of the processors for the DSMLs. The basic semantic actions of
these processors will use the software provided by the software experts.
Finally, experts in document management are responsible for managing the
organization of the application document. Note that an expert could
participate in different categories (e.g. an expert in language processors
could also play the role of a software expert).

2.3 Activities

ADDS introduces the following activities:
• DSML provision. This activity is the most characteristic and critical in the

document-oriented paradigm, and the most knowledge-demanding task. The
goal of this activity is to produce an appropriate application DSML. Such a
DSML can be formulated from scratch, or it can integrate other languages
already available in the repository of DSMLs. This integration is facilitated
by the modular nature of the grammar-oriented declarative description of
languages. The formulation of this DSML will usually be based on
documentation and documentation styles used in the application domain, and
will take advantage of the experience in the development of similar
applications (represented by the DSMLs previously used in the domain).

1308 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

• Application documentation. The goal of this activity is the authorship and
markup of the application document describing the aspects required to
produce the application.

• Operationalization. This activity yields an appropriate processor for the
application DSML. The provision of such a processor can be incrementally
carried out, and follows the OADDS operationalization model described in
the next section.

• Application Production. In this activity, the application is produced by
applying the DSML processor to the application document.

ADDS follows an incremental development strategy. The sequencing of these
activities introduces the following loops in the production of an application (Figure
5):

• Maintenance loop. In this loop the application document is processed to
produce the application. The evaluation of the application could lead to the
modification of the application document in order to achieve a better result.
For instance, in our example application domain, we can document an initial
subset of the subway network, in order to provide a first working prototype
of the final application. Next, we can complete this documentation to tackle
the overall network, and, then, in a third iteration we can tune the operational
aspects. New maintenance iterations can arise during application exploitation
when the network changes (for instance, due to the addition of a new station
or a new line). Note that, from a software development point of view, the
cost associated with each iteration is usually small (ideally zero), because the
production of the application is reduced to applying the DSML processor to
the application document. But sometimes this processor might need to be
adapted to correct some errors and/or misunderstandings of the operational
meaning required for the DSML. Usually, these cases will be less frequent
than changes in the document.

Maintenance loop Evolution loop

Figure 5: ADDS application development loops

• Evolution loop. This loop, less frequent, arises during the documentation
activity, when new markup needs are identified. Such needs can arise due to
a refinement of the document structure, or the incorporation of new aspects
to take into account new requirements. Thus, the usual maintenance cycle is
left, and the DSML provision activity is performed again (i.e. the DSML
evolves). The consequences of this evolution are the addition of new
structures to the DSML and the corresponding extension of the DSML’s
processor. Finally, the usual maintenance loop is entered again. In our
subway example, the DSML could evolve to include new structural elements

1309Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

in the networks (e.g. corridors) together with their associated dynamics.
Another example of evolution is the inclusion of different user interfaces
styles (e.g. evolutions from a simple console-based user interface to a
graphical user interface).

Note that DSMLs in ADDS evolve incrementally avoiding the high costs
associated with exhaustive domain and program family analysis used in other
approaches to software development based on domain-specific languages [Van
Deursen,00].

3 OADDS: Operationalization in ADDS

OADDS defines the operationalization model that yields an appropriate processor for
the application DSML. OADDS combines three types of processes (Figure 6): (i)
document tree construction for the application documents, (ii) document tree
operationalization by assigning different operational components to the element
nodes in the trees, and (iii) evaluation of the operationalized document trees. These
processes can be compared with those arising in classical syntax-directed construction
of language processors [Aho,86]. Indeed, the construction of document trees is
analogous to the syntax analysis stage, the tree operationalization generalizes the
syntax tree decoration stage, and the tree evaluation is analogous to the corresponding
evaluation stage of the decorated syntax tree. Anyway, given that descriptive markup
makes the tree structures on the documents explicit, it is feasible to decouple these
three processes, setting up the basis for a better modularity of the processors. In
addition, while tree construction and tree evaluation processes are invariant for every
processor, tree operationalization is specific for each language. OADDS regulates the
tree operationalization process, allowing for an incremental formulation of the
processor.

Document Tree
Construction

Application
Document

Document Tree
Operationalized
Document Tree

Document Tree
Operationalization

Document Tree
Evaluation

Evaluated
Document Tree

Figure 6: The three types of basic processes carried out by the OADDS processors

The following subsections detail the different aspects regarding OADDS
processor construction.

3.1 Document Tree Construction

Document tree construction is carried out using a component, called the tree builder,
which allows the construction of suitable representations of the document trees
associated with the application documents. Previously to the tree construction, this

1310 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

component performs the analysis of the document and validates it using the document
grammar of the DSML. The tree builder can use a standard framework for the parsing
of structured documents [Birbeck,01]. This same component can be reused in every
processor, which contributes to substantially decreasing the overall cost in the
construction of processors. Indeed, syntactic analysis aspects are an important part of
the development, as illustrated in the standard literature about language processor
construction [Aho,86].

3.2 Document Tree Operationalization

Figure 7 sketches the different types of components used in the formulation of
OADDS operationalization processes, together with their main relationships.

The operationalization of document trees is performed by assigning a set of
suitable basic operational components to each element node. These components
establish how their associated nodes are to be evaluated. More precisely, with each
element node in the document tree it is possible to assign (Figure 8a):

Operational
Assignment

Initializer Advancer Finalizer Controller Operational
View

Operationalization
Control

associates with
elements

associates with
elements

Extension of
Initializer

produces

Extension of
Advancer

produces

Extension of
Finalizer

produces

Operational
Assignment
Extension

produces

Figure 7: Operational components involved on the formulation of operationalization
processes for document trees in ADDS

• A set of operational views, which encapsulates the results of the evaluation
of this node.

• A controller, which is used to establish an evaluation order on the neighbors
of the node. This is a procedure that, taking an element as input, returns the
list of nodes that will be used to continue the evaluation of the tree.

• An initializer, which is used to initiate the evaluation of the node. This is a
procedure taking the element to be initiated as input.

• An advancer, which allows the continuation of the node evaluation after the
evaluation of each neighbor. This component also allows the interruption of
the evaluation process. This is a procedure that takes the element and one of
its neighbors as input, carries out the continuation of the evaluation, and
returns false if this evaluation has to be interrupted, or true in other cases.

• A finalizer, used to finish the evaluation of the node. This is a procedure
taking the element to be finished as input.

1311Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

These types of components can be related to classic concepts of syntax directed
translation. Indeed, operational views correspond to attribute tables associated with
the different nodes in the syntax tree. Initializers, advancers and finalizers encapsulate
the semantic actions performed on these nodes during the translation process. Finally,
controllers decide the traversal of the tree during such a process. The reason to break
the classical process of tree evaluation into these components is to facilitate the
modular construction of processors and their evolution according to changes in the
DSML. Indeed, the incremental formulation of the operationalization processes is
based on the incremental formulation of the basic operational components assigned to
the element nodes. In order to do so, it is possible to use extensions of initializers (of
advancers, of finalizers). These components make the way to add new functionalities
to one or more initializers (advancers, finalizers) explicit.

Figure 8b illustrates the operationalization of the elements of type Network,
used to mark up the documentation of the subway networks in our example
application domain. These elements have an operational view associated, called
Digraph view, which will contain a reference to an interpretation of the subway
network as a weighted directed graph. Figure 8c, using pseudo-code, describes the
controller, the initializer and the advancer for this type of nodes.

Element Node

controller

initializer

advancer

finalizer

Operational
view 1

Network
controller

CDefault

INetwork
initializer

advancer
ANetwork

Operational
view k Digraph view

Structure Dynamics CDefault ≡ proc(e) {
 return the list of child element nodes in document
 order
 }
INetwork ≡ proc(e) {
 d ← create a weighted directed graph
 assign d as value of the operational view
 “Digraph view” in e
 }
ANetwork ≡ proc(eo,e1) {
 copy the “Digraph view” in eo in “Digraph view”
 in e1
 }

(a) (b)

(c)

Figure 8: (a) Operationalization of element nodes, (b) Operationalization for
elements of type Network, (b) pseudo-code for the components named in (b)

The operationalization process is governed by:
• An operational assignment, which is used to associate basic components

with element nodes. Operational assignments can be incrementally
formulated by using operational assignment extensions.

• An operationalization control, which decides the traversal of the document
tree during such an operationalization.

1312 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

As with the basic operational components, it is also possible to relate these two
components with classic scenarios of syntax-directed translation. Therefore,
operational assignments are analogous to translation schemas. In this way,
operationalization controls can be applied to control the application of the
assignments. This can be useful, for instance, for the incremental operationalization of
trees, where trees are subjected to dynamic modifications and are incrementally
operationalized after each modification.

Finally, operationalization itself is carried out using a component called
operationalization driver. This component is configured by means of an operational
assignment and an operationalization control. This can be applied to an element node
for operationalizing the tree where the node is located. This application supposes:

1. The application of the operational assignment to such a node for yielding the
associated basic operational components.

2. The assignment of these components with the node.
3. The application of the operationalization control to this node to obtain a

controller.
4. The operationalization, in order, of the nodes provided by the controller.

3.3 Evaluation of Document Trees

The evaluation of a document tree uses the controllers, initializers, advancers and
finalizers associated with element nodes to update the values of the operational views
in these nodes. The applications described by the documents can usually be obtained
from the operational views in the roots of their trees after tree evaluation. For
instance, in our example application domain, the evaluation of the sub-tree for the
documentation of the network yields a weighted directed graph, while the evaluation
of the sub-tree corresponding with the user interface variability produces a description
of such variability. These results are integrated to produce the final application.

The evaluation process is carried out using a component called evaluation driver.
This component starts the evaluation by visiting an element node of the tree. Each
time that an element node e, which has an associated controller c, an initalizer i, an
advancer a and a finalizer f, is visited:

1. i is invoked on e.
2. c is used to iterate on the neighbors of e.
3. Each time the evaluation of a neighbor n of e finishes, a is invoked on e and

n. If the result returned by a is false, the evaluation of e is interrupted.
4. The driver invokes f on e when all the neighbors have been visited.

3.4 Incremental Development of Processors

The OADDS model encourages semantic modularity [Hudak,98]. Semantic
modularity in OADDS is reflected in the nature of the operationalization processes.
Indeed, in this model it is possible to incrementally add new features of local
evaluation to the element nodes, by extending their initializers, advancers and
finalizers (Figure 9). The newly added features facilitate the achievement of the
following extensions:

• Propagation of new values from an element node to their neighbors, from the
neighbors to the element node, and from neighbors to neighbors.

1313Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

• Interruption of the evaluation. This will usually arise as a response to an
error.

Note that these are the typical extensions achieved in the different approaches to
the modular development of language processors (e.g. [Kastens,
92][Hudak,98][Duggan,00]).

The realization of this type of extensions in OADDS is straightforward.
Therefore, each new feature added is performed by means of (i) a set of extensions of
initializers (advancers, finalizers) that act on the extended initializers, advancers and
finalizers respectively, and (ii) an operational assignment extension, which acts on the
extended assignments, and applies extensions of the appropriate type to the
components produced by these extended assignments. For instance, in our example
application domain, the inclusion of more advanced interaction capabilities in the user
interface will need the list of stations in the network in addition to its interpretation as
a graph. The propagation of this list can be incrementally added to the evaluation
process by considering appropriate extensions for the available basic components and
the operational assignments. On the other hand, the set of operational views provided
are obtained from those provided by the extended assignments, together with the
operational views introduced by the extension.

initializer

advancer

finalizer

initializer

advancer

finalizer

initializer

advancer

finalizer

Figure 9: Incremental development of OADDS processors depends on the
incremental extension of the components characterizing the local evaluation of the

element nodes in the document tree

This schema suggests a systematic way for the incremental development of
processors, centered on the incremental formulation of their operationalization
processes. This incremental formulation supposes that:

1. It starts with the default operational assignment, which applies default
initializers, advancers and finalizers (which do not perform any action) to
each element node.

2. The new initializers, advancers and finalizers are formulated as extensions of
the pre-existing ones.

3. The applications of these extensions are performed by means of appropriate
operational assignment extensions.

4. The final operational assignment is obtained by composing the assignment
extensions in an appropriate order. The result is composed of an assignment
extension which establishes the evaluation control regime by assigning
appropriate controllers to each element node.

The approach is similar to that described in [Hudak,98], based on the composition
of monad transformers and the application of the resulting transformer to the unit
monad.

1314 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

4 An Object-Oriented Framework for OADDS Support

OADDS has been implemented as an object-oriented framework. Figure 10 shows the
organization of such a framework in layers. The framework distinguishes:

• A basic layer including classes representing the basic concepts of the
operationalization in OADDS.

• A processing layer defining the elements required to provide the basic
processes for the processors. This layer also characterizes the interface
followed by such processors.

• A component layer containing the concrete operational components used in
the operationalization of DSMLs.

In this way, the basic and processing layers introduce the foundation classes and
interfaces used for building OADDS processors. In addition, the component layer
supposes the implementation of these processors as an appropriate extension and
specialization of such foundations classes and interfaces. The following subsections
describe these layers.

Operational Components
Framework

Operationalization
Driver

Evaluation
Driver

OADDS
Processor

Document Tree
Representation

Framework

Basic
Layer

Processing
Layer

Tree Builder

Components
for DSMLo

Components
for DSML1

Component
Layer

Figure 10: Layered Organization of the framework for OADDS support

4.1 Basic Layer

This layer introduces the concepts for representing document trees, as a specialization
of DOM [W3C], and those for the OADDS operational components (controller,
initializer, finalizer, operational assignment, etc.). This layer includes:

• A document tree representation framework. This is a specialization of DOM
allowing for the representation of document trees in a way that is appropriate
for performing the operationalization and evaluation of trees in OADDS
(Figure 11a). Consequently, it introduces the implementation
OADDSElement of the DOM Element interface (the interface for the
element nodes in the document trees). This implementation wraps both the
operationalization of the element node and the structural representation of
the node (in terms of a standard implementation of Element).
Operationalization itself is represented using objects of type
Operationalization. Moreover, the framework includes an

1315Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

implementation OADDSDocument of the DOM Document interface (the
interface characterizing the DOM document trees and containing factory
methods for each type of node in such trees). Thus, the tree builder
configures the parsing framework with this implementation, allowing the
production of document trees appropriate for the OADDS processing.

• An operational components framework. Figure 11b characterizes the
interfaces for the different operational components used in the formulation of
operationalization processes. The framework also introduces several default
components. Note that the object-oriented paradigm makes the explicit
provision of extensions for the basic components unnecessary, because such
extensions can be characterized as implementations of the Initializer,
Advancer and Finalizer interfaces that take the extended components
as parameters in their constructors.

ElementIterator
<<Interface>>

uses

ADefault
Initializer

<<Interface>>

Finalizer
<<Interface>>

Advancer
<<Interface>>

IDefault
AdDefault

DefaultEI

DefaultControl

OperationalizationControl
<<Interface>>

Operationalization

OperationalAssignment
<<Interface>>

ADefaultControl

Controller
<<Interface>>

produces

FDefault

uses

produces

uses

uses

produces

(b)

(a)
Document

<<Interface>>

OADDSDocument

wraps

Element
<<Interface>>

Operationalization

OADDSElement
wraps

operationalization for

Figure 11: (a) Document tree representation framework, (b) Operational components
framework

4.2 Processing Layer

The processing layer (Figure 12) characterizes the components performing the basic
processes in OADDS (tree builder, operationalization and evaluation drivers), and
also the common interface implemented by the processors.

1316 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

Processor
<<Interface>>

TreeBuilder

EvaluationDriver

OperationalAssignment
<<Interface>>

OperationalizationControl
<<Interface>>

OperationalizationDriver

uses

uses

uses

operationalizes
with

controlled
by

Figure 12: Class diagram for the processing layer

4.3 Components Layer

The component layer contains the components used in the operationalization of the
different DSMLs. Almost all the extensions of the operationalization framework are
carried out in this layer.

5 Documentation of OADDS Processors

The OADDS processors themselves can be viewed as particular cases of applications
that can be built following the document oriented paradigm. In this way, it is possible
to document this kind of processors, to mark up such documents with an appropriate
DSML, and to process these documents in order to produce the documented
processors. The DSMLs used to mark up the documentation of processors are called
meta DSMLs.

OADDSML (OADDS Markup Language) is a meta DSML allowing the markup
of the documentation of the different operational components in OADDS. Therefore,
the OADDSML documents describe collections of OADDS components, including
the OADDS processors. Such documents can be processed with an OADDSML
processor to execute the documented OADDS processors. The OADDSML processor
can be located at the same level as the classical generators of language processors
(e.g. YACC [Johnson 75]).

OADDSML introduces the following documentation styles for the operational
components:

• Documentation of controllers is given in terms of vicinities of the associated
element nodes. The OADDSML markup allows the formalization of these
descriptions in terms of regular path expressions [Abiteboul,00], using XPath
[W3C].

• Initializers, advancers and finalizers are documented by enumerating the
literal information from the document (parameters) and the operational
views required by the evaluations carried out by these components, and by
referring to the semantics actions performing such evaluations. The
OADDSML markup of this documentation formalizes the enumeration of the
parameters and the views (using, again, XPath), and marks up the given
semantic actions.

1317Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

• Operationalization controls are documented by control rules. Each rule
describes the association of controllers with element types. The OADDSML
markup formalizes the conditions of these rules (using XPath), and marks up
the controllers specified by them.

• Operational assignments are documented by means of operationalization
actions. Each action indicates how to operationalize the different types of
element nodes. OADDSML enables the formalization (using XPath) of the
applicability conditions for the actions, and the markup of each
operationalization aspect carried out by these actions.

• Processors are documented by defining the different operationalization
processes to be performed on the document trees, and by referring to the
domain-dependent logic of the processor using such processes. OADDSML
allows the markup of each one of these aspects.

OADDSML follows the modular nature of OADDS. Consequently, from the
OADDSML documents it is possible to refer to components documented in other
documents and even to components provided directly in terms of the
operationalization framework.

OADDSML hides the complexities of the direct use of the operationalization
framework from the developers. Indeed, with OADDSML the development of
processors is restricted to:

• Documenting and marking up the different operational components. Such
documentation and markups exhibit a higher abstraction level than the direct
programming of the components in terms of the framework.

• Providing modules with procedures (classes with static methods) containing
the basic semantic actions, together with the domain-dependent logic for the
processors. These collections of procedures can be provided in simpler terms
than those given by the operationalization framework, and they can serve as
a link with the basic software provided by the ADDS experts in software.

Processor for the
DSML

Application
Document

Application

OADDSML
documentation

OADDSML
processor

<Subway>
 <Network>
 <Structure>
 <Stations>
 <Station id="TURINGAVE">Turing Ave.</Station>
 <Station id="KNUTHST">Knuth St.</Station>
 <Station id="GÖDELSQ">Gödel Sq.</Station>
 <Station id="CHURCHST">Church St.</Station>
 </Stations>
............

Figure 13: The OADDSML documentation can be processed with an OADDSML
processor for yielding the documented OADDS processor

The provision of an OADDS processor for OADDSML allows for the production
of OADDS processors from their documentation. In their turn, the processors

1318 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

produced can be applied to the corresponding application documents for yielding the
documented applications. This behaviour is illustrated in Figure 13.

6 Related Work

The original use of descriptive markup languages was for the processing of electronic
documents [Goldfarb,90]. HyTime [HyTime,97], an SGML [Goldfarb,90] extension
for the description of hypermedia applications, demonstrated that in some domains,
these kinds of languages could be used for enabling the full description of
applications in terms of documents that, in turn, can be processed for building the
final application. Moreover, proposals like DSSSL [DSSSL,96] proved that this
document-oriented paradigm could be used not only for the applications, but also for
describing the processors used to produce the applications from their documentation.
XML [W3C] and its related technologies have generalized the use of descriptive
markup languages as a standard way for information interchange between
applications, and for many other uses. Note that most of these approaches conceive of
markup languages as static entities. On the contrary, ADDS takes a more pragmatic
position, where markup languages are considered dynamic objects that evolve when
the contents, or the markup needs of these contents, change. OADDS gives an
operational solution to this dynamic nature of the languages, encouraging the
construction of modular processors from components that can be extended and
adapted according to language evolution.

The document oriented paradigm has the same aim as other classical approaches
to derive programs from structured documents and diagrams [Warnier,81][Orr,
81][Jackson,75], and the more recent efforts to derive programs from models
[Frankel, 2003]. Nevertheless, our approach has a more limited scope and
methodology: it is oriented to building content-intensive and document-based
applications (e.g. educational and hypermedia applications and knowledge-based
systems) and it takes advantage of a linguistic and meta-linguistic orientation. The
document-oriented paradigm and ADDS also share some features with the seminal
work of Knuth on literate programming [Knuth, 84]. This work makes the benefits of
identifying the programs and their documentation explicit. In literate programming,
the program’s code is interleaved with its documentation, in the same way that the
program would be presented in a programming textbook. These documents are
marked up for enabling both the assembling of working programs and the production
of documentation printouts. The ideas described in this paper differ from literate
programming, because only the high level aspects of the applications, but not the code
of the programs implementing them, are documented and marked up. The code itself
is implicitly contained in the processor for the DSML used in the markup, in the same
way that the assembler code for the programs in a high-level programming language
is contained in the compiler for this language. Because of this, in our work, suitable
DSMLs are provided for each application domain instead of using a fixed markup
language, as in literate programming. In this way, literate programming could be seen
as a particular application of our document-oriented paradigm. Indeed, OADDSML
documents are similar to documents in the literate programming paradigm, because
they are documenting processors for other DSMLs. This reveals the metalinguistic
nature of ADDS.

1319Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

ADDS also shares many features with the approach to software development
based on Domain-Specific Languages (DSLs [Van Deursen,00]). [Fuchs,97] is a
pioneering work in the application of SGML/XML for the definition of DSLs. In
[Wadler,99] the relationships between markup languages and the DSL approach is
highlighted. Although these works recognize the potentiality of markup
metalanguages as a vehicle for defining DSLs, the stress is put on their use to
formalize abstract syntax, instead of their use as descriptive markup (meta) languages.

Jargons foundations [Nakatani,97][Nakatani,99] are similar to that promoted by
ADDS. In Jargons, DSLs are directly formulated, and even operationalized (using a
scripting language), by domain experts. While the conception of this author-driven
design of DSLs is consistent with ADDS, ADDS considers it unrealistic to assign
language design and operationalization responsibilities to domain experts. Instead,
ADDS involves a community of developers for this purpose. Moreover, Jargons does
not contemplate the semantic modularity problem in the operationalization of DSLs.
This problem is critical when these languages evolve.

Modular language processor construction has been popularized inside the
functional programming community, where the main approach is based on monads
and monads transformers [Hudak,98], although it is also possible to find proposals in
the object-oriented paradigm (based on the use of mixins [Duggan,00]), and in the
attribute grammar approach to the construction of language processors [Knuth,
68][Kastens, 92]. OADDS semantic modularity mechanisms are inspired by these
proposals, and also resemble the extension mechanisms of methods in CLOS
[Steele,90]. Indeed, the extensions of initializers, advancers and finalizers are similar
to the definition of before, around and after methods in CLOS. In this sense
controllers are analogous to primary methods.

ADDS generalizes the methods for the construction of educational applications
for foreign language text comprehension presented in [Fernández-Valmayor,99].
ADDS also generalizes the methods for the generation of hypermedia prototypes from
XML documents describing the hypermedia contents and navigation presented in
[Navarro,02][Navarro,03][Navarro, 04a][Navarro, 04b]. Works in
[Sierra,00][Sierra,01][Sierra,03][Sierra,04] show the evolution of ADDS. In
[Sierra,00][Sierra,01] the approach was called DTC (structured Documents, document
Transformations and software Components). The use of this approach for the
construction of applications in the transport networks domain (more precisely,
subway networks) is described in [Sierra,00]. Work in [Navarro,00] explores its use in
the educational hypermedia domain. Work in [Sierra,04] outlines the use of ADDS in
the development of knowledge-based systems.

The origin of OADDS is in [Sierra,01]. In [Sierra,02] a first attempt to introduce
semantic modularity mechanisms in the model is given. In [Sierra,03] a more specific
OADDS formulation based on attribute grammars is presented.

7 Conclusions and Future Work

This paper introduces our document-oriented paradigm for the development of
content-intensive, document-based applications. According to this paradigm, these
applications are obtained by the automatic processing of the marked documents
describing their main aspects. ADDS is an implementation of the paradigm based on

1320 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

the authorship needs of the different participants. In ADDS, the DSMLs used to mark
up the documents evolve according to such needs. This evolution is reflected, at the
operational level, in the OADDS model for the incremental construction of modular
processors. OADDS has been implemented as an object-oriented framework. In
addition, the document-oriented paradigm itself can be applied in the development of
OADDS processors. OADDSML is a markup language that allows the markup of
documentation for the different operational components used in such development.
Documented processors can be produced from the OADDSML documents.

The ADDS approach eases the development and maintenance of applications,
because these can be described in the form of human readable and editable
documents, understandable both by domain experts and by developers. Then, final
running applications can be obtained by processing these documents with a suitable
processor on the basis of their markup. Therefore, a DSML is an explicit
characterization of a family of applications in a given domain, and each application
can be executed from its documentation using the same processor for that DSML.

The approach also improves application portability, because well-known markup
standards (e.g. XML [W3C]) can be used in the production of the documents. This
improvement is especially critical for content-intensive applications, such as those
arising in the educational domain, where the representation of the contents in portable
and standard formats is critical in order to enlarge the applications‘ life cycles
[Fernández-Manjón,97a][Fernández-Manjón,97b].

The evolutionary nature of the DSMLs provides the flexibility required by the
development of complex applications. The DSML can be indeed extended when new
markup needs are discovered. This also eases the use of DSMLs, because it avoids the
inclusion of very general or sophisticated descriptive artifacts. Semantics modularity
in OADDS helps to manage the operational impact produced by the evolution of these
languages, allowing the reuse of processors when the processed languages are
extended and/or reused to yield more complex DSMLs.

 Finally, the recursive application of ADDS to its operationalization activity leads
to the formulation of meta-DSMLs, like OADDSML, that simplify the development
of OADDS processors.

Current work is oriented to the formulation of ways of devising DSMLs based on
the documentation of the application domains, and in the markup of this
documentation, using suitable schema languages. We are also working on the
reformulation of different document processing models (tree oriented, event oriented,
processing models of CSS and XSLT [W3C], attribute propagation models, etc.) in
terms of OADDS. The next step includes the formulation of a type system for
OADDSML, and its implementation using reflection mechanisms in the object-
oriented implementation language for the operationalization framework. Finally, we
are considering as future work the systematic design of different experiments for
testing the feasibility of the document-oriented paradigm in different application
domains and for comparing ADDS with other possible implementations of this
paradigm.

1321Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

Acknowledgements

The Spanish Committee of Science and Technology (TIC2001-1462 and TIC2002-
04067-C03-02) has supported this work. We also thank the five anonymous referees
for their useful comments to the previous versions of this paper.

References

[Abiteboul,00] Abiteboul,S.; Buneman,P.; Suciu,D. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann. 2000

[Aho,86] Aho, A.; Sethi, R.; Ullman, J. D. Compilers: Principles, Techniques and Tools.
Adisson-Wesley. 1986

[Birbeck,01] Birbeck,M et al. Professional XML 2nd Edition. WROX Press. 2001.

[Coombs,87] Coombs, J. H.; Renear, A. H.; DeRose, S. J. Markup Systems and the Future of
Scholarly Text Processing. Communications of the ACM 30/11 (1987) 933-947.

[DSSSL,96] International Standards Organization. Document Style Semantics and
Specification Language (DSSSL). ISO/IEC 10179. 1996.

[Duggan,00] Duggan, D. A Mixin-Based Semantic-Based Approach to Reusing Domain-
Specific Programming Languages. ECOOP’2000. Cannes. France. June 12-16 2000

[Fernández-Manjón,97a] Fernández-Manjón,B.; Fernández-Valmayor,A. Improving World
Wide Web Educational Uses Promoting Hypertext and Standard General Markup Languages.
Education and Infformation Technologies 2(3). 193-206. 1997

[Fernández-Manjón,97b] Fernández-Manjón,B.; Fernández-Valmayor,A.; Navarro,A.
Extending Web Educational Applications via SGML Structuring and Content-based
Capabilities. In Wibe,J.; Verdejo,F (Eds). The Virtual Campus. Trends for Higher Education
and Training. 244-259. Chapman-Hall. 1997

[Fernández-Valmayor,99] Fernández-Valmayor, A.; López Alonso, C. Sèrè A. Fernández-
Manjón,B. Integrating an Interactive Learning Paradigm for Foreign Language Text
Comprehension into a Flexible Hypermedia system. IFIP WG3.2-WG3.6 Conf. Building
University Electronic Educational Environments. Univ. California Irvine, California, USA
August. 4-6 1999

[Frankel, 2003] Frankel, D.S. Model Driven Architecture: Applying MDA to Enterprise
Computing. John Wiley & Sons. 2003.

[Fuchs,97] Fuchs, M. Domain Specific Languages for ad hoc Distributed Applications. First
Conf. on Domain Specific Languages. USENIX. Sta. Barbara. CA. October 17-17. 1997

[Goldfarb,90] Goldfarb, C. F. The SGML Handbook. Oxford University Press. 1990

[Hudak,98] Hudak,P. Domain-Specific Languages. Handbook of Programming Languages V.
III: Little Languages. And Tools. Macmillan Tech. Publishing. 1998

[HyTime,97] International Standards Organization. Hypermedia/Time-based Structuring
Language (HyTime) – 2d Edition. ISO/IEC 10744 . 1997.

[Jackson,75] Jackson.M. Principles of Program Design. Prentice-Hall. 1975

[Johnson 75] Johnson,S.C. YACC-yet Another Compiler-Compiler. Computing Science
Technical Report 32. AT&T Bell Laboratories. 1975

1322 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

[Kastens, 92] Kastens,U.; Waite,W.M. Modularity and Reusability in Attribute Grammars.
Tech. Report CS-613-92. University of Colorado. 1992

[Knuth, 68] Knuth,D.E. Semantics of Context-free Languages. Math. Systems Theory 2. 1968

[Knuth, 84] Knuth,D.E. Literate Programming. The Computer Journal 27(1). 97-111. 1984

[Lee,00] Lee,D.; Chu,W.W. Comparative Analysis of Six XML Schema Languages. ACM
SIGMOD Record. 29(3). 2000

[Nakatani,97] Nakatani,L.H.; Jones,M. Jargons and Infocentrism. First ACM SIGPLAN
Workshop on Domain-Specific Languages DSL’97. Paris, France. January 1997

[Nakatani,99] Nakatani,L.H.; Ardis,M.A.; Olsen,R.G.; Pontrelli,P.M. Jargons for Domain
Engineering. 2º Conf. for Domain Specific Languages. USENIX. Austin. Texas. October 3-6.
1999

[Navarro,00] Navarro,A.; Sierra, JL.; Fernández-Manjón, B.; Fernández-Valmayor, A. XML-
based Integration of Hypermedia Design and Component-Based Techniques in the Production
of Educational Applications. In M. Ortega and J. Bravo (Eds). Computers and Education in the
21st Century. Kluwer Publisher. 2000

[Navarro,02] Navarro, A.; Fernández-Manjón, B.; Fernández-Valmayor, A.; Sierra, J.L.Formal-
Driven Conceptualization and Prototyping of Hypermedia Applications. FASE 2002. Grenoble.
France. April 8-12. 2002

[Navarro,03] Navarro, A.; Fernández-Manjón, B.; Fernández-Valmayor, A.; Sierra, J.L. An
XML-based Approach to Fast Prototyping of Web Applications. Third Int. Conf. on Web
Engineering ICWE 2003. Oviedo. July 14-18. 2003

[Navarro, 04a] Navarro, A.; Fernández-Valmayor, A.; Fernández-Manjón, B.; Sierra, J.L.
Conceptualization prototyping and process of hypermedia applications. International Journal of
Software Engineering and Knowledge Engineering. Special issue on Modeling and
Development of Multimedia Systems In press

[Navarro, 04b] Navarro A.; Fernández B.; Fernández-Valmayor A.; Sierra J.L. The
PlumbingXJ Approach for Fast Prototyping of Web Applications. Journal of Digital
Information (JoDI). Special issue on Information Design Models and Processes 5 (2),
http://jodi.ecs.soton.ac.uk/Articles/v05/i02/Navarro/

[Orr, 81] Orr,K. Structured Requirements Definitions. Ken Orr & Associates Inc. 1981

[Sierra,00] Sierra, J. L.; Fernández-Manjón, B.; Fernández-Valmayor, A.; Navarro, A.
Integration of Markup Languages, Document Transformations and Software Components in the
Development of Applications: the DTC Approach. Int. Conf. on Software ICS 2000. 16th IFIP
World Comp. Congress. Beijing - China. August 21-25. 2000

[Sierra,01] Sierra, J. L.; Fernández-Valmayor, A.; Fernández-Manjón, B.; Navarro, A.
Operationalizing Application Descriptions with DTC: Building Applications with Generalized
Markup Technologies. 13th Int. Conf. on Software Engineering & Knowledge Engineering
SEKE'01. Buenos Aires. Argentina. June 13-15. 2001

[Sierra,02] Sierra, J. L.; Fernández-Manjón, B.; Fernández-Valmayor, A.; Navarro, A. An
Extensible and Modular Processing Model for Document Trees. Extreme Markup Languages
2002. Montreal. Canada. August 4-8. 2002

[Sierra,03] Sierra, J. L.; Fernández-Valmayor, A.; Fernández-Manjón, B.; Navarro, A. Building
Applications with Domain-Specific Markup Languages: A Systematic Approach to the

1323Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

Development of XML-based Software. Third Int. Conf. on Web Engineering ICWE 2003.
Oviedo. July 14-18. 2003

[Sierra,04] Sierra, J. L.; Fernández-Manjón, B.; Fernández-Valmayor, A.; Navarro, A. A
Document-Oriented Approach to the Development of Knowledge-Based Systems. In
Conejo,R.; Urretavizcaya,M.; Pérez-de-la-Cruz,J.L.Current Topics in Artificial
Intelligence.LNAI 2040. Springer-Verlag. 2004

[Steele,90] Steele JR, G.L. Common LISP: The Language (Second Edition). Digital Press.
1990

[Van Deursen,00] Van Deursen, A. Klint, P.Visser, J. Domain-Specific Languages: An
Annotated Bibliography. ACM SIGPLAN Notices. 35(6). 2000.

[W3C] www.w3.org/TR

[Wadler,99] Wadler,P. The next 700 markup languages. Invited Talk of the 2º USENIX Conf.
on Domain Specific Languages. USENIX. Austin. Texas. 1999

[Warnier,81] Warnier,J.D. Logical Construction of Systems. Van Nostrand Reinhold. 1981

1324 Sierra J.L., Fernandez-Valmayor A., Fernandez-Manjon B., Navarro A.: ADDS ...

