
Architectural Abstraction as Transformation of Poset
Labelled Graphs

Mark Denford
(University of Technology, Sydney, Australia

Mark.Denford@uts.edu.au)

Andrew Solomon
(University of Technology, Sydney, Australia

andrews@it.uts.edu.au)

John Leaney
(University of Technology, Sydney, Australia

John.Leaney@uts.edu.au)

Tim O’Neill
(University of Technology, Sydney, Australia

Tim.ONeill@uts.edu.au)

Abstract: The design of large, complex computer based systems, based on their architecture,
will benefit from a formal system that is intuitive, scalable and accessible to practitioners. The
work herein is based in graphs which are an efficient and intuitive way of encoding structure,
the essence of architecture. A model of system architectures and architectural abstraction is
proposed, using poset labelled graphs and their transformations. The poset labelled graph
formalism closely models several important aspects of architectures, namely topology, type and
levels of abstraction. The technical merits of the formalism are discussed in terms of the ability
to express and use domain knowledge to ensure sensible refinements. An abstraction /
refinement calculus is introduced and illustrated with a detailed usage scenario. The paper
concludes with an evaluation of the formalism in terms of its rigour, expressiveness, simplicity
and practicality.

Keywords: Architecture, Refinement, Abstraction, Graphs
Categories: D.2.1, D.2.2, F.3.1, F.4.2

1 Introduction

1.1 Issues with Computer Based Systems

Computer Based Systems (CBSs) are typically large, complex, real-time, highly
functional, resource sharing, distributed systems [Lavi 1991, Lawson, et al. 1999,
Rowe 1999]. Due to the inherent complexity of CBSs they regularly incur long and
difficult design and implementation processes, and the resulting systems often fall
short of the required attributes, especially non-functional attributes (performance,
reliability, openness, security etc). Frequently, these problems result from poor design
[Neumann 2004].

Journal of Universal Computer Science, vol. 10, no. 10 (2004), 1408-1428
submitted: 9/7/04, accepted: 17/10/04, appeared: 28/10/04 © J.UCS

Developing representations of the architecture of CBSs promises to alleviate
some of these problems [Horowitz 1991, Rechtin 1991]. For instance, many non-
functional attributes can be calculated once the architecture of the system is known
[O'Neill, et al. 2000, Payne 1999, Rowe and Leaney 1997], and with a suitable
representation this can be done prior to building the system, when errors are
significantly easier and less costly to fix [Sommerville 2001].

Based on consulting work undertaken by some of the authors with large
Australian organisations [Avolution 2004], a typical architecture would contain
thousands of components of type Database, Application, Server, and Network and
tens of thousands of connections of type Information Flow, Database Request,
Network Connection.

Case studies do exist to demonstrate the successful application of traditional
formal software engineering methods to large scale engineering problems [van
Lamsweerde 2000, Wordsworth 1991]. However, the organisations performing these
case studies are always highly skilled engineering and computer science
organisations. The authors’ consulting work has been with organisations such as
financial services (banks and insurance companies) and fast moving consumer goods
(FMCG). Their experience suggests that these formal methods [Abrial, et al. 1979,
Guttag, et al. 1993, Hoare 1985, Jones 1980] are too complex to be applied usefully in
these organisations. The motivation is thus to develop an appropriate, lightweight,
formal system that can be used by the typical engineer.

1.2 Motivations

The motivations for this work are several. A realistic stance recognises that it is not
possible to fully automate the role of the designer and eliminate the human element
during design. There is a great need for a formal, yet practical system that can be used
by the human designer. One must recognise the difficulties that many practitioners
face in using traditional formal methods based in predicate logic and other similarly
complex mathematics [Abrial, et al. 1979, Guttag, et al. 1993, Hoare 1985, Jones
1980] and this provides part of the motivation for the work presented herein.

One must also recognise the context in which the designer works. No system is
ever built from nothing: in practice the designers will have suggestions for the system
at every level of abstraction [Alexander 1964, McMenamin and Palmer 1984, Ward
and Mellor 1985]. Consequently, the design of a “new” system will often start with
some understanding of the design of other systems. As a consequence, this work is
also motivated by the desire to develop a formalism that allows the designer to begin
their design activities with an architecture at any level of abstraction. The formalism
should also be usable in a variety of different design situations. For example, the
designer may take a concrete architecture and wish to abstract it to an appropriate
level of abstraction where certain analyses and modifications can be made, and then
refine again to a new concrete architecture [Denford, et al. 2003]. The formalism
should support this.

A designer often has expert knowledge of a certain domain, and the work is
motivated by the desire to allow the designer to encode this knowledge within the
constructs of the formalism.

Finally, while the formalism should be practical in nature, and flexible in its use,
it should also be rigorous with respect to the correctness of the architectures being

1409Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

refined. From one level of abstraction to another certain properties of the architectures
should be maintained and the designer should be able to rely on this being the case.
With a formalism that largely concentrates on the structure of the architecture, the
properties that are maintained are statements about the connectedness of the abstract
and refined architectures.

Therefore, the formalism should be practical, flexible, expressive but still
rigorous.

1.3 Informal Notion of Architecture

The IEEE 1471 standard presents an informal definition of architecture, which states
that architecture is: “the fundamental organisation of a system embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution” [IEEE 2000]. IEEE 1471 also states that
“components and connectors may be typed” [IEEE 2000].

1.4 What is to be Formalised

This work aims to formalise two related concepts, both exhibited in the informal
IEEE definition above. The first is to formalise the notion of architecture. The second
is to formalise one of the primary principles in guiding the design of architectures:
architectural refinement. Refinement in this context is the act of taking a high-level
abstract architecture and successively refining it into a concrete and more detailed
architecture. The concept of designing at different levels of abstraction and refining is
understood in many areas of computer science and engineering: for instance program
proving and software development [Abrial, et al. 1979, Ward and Mellor 1985],
software architecture [Bass, et al. 2003], and systems architecture [Rechtin 1991].

It should be noted that architecture is often regarded as more than just structure,
and can also include behavioural and narrative information [Bass, et al. 2003, Shaw
and Garlan 1996]. This work deals mainly with the structural aspects of architecture
and architectural refinement; however, it does model type within the architecture,
which provides some narrative information.

1.5 Related Work

Various models and formalisms for architecture have been presented, though perhaps
without explicit reference to the informal IEEE definition. We give a brief survey this
work, grouped according to its principal concern.

1.5.1 Behaviour

Modelling the behaviour of a system allows for certain analyses such as the detection
of deadlock and livelock. Allen presents a formal model for architecture based on the
WRIGHT architecture description language (ADL) [Allen 1997]. It is a “formal
description of the abstract behaviour of architectural components and connectors”
with behavioural information modelled using communicating sequential processes
(CSP) [Hoare 1985]. Refinement of the architectures is achieved primarily through
refinement of the CSP specifications using mathematical proof obligations. Allen
presents a model of a Client in a Client-Server system however the specification is

1410 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

complex and unintuitive. This tends to discourage the use of this sort of specification
for reasons of practicality. In fact, Allen goes on to highlight that this “simple”
specification is not actually complete, and the complete specification is more complex
still.

1.5.2 Dynamic Structure

Many architectures change at runtime: components and connections may be
dynamically created, bound, and destroyed. This is referred to as the dynamic
structure of the system. Bolusset and Oquendo [Bolusset and Oquendo 2002] model
architectures using an ADL based on the pi-calculus by Milner [Milner 1993] which
models the dynamic nature of the architecture under runtime reconfiguration.

Le Metayer [Le Metayer 1998] uses graph grammars to formalise architectures
and architectural styles. A grammar defines a language of graphs, and elements of the
language so defined are architectures in that style. The “coordinator” part of the
grammar is devoted to reconfiguring the architecture as it evolves over time (for
instance, as clients join and leave the system). Degano and Montanari [Degano and
Montanari 1987] also deal with dynamic reconfiguration of architectures represented
as hypergraphs.

Baresi et al. [Baresi, et al. 2004] deal with style based refinement of dynamic
software architectures. The state of a system is represented as a graph while graph
transformations represent state transitions. Style is formalized through type graphs,
and style refinement is effected by partial surjective graph homomorphisms between
the refined and the abstract type graphs, meaning that some architectural elements are
deleted under the transformation. This notion of refinement differs from the one in
this paper where every component of the refined architecture lies ‘within’ some
component of the abstract architecture.

In many instances a CBS and its architecture can be considered as a complex
system and analysed with the same, general machinery as biological, physical and
sociological systems. A treatment of complex systems which is intuitively close to
the present perspective is given by Ehresmann and Vanbremeersch [Ehresmann and
Vanbremeersch 1987] who treat systems as categories, their components as objects
and their connections as arrows. Evolution of systems is then, roughly, a functorial
relationship. Abstraction of a subsystem is its limit, but the conditions (clustering)
under which connections between subsystems are reflected at the level of their limits
is rather more restrictive than the notion in common usage by system architects.

1.5.3 Generic Architectural Transformations

Erdogmus [Erdogmus 1998] formalises box-and-line diagrams using a set-theoretic
model and presents a comprehensive set of transformations of these diagrams, which
encompass virtually all the ways an architecture might be transformed. However, the
set-theoretic definition of the transformations is cumbersome compared to the graph
based definition presented in this paper. Further, there is no explicit interpretation of
these transformations as architectural refinement for the purposes of design.

1411Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

1.5.4 Abstraction and Refinement

Fahmy and Holt [Fahmy and Holt 2000a, Fahmy and Holt 2000b] model architecture
as a graph. Graph rewriting is used to transform the architectures in a variety of
situations: architectural understanding, analysis and modification, however
architectural refinement is not explicitly modelled for the purposes of design. The
notion of abstraction and refinement is lifting (showing) and hiding various existing
elements of the architecture, in contrast with the present treatment where abstraction
is used to encapsulate detail.

Medvidovic and Taylor [Medvidovic and Taylor 2000] present a survey and
comparison of ten different ADLs. Each ADL has a different focus, ranging from
modelling of dynamic behaviour and deadlock detection, to simulation of dynamic
behaviour, to ADLs for certain types and domains of systems, to refinement. Of these,
only SADL [Moriconi and Riemenschneider 1997] is strongly concerned with
refinement. Moriconi [Moriconi, et al. 1995] models the architecture as mathematical
theories, using predicates. Pre-defined and pre-proven rewriting “patterns” are
proposed that can be reused at will by the engineer. However, the patterns illustrated
are very low level (such as turning a pipes and filter pattern into a shared variable in
code) and the research needs to build on this to make higher-level patterns that can be
used freely at an architectural level of abstraction. In addition, the use of predicate-
based mathematical theories results in an architectural model and refinement method
that is not intuitive or practical.

Bolusset and Oquendo [Bolusset and Oquendo 2002] use rewriting logic to model
and perform refinement. An example of a simple refinement (replacing a connection
with a shared resource) using rewriting logic requires 21 rules and 33 equations. It is
evident that the number of rules involved in a more complex refinement would grow
quickly, making the method difficult to scale.

[Section 2] explicitly discusses the architectural concepts to be modelled. The
mathematics of poset-labelled graphs is presented in [Section 3], and an explanation
of how it can be used to model architecture and refinement follows in [Section 4]. We
conclude in [Section 5] with an evaluation of the method and an indication of future
developments in [Section 6].

2 Architectural Concepts to be Modelled

Several characteristics of the architecture of CBSs need to be modelled in order to
develop a formalism that can be of use to the practitioner.

Firstly, any concept of architecture always includes the structure of the system,
and structure primarily consists of the topology of the system. That is, the ability to
specify that certain components connect to each other in certain ways. Therefore, the
formalism must model topology.

Secondly, typing of components and connections is what distinguishes an
architectural model from a graph – it defines the correspondence between a
component or connection and some real world entity. Further, it is clear that topology
alone is not sufficient to uniquely identify architectures. Two architectures may be
topologically identical but represent vastly different systems. For example one star
topology architecture might represent a print server being used by multiple print

1412 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

clients, while another might represent the centralised control of several factory robots
in a manufacturing plant. Typing of components and connections can distinguish
these architectures. As such, typing should be modelled by the formalism.

The successful design of CBSs will be aided by the ability to successively refine a
high level abstract architecture into a low level concrete architecture. That is, to take
an architecture at a high level of abstraction (general), and refine it into an
architecture at a low level of abstraction (detailed). This is an idea well understood in
computer science and engineering [Abrial, et al. 1979, Bass, et al. 2003, Rechtin
1991, Ward and Mellor 1985]. This implies that the formalism must model the
concept of architectures existing at differing levels of abstraction, and given that an
architecture consists of components and connections, this means the typing on
components and connections must exist at different levels of abstraction.

Finally, it has been proposed that refinement is the converse of abstraction
[Miller, et al. 2001] and therefore by having a formal definition of architectural
abstraction one can thus refine. Accordingly, if the formalism supports the ability to
actually abstract an architecture (take a lower level, more concrete architecture, and
abstract it into a higher level, more abstract architecture) then it will also support the
ability to refine.

Therefore, the following concepts related to the architecture of CBSs are to be
modelled by the formalism presented in the following section: topology, type, levels
of abstraction for types, and architectural abstraction.

3 A Formal Definition of Architecture with Types and
Abstraction in the Category Poset-Labelled Graphs

Poset labelled graphs were first studied in [Parisi-Presicce, et al. 1986] and they are
used as the formal basis of the model.

Fix posets Π and Λ . A graph G is a tuple (), , , , ,G G G G G GV E s t π λ where GV and

GE are sets of vertices and edges respectively; , :G G G Gs t E V→ define the source and

target of an edge; and :G GVπ Π→ and :G GEλ Λ→ are labels of the vertices and

edges.
A morphism : G Hφ → of poset labelled graphs is a pair

(): , :V G H E G HV V E Eφ φ→ → such that for all , : (()) (())G G H E V Gx V e E s e s eφ φ∈ ∈ =

and (()) (())H E V Gt e t eφ φ= meaning φ preserves the structure of the graphs; and such

that (()) ()H V Gx xπ φ π≥ and (()) ()H E Ge eλ φ λ≥ which is to say that φ has lax

preservation of the labelling.
It is easy to see that the composition of morphisms (as pairs of functions) is

another morphism. Associativity and identity are inherited from the category of sets
and functions so that poset labelled graphs and their morphisms form a category,
which is denoted by ,GraphΠ Λ .

It is obvious that:

1413Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

Proposition 1. The epis of ,GraphΠ Λ are precisely the arrows φ for which Vφ and

Eφ are both onto, while the monos are the arrows for which they are both injective.

Define an embedding to be a monomorphism :i G H→ which strictly preserves
labels ((()) ()H V Gi x xπ π= and (()) ())H E Gi e eλ λ= . It is routine to show that

embeddings are precisely the regular monos of ,GraphΠ Λ .

3.1 Transforming Poset Labelled Graphs

Let : L Rα → be any arrow of ,GraphΠ Λ and let :i L G→ be an embedding. Then

it is a consequence of [Parisi-Presicce, et al. 1986] Lemma 3.9 that the pushout

L R

G Hϕ

i j

α

Figure 1: Poset labelled graph pushout

exists and that H is the graph obtained by deleting L from G and replacing it with R,
precisely: \ ()H G L RV V i V V= ∪ and \ ()H G L RE E i E E= ∪ , while

1

() if

() () if () ()

(()) otherwise (() ())

R R R

H G G G L

G G L

s e V e E

s e s e V s e i V

i s e s e i Vφ −

∈ ∈⎧
⎪= ∈ ∉⎨
⎪ ∈⎩

Define Gt similarly. For vertices Hx V∈ define

() if \ ()
()

() otherwise
G G L

H
R

x x V i V
x

x

π
π

π
∈⎧= ⎨

⎩

and Hλ similarly. Let j be the obvious inclusion and define ϕ on vertices (and on

edges similarly) by

1

 if \ ()
()

(()) otherwise.
G L

V

x x V i V
x

i x
ϕ

φ −

∈⎧= ⎨
⎩

We then refer to H as the transformation of G by α with embedding i and write
,i

G H
α
⇒ . This is a special case of double-pushout graph rewriting [Parisi-Presicce, et

al. 1986] which also permits for parts of G to be deleted and not replaced by any part
of R. Therefore graph rewriting has the potential to model more general
transformations of architectures than just abstraction, but this is beyond the scope of
the present work.

1414 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

3.2 Architectures and Abstraction

For the purposes of our formal model, we define an architecture to be an object of

,GraphΠ Λ . The poset Π is the set of component types and the poset Λ contains the

connection types. If ' (or)t t Π Λ≤ ∈ we say that the type 't is an abstraction of the

type t .
Let C be a distinguished set of epimorphisms of ,GraphΠ Λ and refer to its

elements as abstraction rules. Given an abstraction rule : L Rα → and an embedding

:i L G→ as in [Fig. 1], then the transformation
,i

G H
α
⇒ is an architectural

abstraction, and we say that H is an abstraction of G and that G is a refinement of H.
Since pushouts preserve epimorphisms, we can see that any : G Hϕ → arising in this

way is again an epimorphism. Therefore we can regard abstraction transformations as
special epimorphisms respecting structure as defined by the abstraction rules. We will

also refer to a sequence
1 1 2 2 ,, ,

1 ...
k kii i

G G H
φφ φ

⇒ ⇒ ⇒ of abstractions as an architectural

abstraction.

3.3 How the Formalism is Coupled to the Real-World

In [Section 2] it was stated that the following architectural concepts should be
modelled: topology, type, levels of abstraction for types, and architectural
abstraction.

As previously stated, the underlying principle is that the entire formalism should
be tightly coupled with “real world” aspects of the architectural design process such
that it is immediately obvious what any of the mathematical constructs are intended to
model.

Topology is modelled by the graphs themselves. A graph consists of vertices,
which model the components, and edges, which model the connections. Type is
modelled by the labels on the graphs. Levels of abstraction for types are modelled by
the fact that the labels (types) are elements of a poset, which is ordered according to
levels of abstraction, and architectural abstraction is modelled explicitly by the
abstraction rules. It is hoped that this correspondence between the formalism and the
architectural constructs is clear, unambiguous and easy to use.

3.4 Technical Features of the Model

Once appropriate component types, connection types and abstraction rules are
selected for a particular domain, the definitions above constrain the notions of
architectural abstraction and refinement in useful ways. Consider the following simple
example from the domain of ‘office automation’ with component and connection type
hierarchies (posets) as depicted below:

1415Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

Client/Server
System

Client Server

Print
Server

Print
Client

File
Client

File
Server

Π
Connection

Request Response

Λ

Figure 2:Client / Server system posets

together with the following (infinite) abstraction rule sets:

Client

Server

Client

Client /
Server
System

1…*

1 2

3

1,2,3
x:

Responsea:
Request

b:
Request

y:
Response

a,b,x,y:
Connection

File Client

File Server

ClientFile Client

Server

1…*

1 2

3

1,2

3

x:
Responsea:

Request
b:

Request

y:
Response

a,b:
Request

x,y:
Response

Print Client

Print Server

ClientPrint Client

Server

1…*

1 2

3

1,2

3

x:
Responsea:

Request
b:

Request

y:
Response

a,b:
Request

x,y:
Response

Figure 3: Abstraction rules for Client/Server System

Now we are able to illustrate the following features of our formal system.

3.4.1 Architectural Abstraction is Stronger than Type Abstraction

Abstracting only types, one could start with the architecture:

Print Client Print Server

Request

Response

Figure 4: A valid Print-Client / Print-Server Architecture

and abstracting only the type of the 'Print Client' component, arrive at

1416 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

Client/
Server
System

Print Server

Request

Response

Figure 5: Invalid abstraction of Print-Client / Print-Server

which is clearly an inaccurate model of the application originally described. This
model cannot arise as an abstraction of the original architecture through application of
the abstraction rules above.

3.4.2 Architectural Abstraction is Stronger than Epimorphism

If we were to admit any epimorphism between poset labelled graphs as an
architectural abstraction, then

Print Client File Server

Request

Response

Figure 6: Invalid refinement of Client / Server System

would be a refinement of

Client /
Server
System

Connection

Figure 7: Client / Server System

However using the abstraction rules selected for this domain, no such absurd
architecture may arise as a refinement of client-server system.

3.4.3 Architectural Refinement as a Faithful Interpretation of Architectural
Theories

In [Moriconi, et al. 1995] architectures are considered as logical theories, and a
refinement is a faithful interpretation from the abstract theory into the concrete. This
encodes two conditions that one would wish to impose on any reasonable notion of
refinement, namely:

1417Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

• The fact that refinement is an interpretation means that if a sentence is true
of the abstract architecture, then its interpretation is true of the refined
architecture.

• The faithfulness condition means that if a sentence is not true of the abstract
architecture, then its interpretation is not true of the concrete architecture.

Since the sentences in [Moriconi, et al. 1995] refer to connectedness of components,
these conditions translate to the present graph-theoretic setting as:

• Homomorphism: If two components are connected in the refined
architecture, then their abstractions are connected in the abstract architecture.
This is the contrapositive of the faithfulness condition.

• Epimorphism: If two components are connected in the abstract architecture,
then there is some direct connection between components of the subsystems
they represent. This corresponds to refinement being an interpretation of
theories.

4 Usage of the Model

This section illustrates the usage of the formalism presented in [Section 3]. The usage
scenario shows the tasks involved for a team entrusted with the task of designing a
customer relationship management (CRM) system for use within a customer facing
organisation. As the section proceeds, the story will be further narrated.

There are two distinct tasks that must be performed in order to use the poset
labelled graph formalism. The first is the task of developing: the posets of types for
components and connections (Π and Λ respectively, from [Section 3]); the set of
abstraction rules (C from [Section 3.2]); and, an initial abstract architecture of the
system. Once this is done, the second task is to propose refined architectures and
check whether they are valid refinements of the abstract architecture.

4.1 Task 1 – Prepare Posets, Rules and Initial Abstract Architecture

Task 1 would normally be performed by one or more people with knowledge of the
domain (domain experts) as it requires them to analyse and determine: the types of
components and connections that will exist in the system at varying levels of
abstraction; the valid abstraction rules; and a sensible initial abstract architecture.

4.1.1 Developing the Posets

Firstly, one needs to determine the types of components and connections within the
domain (CRM system) and place them into posets. For the purposes of this
illustration, only the component type poset (Π) will be developed. The connection
type poset is assumed to exist but with only one element, ‘Uses’. Accordingly, all
connections in the architectures are assumed to be of type ‘Uses’, as in “component x
uses component y”.

As previously stated, the main objective of the design activity is to design a CRM
system for use within an organisation with customers. The domain experts begin their
analysis of the domain and realise that the overall ‘System’ would consist of
‘Customers’, ‘Internal Reports Departments’ (i.e. people within the organisation who

1418 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

wish to use and gather information from the CRM system) and the ‘CRM System’
itself. Already four component types have been identified.

Further, the domain experts realise that, given the size of the organisation, there
may be more than one ‘Internal Reports Department’ that would wish to use the
CRM System. Therefore they create another type, ‘Internal Reports Department’ and
designate it as a refinement of ‘Internal Reports Departments’ (note the singular and
the plural, representing different component types).

Understanding the likely component types that would be used to construct a CRM
System, the domain experts decide that the CRM system could be modelled as some
kind of component that would store and routinely manage the CRM data, and they
designate this component type ‘Data Storage and Processing’. To facilitate the use of
the system (by customers and internal reports departments) the experts decide that
some kind of component is needed that allows the users to interact with the system.
They designate these components to be of type ‘Online Application’.

Finally, the domain experts decide that a ‘Data Storage and Processing
component’ would in reality consist of ‘Database’ components (to store the data) and
‘Batch Application’ components (to manipulate and manage the data).

The result of this analysis is that a Hasse diagram for the poset can be drawn:

System

CRM System Internal Reports
Departments

Internal Reports
Department

Data Storage
and Processing

Online
Application

Batch
Application Database

Customers

Π

Figure 8: Hasse diagram of componenet types

It is important to note that this structure does not represent an architecture. It is a
diagrammatic representation of the poset of component types (Π).

4.1.2 Developing the Abstraction Rules

Now that the posets are established, the domain experts can begin to formulate the set
of abstraction rules (C). These rules are shown in the following figure.

1419Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

Type:y

Type:x

4

a;
Type:z

b;
Type:z

Type:y

Type:x

a,b;
Type:z

2

1

2

1

Batch
Application

Database

a

Batch
Application

b

Data
Storage and
Processing

3

1…*

1 2

3

1,2,3

a,b

Online
Application

Data
Storage and
Processing

a

Online
Application

b
CRM

System

2

1…*

a,b

1 2

3

1,2,3

Internal
Reports

Department

CRM
System

a

Internal
Reports

Departments

Internal
Reports

Department

b

CRM
System

a,b

1

1…*

1 2

3

1,2

3

Figure 9: Abstraction rules

In the above figure, the “1…*” notation indicates an infinite set of rules. Using
Rule 1 as an example, this translates to having a separate rule for 1, 2, 3 (and so on)
‘Internal Reports Department’ components being connected to a ‘CRM System’
component. This is more an issue if the formalism is automated, for example with a
program like AGG [AGG 2002] where each rule would have to be entered. In practice
one would simply enter enough rules with a reasonable upper bound and use a “pre-
processor” to do this.

Rule 4 represents a meta-rule, where x, y and a are variables. The rule can be
instantiated with any component types for x and y, and any connection type for a. The
rule essentially states that any two components connected by two connections of the
same type, in the same direction, may be abstracted to those two components
connected by only one connection. The use of Rule 4 is illustrated in [Section 4.2.2].

The rationale for developing Rule 1 is that ‘Internal Reports Department’ is a
refinement of ‘Internal Reports Departments’ and that both would connect to (i.e. use)
the ‘CRM System’.

The rationale for developing Rule 2 was hinted at in [Section 4.1.1] when the
types were created, when the domain experts realised that a ‘CRM System’ could be
modelled as an ‘Online Application’ connected to a ‘Data Storage and Processing’
component. Further, multiple ‘Online Application’ components may be connected to
a ‘Data Storage and Processing’ component to facilitate different types of interactions
with the ‘Data Storage and Processing’ component, for example: updating customer
details versus reporting on customer demographics.

The rationale for developing Rule 3 is similar to that of Rule 2, except this time
realising that a ‘Data Storage and Processing’ component could be modelled as a
‘Database’ connected to multiple ‘Batch Application’ components, to facilitate
different types of data manipulation and processing, for example a month end
processing of customer loyalty points versus processing to calculate demographic
data.

1420 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

4.1.3 Developing the Initial Abstract Architecture

Finally, before the designer may begin to propose architectures, an initial abstract
architecture must be developed such that the designer knows the starting point. The
initial abstract architecture is hinted at during the domain analysis of [Section 4.1.1],
and is as follows:

Internal
Reports

Departments

CRM
SystemCustomers

Figure 10: Initial abstract architecture

Note that each component in our architectures may be taken to have a self-
connection (loop) of type ‘Uses’ which will be omitted from the diagrams. This
connection will be the image of any connections within a subsystem which is
abstracted to the component.

4.2 Task 2 – Propose Refined Architectures and Check

Task 2 would normally be performed by a person (the designer) with knowledge of
the types available in the domain. This person may or may not be one of the domain
experts, and if they are not, then the types can be communicated by the posets
developed in Task 1.

4.2.1 Proposing Refined Architectures

This activity must assume some basic requirements or expectations of the system (full
requirements analysis and specification is outside the scope of this work and this
illustration), as well as the initial abstract architecture (see [Fig. 10]). For this usage
scenario, the following basic requirements are given to the designer:

• There are two internal reports departments who wish to use the system. The
first must be able to view reports on customer demographics, and the second
must also view these reports but also be able to generate quarterly letters to
be sent to customers regarding their “customer loyalty scheme” points;

• Customers must be able to update their own details;
• Customers must be able to view their “customer loyalty scheme” points;
• The system must be able to calculate demographic trends based on the stored

CRM data.
Based on these, the designer may propose the following architecture as a valid

refinement, or design, of the system to fulfil all requirements.

1421Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

Internal
Reports

Department
1

Internal
Reports

Department
2

Database 1

Batch
Application 2

Batch
Application 1

Batch
Application 3

Online
Application 1

Online
Application 4

Online
Application 3

Online
Application 2

Customers 1

Figure 11: Proposed refined architecture

The notation used in the architectures is “<component type> <number>”. This
notation is used firstly to identify the type of each component, and secondly to
differentiate different instances of components of a particular type. Note that the
meaning of the rounded box around the ‘Batch Application’ and ‘Database’
components is explained in the following section.

The designer provides the following rationale behind this design:
• Database 1 stores all the CRM data;
• Online Application 1 generates the customer loyalty letters;
• Online Application 2 reports on customer demographics;
• Online Application 3 allows customers to view their loyalty scheme points;
• Online Application 4 allows customers to update their details;
• Batch Application 1 receives the customer updates and accordingly updates

the database. It is also used by Batch Application 2, which receives the
customer updates, calculates related demographic data, and updates the
database.

• Batch Application 3 performs other trending and analysis on the customer
demographic data in the database.

4.2.2 Checking if the Refined Architectures are Valid

The final step is to apply the abstraction rules to the refined architecture to determine
whether or not it can be transformed back into the abstract architecture, i.e. whether or
not it is a valid refinement.

1422 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

Internal
Reports

Department
1

Internal
Reports

Department
2

Data
Storage and
Processing

1

Online
Application 1

Online
Application 4

Online
Application 3

Online
Application 2

Customers 1

Figure 12: Architecture after applying Rule 3

In the Figure above, Rule 3 has been applied to the refined architecture in [Fig.
11]. The circled components in [Fig. 11] are the components that are matched by the
left-hand side of Rule 3 such that the ‘Batch Application’ components connected to
the ‘Database’ are replaced by ‘Data Storage and Processing 1’, producing [Fig. 12].

Internal
Reports

Department
1

Internal
Reports

Department
2

CRM
System 1

Customers 1

Figure 13: Architecture after applying Rule 2

In the Figure above, Rule 2 has been applied to the architecture shown in [Fig.
12]. The circled components in [Fig. 12] are the components that are matched by the
left-hand side of Rule 2 such that the ‘Online Application’ components connected to
the ‘Data Storage and Processing’ component are replaced by ‘CRM System 1’,
producing [Fig. 13]. It should be noted at this point that when Rule 2 is applied to the
architecture in [Fig. 12] two connections exist between ‘Internal Reports Department
1’ and ‘CRM System 1’ and there are also two connections between ‘Customers 1’
and ‘CRM System 1’.

This sort of situation is likely to arise often, and is handled by Rule 4. The rule
would be instantiated twice. Once with x replaced by ‘Internal Reports Department’
and y replaced by ‘CRM System’, and once with x replaced by ‘Customers’ and y
replaced by ‘CRM System’. In both cases a is replaced by ‘Uses’ as this is the only
connection type in this example. These two instances of Rule 4 are assumed to have
been applied to the architecture in [Fig. 12] in order to eliminate the multiple
connections and produce the architecture in [Fig. 13].

1423Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

Internal
Reports

Departments
1

CRM
System 1Customers 1

Figure 14: Architecture after applying Rule 1

Finally, in the above figure, Rule 1 has been applied to the architecture shown in
[Fig. 13]. The circled components in [Fig. 13] are the components that are matched by
the left-hand side of Rule 1 such that the two ‘Internal Reports Department’
components connected to the ‘CRM System’ are replaced by one ‘Internal Reports
Departments 1’ component connected to ‘CRM System 1’, producing [Fig. 14].

By comparing the architecture in [Fig. 14] to the initial proposed abstract
architecture in [Fig. 10], and bearing in mind the “<component type> <number>”
notation, it is evident that the two architectures are the same and therefore it can be
concluded that the proposed refined architecture of [Fig. 11] is indeed a valid
refinement.

This concludes the illustration of how the formalism can be set up and used in a
real-world situation.

5 Evaluation

The formal framework presented is an architectural modelling language and a
calculus for transforming between models of the same system at different levels of
abstraction. This framework is intended to have the following properties:

• rigorous: using the calculus ensures models at different levels of abstraction
are coherent as descriptions of a system (see [Section 3.4.3])

• expressive: knowledge of the application domain can be encoded in the
calculus to constrain transformations.

• simple: the formal concepts required to use the framework are within the
reach of most practitioners

• practical: lightweight enough to be applied without any special tools and
without being disproportionately time consuming.

We now evaluate the present work in terms of these criteria.

5.1 Simplicity

Architecture for our purposes is taken to mean type (of components and connections)
and topology (which components are directly connected, and in what way). Types of
components and connections are arranged in hierarchies, and are used to establish a
semantic mapping into the “real-world’. It models refinement as decomposition of
components into subsystems, and abstraction as encapsulating subsystems into
components. This is in contrast with the Fahmy and Holt notion of abstraction as
information hiding [Fahmy and Holt 2000a, Fahmy and Holt 2000b], which is simple,
but less useful for dealing with large systems. The mathematical definitions
associated with the category of poset labelled graphs are compact, and intuitive with a
certain amount of practice – most of the authors are non-mathematicians.

1424 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

5.2 Practicality

Like [Erdogmus 1998] and [Fahmy and Holt 2000a, Fahmy and Holt 2000b] our
formalism is graphical, making it quick and intuitive to read and write as the reader
will readily see from [Section 4], and as some of the authors can attest, from use
within their consulting work. This is in marked contrast with much of the work in this
area, for instance Moriconi [Moriconi, et al. 1995], where ADLs are first order
predicate languages, which impose an unreasonable burden of time and concentration
on the reader to understand.

Unlike Erdogmus [Erdogmus 1998] and Le Metayer [Le Metayer 1998], the
transformations used are based on the simple concept of a graph pushout which can
easily be applied by hand (although these computations can certainly be performed
using a graph calculator such as AGG [AGG 2002]).

It is important to note that the transformations used in this paper all act on the
architecture locally, unlike when type-graphs are involved [Baresi, et al. 2004] where
everything of a given type will be transformed simultaneously. This means that large
architectures may be manipulated by focussing only on the subsystems of interest.

5.3 Rigor and Expressiveness

[Section 3.4] illustrates how rules can be used to express domain knowledge as
constraints on transformations, and also shows that defining abstraction as graph
epimorphism ensures coherence of the models at different levels of abstraction. This
is in contrast with previous graph transformation based approaches of Fahmy and
Holt [Fahmy and Holt 2000a, Fahmy and Holt 2000b] and Erdogmus [Erdogmus
1998] which do not seek to ensure that any particular properties are maintained by the
transformations.

6 Future work

Several desirable features of a formal framework have not been incorporated into the
present work. Specifically:

• There is no way of expressing rules which constrain the form of an
architectural model. Within the present framework it is quite possible to
write down an architecture in which a print-client makes requests to a file-
server instead of a print server (see [Section 3.4]), although the present
formalism will determine that such an architecture is not a valid refinement
of client/server system.

• There is no way of ensuring coherence of the level of abstraction across an
architecture – if you abstract one (print-client → print-server) pair into a
client-server system, you should abstract all the print-clients connected to
that print server.

Future work addressing these issues will necessarily be directed toward an
automated system so that these added constraints are maintained by a program, and a
designer may:

• request the application of an abstraction rule to an architecture, and allow the
program to compute the abstracted architecture;

1425Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

• propose an abstraction relationship between two architectures and allow the
computer to determine whether (possibly multiple) applications of
abstraction rules suffice to derive one architecture from the other.

As this work goes forward, the major challenge will be to formalize and automate
architectural transformation in a way which will guide and reinforce the engineer’s
intuition.

Acknowledgements

Funding for this work was furnished in part by the Australian Research Council
(ARC) in the form of an Australian Postgraduate Award (APA) scholarship for Mark
Denford, and in part from Avolution Pty. Ltd. as part of a joint project. The second
author acknowledges helpful discussions with Dr. Steve Lack, and also with Professor
Hartmut Ehrig, Olga Runge and Dr. Gabriele Taentzer while on sabbatical at the
Technische Universität Berlin.

References

[Abrial, et al. 1979] Abrial, J. R., Schuman, S. A., and Meyer, B.: "Specification Language Z";
Massachusetts Computer Associates Inc., Boston (1979)

[AGG 2002] AGG, "The Attributed Graph Grammar System, http://tfs.cs.tu-berlin.de/agg/":
Institut für Softwaretechnik und Theoretische Informatik, Fakultät IV - Elektrotechnik und
Informatik, Technische Universität Berlin, (2002).

[Alexander 1964] Alexander, C.: "Notes on the synthesis of form"; Harvard University Press,
Cambridge (1964)

[Allen 1997] Allen, R.: "A Formal Approach to Software Architecture", PhD thesis, Carnegie
Mellon, School of Computer Science, 1997.

[Avolution 2004] Avolution, "ABACUS - Architecture Based Analysis of Complex Systems,
http://www.avolution.com.au", (2004).

[Baresi, et al. 2004] Baresi, L., Heckel, R., et al.: "Style-based refinement of dynamic software
architectures"; Proc. Software Architecture, 2004. WICSA 2004. Proceedings. Fourth Working
IEEE/IFIP Conference on, (2004), 155-164.

[Bass, et al. 2003] Bass, L., Clements, P., and Kazman, R.: "Software architecture in practice";
Addison-Wesley, Reading, Mass. (2003)

[Bolusset and Oquendo 2002] Bolusset, T. and Oquendo, F.: "Formal Refinement of Software
Architectures Based on Rewriting Logic"; Proc. International Workshop on Refinement of
Critical Systems: Methods, Tools and Experience, Gronoble, France (2002)

[Degano and Montanari 1987] Degano, P. and Montanari, U.: "A model for distributed systems
based on graph rewriting"; J. ACM, 34, 2 (1987), 411-449.

[Denford, et al. 2003] Denford, M., O'Neill, T., and Leaney, J.: "Architecture-based design of
computer based systems"; Proc. Engineering of Computer-Based Systems, 2003. Proceedings.
10th IEEE International Conference and Workshop on the, Huntsville, Alabama, USA (2003),
39-46.

1426 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

[Ehresmann and Vanbremeersch 1987] Ehresmann, A. C. and Vanbremeersch, J.-P.:
"Hierarchical Evolutive Systems: A mathematical model for complex systems"; Bulletin of
Mathematical Biology, 49, 1 (1987), 13-50.

[Erdogmus 1998] Erdogmus, H.: "Representing Architectural Evolution"; Proc. Proceedings of
the 1998 conference of the Centre for Advanced Studies on Collaborative research, IBM Press,
Toronto, Ontario, Canada (1998), 159-177.

[Fahmy and Holt 2000a] Fahmy, H. and Holt, R. C.: "Software architecture transformations";
Proc. Proceedings. International Conference on Software Maintenance, 2000., (2000a), 88-96.

[Fahmy and Holt 2000b] Fahmy, H. and Holt, R. C.: "Using graph rewriting to specify software
architectural transformations"; Proc. The Fifteenth IEEE International Conference on
Automated Software Engineering, 2000. Proceedings ASE 2000., (2000b), 187-196.

[Guttag, et al. 1993] Guttag, J. V., Horning, J. J., et al.: "Larch: Languages and Tools for
Formal Specification"; Springer-Verlag, New York, NY (1993)

[Hoare 1985] Hoare, C. A. R.: "Communicating sequential processes"; Prentice/Hall
International, Englewood Cliffs, N.J. (1985)

[Horowitz 1991] Horowitz, B. M., "The importance of architecture in DOD Software," MITRE
Corporation, Bedford, Massachusetts, USA M91-35, 1991.

[IEEE 2000] IEEE, "IEEE Std 1471-2000: IEEE Recommended practice for architectural
description of software-intensive systems", (2000).

[Jones 1980] Jones, C. B.: "Software development : a rigorous approach"; Prentice/Hall
International, Englewood Cliffs, N.J. (1980)

[Lavi 1991] Lavi, J.: "Formal establishment of computer-based systems engineering field
urged"; IEEE Computer, 24, 3 (1991), 105-107.

[Lawson, et al. 1999] Lawson, H. W., Leaney, J., and O'Neill, T.: "Open complex computer
based systems: only the first step along the way to safe, reliable computing"; Proc. Engineering
of Computer-Based Systems, 1999. Proceedings. ECBS '99. IEEE Conference and Workshop
on, Application, (1999), 294-301.

[Le Metayer 1998] Le Metayer, D.: "Describing software architecture styles using graph
grammars"; Ieee Transactions on Software Engineering, 24, 7 (1998), 521-533.

[McMenamin and Palmer 1984] McMenamin, S. M. and Palmer, J. F.: "Essential systems
analysis"; Yourdon Press, Englewood Cliffs (N.J.) (1984)

[Medvidovic and Taylor 2000] Medvidovic, N. and Taylor, R. N.: "A classification and
comparison framework for software architecture description languages"; Software Engineering,
IEEE Transactions on, 26, 1 (2000), 70-93.

[Miller, et al. 2001] Miller, J., Mukerji, J., et al., "Model Driven Architecture (MDA)," Object
Management Group, ORSMC/2001-07-01, 2001.

[Milner 1993] Milner, R., "The polyadic pi-calculus: a tutorial," in Logic and Algebra of
Specification, F. L. Bauer, W. Brauer, and H. Schwichtenberg, Eds.: Springer-Verlag, 1993, pp.
203--246.

[Moriconi, et al. 1995] Moriconi, M., Qian, X., and Riemenschneider, R. A.: "Correct
architecture refinement"; Software Engineering, IEEE Transactions on, 21, 4 (1995), 356-372.

1427Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

[Moriconi and Riemenschneider 1997] Moriconi, M. and Riemenschneider, R. A.,
"Introduction to SADL 1.0: A Language for Specifying Software Architecture Hierarchies,"
SRI International, SRI-CSL-97-01, 1997.

[Neumann 2004] Neumann, P. G., "Forum On Risks To The Public In Computers And Related
Systems (comp.risks) http://www.csl.sri.com/users/risko/risks.txt", vol. 2004: ACM Committee
on Computers and Public Policy, (2004).

[O'Neill, et al. 2000] O'Neill, T., Leaney, J., and Martyn, P.: "Architecture-based performance
analysis of the COLLINS class submarine open system extension (COSE) concept
demonstrator (CD)"; Proc. Engineering of Computer Based Systems, 2000. (ECBS 2000)
Proceedings. Seventh IEEE International Conference and Workshopon the, Practical, (2000),
26-35.

[Parisi-Presicce, et al. 1986] Parisi-Presicce, F., Ehrig, H., and Montanari, U.: "Graph rewriting
with unification and composition. Graph-grammars and their application to computer science";
Lecture Notes in Computer Science, (1986), 496-514.

[Payne 1999] Payne, C. N.: "Using Composition & Refinement to Support Security
Architecture Trade-off Analysis"; Proc. 22nd National Information Systems Security
Conference, NIST, Virginia, USA (1999)

[Rechtin 1991] Rechtin, E.: "Systems architecting : creating and building complex systems";
Prentice Hall, Englewood Cliffs, N.J. (1991)

[Rowe 1999] Rowe, D.: "An Ontological Model of Architectural Change for Computer Based
Systems", Doctoral thesis, University of Technology, Sydney, Sydney1999.

[Rowe and Leaney 1997] Rowe, D. and Leaney, J.: "Evaluating evolvability of computer based
systems architectures-an ontological approach"; Proc. Engineering of Computer-Based
Systems, 1997. Proceedings., International Conference and Workshop on, (1997), 360-367.

[Shaw and Garlan 1996] Shaw, M. and Garlan, D.: "Software architecture : perspectives on an
emerging discipline"; Prentice Hall, Upper Saddle River, N.J. (1996)

[Sommerville 2001] Sommerville, I.: "Software engineering"; Addison-Wesley, Harlow,
England ; New York (2001)

[van Lamsweerde 2000] van Lamsweerde, A.: "Formal specification: a roadmap"; Proc.
Conference on The future of Software engineering, ACM Press, Limerick, Ireland (2000), 147-
159.

[Ward and Mellor 1985] Ward, P. T. and Mellor, S. J.: "Structured development for real-time
systems"; Yourdon Press, New York, N.Y. (1985)

[Wordsworth 1991] Wordsworth, J. B.: "The CICS application programming interface
definition"; Proc. Z User Workshop, Springer-Verlag, Oxford (1991)

1428 Denford M., Solomon A., Leaney J., O’Neill T.: Architectural Abstraction ...

