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Abstract: We concentrate on two major aspects of reactive system design: behavior control
and modularity. These are studied from a formal point of view, within the framework of action
systems. Thetraditional interleaving paradigm is completed with abarrier synchronization mech-
anism. This is achieved by introducing a hew parallel composition operator, applicable to both
discrete and hybrid models. While offering improvements with respect to control and modularity,
the approach uses the correctness preserving mechanisms provided by the underlying reasoning
environment.*
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1 Introduction

The global behavior of a reactive system results from the cooperation of its compo-
nents. Hence, designing for reactivity entails dealing with communi cation, composabil-
ity, concurrency and preemption. Out of these, concurrency isrelated to the fundamental
aspects of systems with multiple, simultaneoudly active computing agents that interact
with one another. The complexity of such systems comes as an inherent byproduct,
which leads further to problems concerning the correctness of the steps performed in
the development flow. On one hand, component-based design is a solution towards par-
tially reducing the task of the designer of complex systems, while on the other hand,
employing formal methodsin system design triesto solve the aspects related to correct-
Ness.

In this study, we tackle problems regarding the design of reactive systems, be they
software or hardware-targeted systems. A feasible design methodol ogy requires the de-
signer to compose the system from paralel concurrent components called modules.
Such modules are modeled here by action systems. We approach aspects of concur-
rency and modular design from the perspective of the system-level integrator that has

L' A shorter version of this study appeared as “Modular Design of Reactive Systems”, in Pro-

ceedings of the 28" Annual International Computer Software and Applications Conference
(COMPSAC 2004), |IEEE Computer Society Press, September 2004, Hong Kong. Pages 265-
271.
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access to alibrary of predefined subsystems. His only task is to appropriately connect
them in order to obtain the system functionality.

Action systems, introduced by Back and Kurki-Suonio [Back and Suonio 1988],
is a state-based formalism, relying on an extended version of Dijkstra's language of
guarded commands [Dijkstra 1976]. Recently, the formalism has been extended to con-
tinuous action systems [Back et al. 2001], which provides a unified framework for han-
dling both discrete and continuous behavior. The higher-order logic of the refinement
calculus [Back and von Wright 1998] is used for reasoning about properties of action
systems and proving that the correctness of the specifications of abstract modules are
preserved by their implementations.

Our favorite formalism uses a built-in interleaving semantics for handling concur-
rency. Parallel behavior is modeled by interleaved actions that can be executed in any
order. This approach goes together with behavioral nondeterminism, as observations
of an interleaved model are sequential, therefore the updates of two systems executing
in parallel may not be consistent over a set of executions [Montanari and Rossi 1995].
Hence, though versatile and general, thisway of modeling large systems can have aneg-
ative impact on the data flow control and the composability of the modules that interact
concurrently. When plugging modules together, we have to specify additional details
about the order in which they exchangeinformation. This requirement may compromise
the data abstraction of the interface of a module. We will illustrate these symptoms by
examples.

In this paper, we provide a solution to the above mentioned problems, by introduc-
ing an additional concurrency mechanism for action systems, namely barrier synchro-
nization, as away to describe controllable behavior. For this purpose, we define a new
parallel composition operator. We show that the concepts that we formulate continue
to rely on the established mathematical techniques of action systems, while providing
the designer with additional means for system development. We also extend the new
method to continuous action systems, since concurrency, in al its flavors, plays a cru-
cial role in rea-time / hybrid systems design, too. Moreover, for the hybrid case, we
propose a new semantics for continuous action systems, which guarantees the absence
of timelocks, both at the action and system level. Fortunately, our goal is completed
by showing that the new virtual execution environment also enhances the capabilities
of our framework, for modular design. Components may be picked up from existing
libraries and just plugged into the system representation. The traditional techniques of
trace refinement [Back and von Wright 1994] are used to ensure that the implementa-
tion is correct with respect to a specification that faithfully captures the system’s global
reaction to all sets of inputs.

We believe that the result of our contribution, that is, the positive effect of the pro-
posed synchronized environments on the design modularity, could aso be applied to
other formal frameworks, to obtain the same benefits.

Related work. The approximation of concurrency by interleaving is used in most pro-
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cess algebras like CSP [Hoare 1984], CCS [Milner 1989], as well as in input-output
automata [Lynch and Tuttle 1989] and UNITY [Chandy and Misra 1988]. The nonde-
terministic behavior induced by the interleaved model requires solutions for controlling
the data flow. However, resolving control issues reduces the design independence across
the different levels of the design process. Several recent studies have analyzed aspects
of control and / or composability within different formal frameworks, al of which deal
with a certain interleaved environment.

The motivation behind the product operator of Milner’s Synchronous Calculus of
Communicating Systems (SCCS) [Milner 1983] is the same as ours, that is, the system
response to stimuli is the composition of the individual reactions of the included sub-
systems. Up to apoint, our approach resembl es the semantics of this operator. However,
in the following sections, the differences become apparent.

The study presented by Treharne and Schneider [ Treharne and Schneider 1999] em-
ploys CSP processes to control B-machines. Butler [Butler 2000] analyzes the impact
of a similar combination on composition related issues. In the latter, synchronization
aspects appear when discussing composability of interacting CSP processes only.

Bellegarde et a. analyze modularity, as afirst concern [Bellegarde et a. 2002], and
define the synchronized parallel composition of event B [Abrial 1996] structures. Syn-
chronization may be specified only for a subset of events. Except for the synchroniza-
tion idea, this approach has several common characteristics with the one taken by Back
and von Wright for action systems, where modularity is analyzed in terms of the usual
parallel composition [Back and von Wright 2003].

Parallel composition of hybrid models has al so been studied extensively. Inthetem-
poral logic of actions (TLA) [Lamport 2002], barrier synchronization is specified as
away of applying non-interleaving to system design, since the author considers that
interleaving “blurs’ the distinction between the components used in design. The com-
position of timed systems expressed as communicating processes is also analyzed by
Bornot and Sifakis, who strive for maximal progress [Bornot and Sifakis 1998]. In our
case, the latter is ensured by the synchronized semantics that we propose.

In our view on reactive systems design, we subscribe to the idea that, while inter-
nally, components may exhibit complex, nondeterministic behaviors, for an observer,
only the external reaction is relevant [Olderog 1989]. Therefore, in the following, we
show how we decrease the external nondeterminism by providing a barrier synchro-
nization mechanism for action systems. This will aso help us to improve modularity
characteristics of the design process, in our framework.

The rest of the paper is organized as follows. In section 2, we briefly give an
overview of the action systems formalism. The execution of action systems, the in-
terleaving model for parallel composition and an illustrative example are outlined in
section 3. Following this, in section 4, we introduce our synchronized model, by defin-
ing the new parallel operator. Refinement notionsand their application to both execution
models are illustrated in section 5. Further, we extend the model of synchronized par-
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alel action systems to continuous action systems, in section 6. In section 7, we discuss
our contribution and show some comparison to other similar approaches. All the proofs
of new theorems and lemmas are given in the Appendix.

2 Action Systems

Back and Kurki-Suonio proposed the action systems formalism, as a framework for
specifying and refining concurrent programs[Back and Suonio 1988]. An action system
(AS) isin general acollection of actions or guarded commands, which are executed one
at atime.

An ASis built according to the following syntax:

A(z:T,) £ begin var z:T, e Init; do A;] ...] A, od end @)

Here, A containsthe declaration of local variablesx (of typeT',.), followed by aninitial-
ization statement Init and the actions A4, ..., A,,. Variables z (of type T,) are global
to the action system. The initialization statement assigns starting values to the global
and local variables. After that, enabled actions are repeatedly chosen and executed. In
this paper, we consider an action A; as being of theform g; — S;. Thus, A; isenabled
and its body S; is executed, when the guard g, evaluates to true. The chosen actions
change the values of the variablesin away that is determined by the action body.

An action system is not usually regarded in isolation, but rather as a part of amore
complex structure, the rest of which, that is, the environment, communicates with the
action system via shared (read and written) variables. In the following, we assume
and extend the notations defined in [Back and Sere 1994]. The set of state variables
accessed by some action A is denoted v A, and is composed of the read variable set of
action A, denoted r A, and the write variable set of action A, denoted wA. We have that
vA = rA U wA. We can aso build the same sets at the system level, considering the
local / global partition of the variables. Thus, for a given action system A, we have the
access set, v.A, split into the global read / write variables, denoted by gr.A/gw.A and
the local read / write variables, denoted by ir.A/lw.A. We say that an action A of A is
global, if gwANwA # (orlocal, if wA C lwA.

A statement .S; is defined by the following grammar:

S; := skip (stuttering, empty statement)
|z:=e ((multiple) assignment)
[ Sisens Sn (sequential composition)
| gm — S| -+ | gn — Sn (nondeterministic choice)
| z:=2".Q (nondeterministic assignment),
where S,,, ..., S, are statements, g,,, ..., g, and @ are predicates (boolean condi-

tions), z a variable or alist of variables, and e an expression or alist of expressions.
Actions can be much more general, but this simple syntax suffices for the purpose of
this paper. A loop can be reduced to iterations [Back and von Wright 1998]. Therefore,
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the while loop is written as while g do S od = do g — S od. In this paper, we do not
consider nested loops.

Statementsin AS are defined by the weakest precondition semantics, consistent with
Dijkstra’s original semantics for the language of guarded commands [Dijkstra 1976].
For statement .S and postcondition @, the formulawp(S, @), called the weakest precon-
dition of S with respect to @, givesthe largest set of initial states from which statement
S is guaranteed to terminate in a state satisfying Q. Here, we assume that all state-
ments are conjunctive predicate transformers (functions from predicates to predicates),
that is, Vp,q @ wp(S, (p A q)) = wp(S,p) A wp(S, q). As an example, the wp of the
nondeterministic choice of n conjunctive predicate transformersis given as:

wp(gr — Si] - [ gn = Sn Q) £ g1 = wp(S1,Q) A ... A gn = WD(Sn, Q)

For statement .S;, wp(S;, false) represents the set of initial states for which S; is
guaranteed to establish any postcondition (even false), that is, behave miraculously. We
take the view that a statement is enabled only in those initia states in which it behaves
non-miraculously. Therefore, the guard of S; is defined as g, L —wp(S;, false).

When at least one action is enabled in a given AS A, we say that A is enabled. We
obtain information about the enabledness of a system A given by (1), by evaluating the
predicate gg, wheregga = \/}_, gk

3 Execution of Action Systems: the Traditional Model

As stated in the original paper of Back and Kurki-Suonio [Back and Suonio 1988], AS
are executed in a sequential manner. Parallel executions are modeled by interleaving
actions.

Execution of Action Systems. Theinitialization placesthe systemsin astable, starting
state. From there, any enabled action may be selected for execution. Only one actionis
chosen, in a (demonically) nondeterministic way. The statementsinsidethe do — od
loop of asystem A, asillustrated by (1), areiterated aslongas gg 4 = true. Termination
isnormal if the exit condition (—gg 4) holds.

Thus, the execution of an AS assumes that there exists a virtual externa entity -
the execution controller (controller in short) - which, at any moment, knows what
actions are enabled. After initialization, the controller, nondeterministically, selects for
execution, any of the enabled actions. After the completion of the action execution, the
system moves to a new state. We call this operation an execution round. Notice that
an execution round is equivalent to the execution of an action. After this, the controller
evaluatesthe new state, observesthe enabled actions and starts another execution round.

3.1 Parallel Composition of Action Systems
L et our protagonists be A and 13, two action systems of the form

A(za) 2 begin var 4 e Inity; do g4 — Sa od end
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B(zp) L begin var g e Initg; do gg — Sp od end
Then, the parallel composition [Back 1990] of A and B isthesystem P = A || B:
P(zp) A begin var xp e Inity ; Initg; doga — Sa] g — Sp od end

The composed action system essentially combines the variables, the initialization state-
ments and the actions of the two subsystems. Theinitialization of the common variables
z must be consistent, that is, they are assigned the same initial values by both initializa-
tion statements, Init 4 and Initg. Some of the previously global variables of A and 1
may become local variables of . We add these to the reunion of the individua local
variables of A and B, thus obtaining the set of local variables of P, x p. The global
variables zp aredefinedas zp £ 24 U zp — zp.

Given the above formalization, A || B is executed by first initializing the local and
global variables, and then interleaving the execution of the enabled actions of A and
B. Termination occurs when both action systems terminate, which means that there is
no enabled action, in neither of the systems, that is, gg 4 V g9 = false. In short, the
controller observes the composition as the single system P.

3.2 Example: A Digital Filter

Let usillustrate the interleaved execution model by asimple, yet relevant example. We
consider the task of modeling a digital filter [Ifeachor and Jervis 1997]. Briefly, afilter
isamodule that takes as input a sequence of samples, performs certain operationson it
and delivers as output a corresponding sequence of samples. The incoming sequenceis
described as X [n], where X is the input signal and » identifies the sample position; a
similar notation appliesto the output signal Y, for which we havethe samplesY'[n]. The
relation between the input and outputisgivenby Y'[n| = 2:)1 hlk] x X [n—k], where
the vector h[0..N — 1] contains the filter coefficients. Hence, apart from the incoming
current sampleof X, NV — 1 previous samples are stored in a buffer and can be accessed

by thefilter. Finally, afilter may have either a software or a hardware implementation.

Filter
X Filter req,, ack
S, | I B o U o Rt
acke| 2 | | P2 | H
5 T ack, H
reqg.ack i req.ackd | Z \W
Fi & . [
reqg.acke, ¥
[ Fl LY [ E ] Y
\—}—‘ H L1 |
(s ackg==="- beemeedirelg,aCKkgererens 4

a) b) c)

Figure 1: Simplefilter representation.



Cerschi Seceleanu C., Seceleanu T.: Synchronization Can Improve Reactive Systems ... 1435

From the above informal description of the filter we can identify two submodules
of such a device: the storage First-In-First-Out (FIFO)-like buffer, and the actual im-
plementation of the filter functionality. In the following, we model the signal source by
system S, the buffer by system B, whereas system F models the ai:tual filter. Thisis

illustrated in Figure 1 a). The complete AS description, thatis, ? = S || B || F, and
the composition elements are given in Figure 2.

$(X :T) B(X,Z[0.N—-2]:T)
2 begin o X := a0; L begin o X, Z[0.N — 2] := z0, 20;
doX :=X'(X'"e€T)od do Z[0],..,Z[N — 2] := X, .., Z[N — 3] od
end end

F(X,Z[0.N —2],Y : T)
beginvar h[0.N —1]: T e
X,Z[O..N - 2],h[0..N - 1]7Y = xo,ZO,ho,yo;
do ¥ := S0 Alk] x Z[k — 1] + h[0] x X od
end
PY:T)
£ beginvar X, Z[0.N —2],h[0.N —1]: T o
X,Z[O..N - 2],h[0..N - 1]7Y = xo,ZO,ho,yo;
do X :=X'.(X"eT)
| Z[0), .., Z[N — 2] := X, .., ZIN — 3]
1Y == hlk] x Z[k — 1] + h[0] x X
od
end

Figure 2: Filter model.

Observefirst that an interleaved execution of 7 would not ensure that every signa
emitted by S is correspondingly received by B and F: several executions of S may be
selected, before any of B or F. Moreover, different values can be assigned to Y for
the same sequence of samples provided by S, depending on the order of selecting for
execution the systems 3 and F. Only one of these results is the correct one.

Both problems may be solved by specifying a certain order in which the submod-
ules of P should be executed. This can be achieved by introducing the communication
variables reqgs, reqr and acks, ackr, and by devising a communication protocol such
that the desired order is enforced. Hence, the systems should know about the status of
the partners, as indicated by the elements of the communication channel. The systems
may be remodeled as in Figure 3, resulting in the block diagram described by Figure
1 b), where the communication variables are shown as dotted lines. Notice that after
emitting one signal sample, the system S, is deactivated, after which F; performsthe
filtering, and then informs 551, by setting reqr := true, that it can perform its opera-
tion. When thisisaccomplished, B; signalsto F; (ackr := true). Next, F; signalsthe
end of the operation, to S, (ackg := true), followed by a couple of roundsfor resetting
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the acknowledge signals ack i, ackgs. Another sample can now be presented by S, and
so on.

Si(reqs,acks,ackg : Bool ; X : T)
A begin e reqg,acks,ackp = false; X := xq;
do —(regs V acks V ackp) — X := X' (X' € Tx) ; reqs := true
| reqs A acks A —ackp — regs 1= false
od
end

Bi(reqr, ackp : Bool ; X, Z[0..N —2]: T)
L begin e reqp,ackp : false; X :=xg; Z[0..N — 2] := zp;
do reqp A\ —ackp — Z[0],..,Z[N — 2] := X, .., Z[N — 3] ; ackp := true
| —reqr A ackp — ackp = false
od
end

Fi(reqs,reqr,acks, ackp : Bool ; X, Z[0.N — 2],Y : T
£ begin var h[0.N — 1] : T e reqs,reqr, acks,ackp = false;
)(7 Z[ON - 2}7 h[ON - 1], Y = L0, 20, ho, Yo,

do reqs A —=(reqp V ackp) — Y := ZQ;I hlk] x Z[k — 1] + h[0] X X ; reqp := true
| reqr A ackp — reqr := false; ackgs := true
| —regs A acks — acks := false

od

end

Figure 3: Communicating models.

Consider further that, in the above example, X isan audio signal and 7, models a
low-passfilter. The output of F; would go to the woofer speaker of one'saudio system.
We would aso like to have a high-pass filter, the output of which would go to the
corresponding speakers of the same audio system. We want to reuse the previously
designed modules and then add one that can detect the high frequencies of theincoming
signal. The high-frequency filter is model ed by the new system M ; - Figure 4.

In order to accommodate the introduction of M 1, the system 3; hasto wait for the

two filtersto read its data, once anew sample has been issued by S; . Consequently, we
have to change the representation of 3;. The same is required for Sy, since it has to
communicate with M, too. The new system B is described in Figure 4.
Discussion. The interleaving model of execution brings the benefit of a very smple
concept. In order to reduce the implicit nondeterministic behavior of the model, in-
appropriate in certain situations, as shown in our example, one may introduce control
channels, to ensure that the data emitted by one source is not missed by any of the
intended targets, or that datais processed in a correct manner.

However, there is another aspect of the problem, not yet solved by the exempli-
fied introduction of the communication channels. An observer of the composed system
Py £ S, | By || Fi || My (the listener, in the example) has access to both output
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M (reqs, requr, acksnr, ackyr = Bool ; X, Z[0..N — 2],W : T)
L begin var h[0..N — 1] : T e reqs,requ, acksn, ackyr = false;
X, Z[0..N — 2], h[0..N — 1], W := x0, 20, ho, Wo;
do regs A —(reqa V ackyr) — W= Zﬁ];ll hlk] x Z[k — 1] + h[0] x X;
reqys = true
| reqns A ackyr — reqar = false ; ackspy = true
| —reqs A acksy — acksa := false
od
end

Ba(reqr, ackp, req, ackys = Bool ; X, Z[0..N — 2] : T')
begin e regs,acks,reqr,ackp : false; X := xg ; Z[0..N — 2] := 20;
do reqp A reqy A —ackp A —acky — Z[0],.., ZIN —2]:= X, .., Z[N — 3];
ackp,ackys = true
| —reqr A —requ A ackp A ackyr — ackp, acky = false
od
end

11>

Figure 4: The systems M and 5.

sequences, Y (n) and W (n) (Figure 1). Depending on the execution order of F; and
M, until the listener observes the new output (Y (n + 1), W(n + 1)), it also observes
the intermediate state, either (Y (n), W(n+1)) or (Y (n+1),W(n)), whichisalsoan
incorrect aspect of the design. A solution is provided, again, by introducing new com-
munication channels, between F; and M, on one side, and the observer, on the other.
What happensif multiple, different observers become necessary in the design?

Any extension / reduction of the design elements requires an internal change of
the involved subsystems. This clearly destroys any hope for a modular design flow
and the reuse of components in future projects. We may assign meanings like “data
valid”, “operation finished”, etc., to the signals of the communication channels, thusthe
interleaved approaches are suitable for asynchronous designs [ Theodoropoul os 2002].
Unfortunately, these signals are global variables of the model. In hardware, generally,
this translates into “more wires’; in software, this violates the principle of information
hiding [Behrends and Stirewalt 2000]. In the following section, we propose a solution
to thiskind of design issues.

4 Synchronized Parallel Environments

Synchronized environment. We want to build an environment in which the response
of the system is a collection of the individual component reactions to the input stim-
uli. The solution that we propose requires that the subsystems synchronize when the
global variables of the compound system are updated. This is achieved by extending
the execution round concept, as described in Section 3, to an execution cycle. A cycle
is defined by the activities carried out by the system between two global states. it isa
sequence of rounds in which each participating AS updates the local variables, as nec-
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essary, followed by a last round, in which, simultaneously, all the global variables are
updated, accordingly. Notice that between rounds, the global state of the system does
not change.

From the controller’spoint of view, we canimaginethefollowing scenario. It selects
for execution an enabled action from one component AS. If the action updates global
variables, the system is marked as “ executed”, and no other action can be selected from
that system. However, the other participants, or possible external observers do not see
the changesyet. Another action is then selected, from an “ unexecuted” AS. The process
continues until all the components are marked “executed”. This also signals the end of
acycle, when al the global variables are updated.

Proper Action Systems. The tranglation of the above scenario into our framework re-
quires certain characteristics for the AS employed in the design. These requirements
are introduced by the following definition.

Definition 1 Consider the action system A

A(z:T.) £ begin var z: T, e Init; dogy, — L | gs — Sod end 2
We say that A isa proper action systemiif:
1. gwA C wS —meaning that S is a global action of A. Notice that wS may also
contain local variables of A.
2. wL C lwA—meaningthat L isalocal action of A.
3. wp(dogr, — Lod,—gr A gs) = true —meaning that the execution of L, taken
separately, terminates, and establishes the precondition for executing S.
Notice that the specification A, as given by Definition 1, encodes more visibly than
(2), the mechanism that triggers the global state changes.

Definition 2 Let us consider n proper action systems (k = 1...n):

Ak (zx) 2 begin var z; e Init; ; dogh — Ly | gg — Si od end,

for whichwe also havethat Vj, k € [1..n],j # ko ((gwA; NgwAr = 0) A (N, 2x =
()). The synchronized parallel composition of the above systems is a new action sys-
temP = At ... 4A,, given by:

P(z) L begin var z : T, sel[l..n] : Bool, run : Nat e Init;

do
ggp — (run = 0 A —sel[l] — sel[l] := true ; run =1
[ run =0 A =selln] — sel[n] := true ; run :=n
| (run=1Ag; — Li] run =1 A =gt A gk — wSic:=wS1 ;5] ;run:=0
| run = 1A —gga, — run:=0)
| run =nA gt — Ly] run =nA-gp A ge — wSpc:=wS, ; S, ;run:=0
| run = n A —gga, — run = 0))
[ sel Arun =0 — Update ; sel := false
od
end

The operator ‘f’ (‘sharp’) is called the synchronized parallel operator.
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The set z of global variables of P is, initially, the union of the global variables
sets of each individual system: z = J, 2x. It may be possible that communication
between several submodules of P (the composing systems .4,) should not be disclosed
at theinterface of P. Therefore, the variables that model such channelswill be hidden
within the system P. They will not be mentioned in z.

Further, the local variables x of the new action system P are the union of the local
variables xj, to which we add the hidden variables. We also add copies (wS';c) of
the original write variables of each action body S.. They replace the original variables
w8}, thereforewe have S, = Sy [wSic/wSy]. Finally, thelist = is completed by adding
the array sel and the execution indicator, run. The predicate gg p isa short notation for
the disjunction of the guards of all the actions in the systems A;: ggp L V71 994,
where gga, = g7 V g5-

The Init statement is the sequential composition of the individual Init; statements
to which we add the initiali zation of variables wS¢, sel and run:

Init 2 Inity ;.. ; Init, ;wSic,..,wSyc := wSy, .., wSy ;run := 0; sel := false

The action Update is given by:

Update £ Updates ;... ; Update,,, where Updatey, L w8y, = wSke.

The above definition of the ‘f' operator says that, whenever there is a change in
the input, such a composition of action systems reacts based on the state of all its
components, and the result is composed of the individua reaction of each of the sub-
systems. The system composition reacts only if at least one component is enabled
(3k € [1..n] e gga, = true). Moving certain variables to the local level, within the
system P, is motivated by the containment of local communication. The variable run
identifies the system that is selected for execution. The variable sel stores the informa-
tion on the executing or already executed systems. Whenever all of the elements of the
array sel become true (sel = sel[1] A .. A sel[n]) and run = 0, we have reached the
end of an execution cycle. At this moment, the assignment sel := false is understood
as ashorthand notation for sel[1] := false;...; sel[n] := false.

The assignment w.Sc := wS}, that precedes the action S}, takes into account that
the (local) variables of wS), could have been also updated by L. As they may aso
belong to » S, their current values must be taken into consideration. In the case when
actions Ly, do not modify 7S}, the presence of this assignment is not necessary. The
same applies when there are no local actionsin a given proper AS.

We may further be able to find useful propertiesfor the system P, expressed by the
following theorem (the proof is shown in Appendix A).

Theorem 1 Assume that the proper action systems .A; and A, are of the form given by
(2). Then, the synchronized parallel composition A ;1.4- satisfies the following proper-
ties:

(a) Az £ Ay isaproper action system  (propernessof f)

(b) A1 § A = Ax Ay (commutativity of )
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The Update Action. In a more general view, we would avoid imposing the restriction
thatVj, k =1...n,j # k.gwA;NgwA;, = (). Designswherethe system models do not
have disjoint sets of global write variables are not necessarily examples of bad designs.
A well known example of such situations is the bus-based design of digital systems,
where multiple participants in the processing effort share a common resource, the bus
lines. Of course, the situation requires a thorough analysis, and there exist multiple
solutions that resolve the inevitable conflicts. Therefore, the action Update might not
be merely the action that updates the respective variables; instead it can rather be the
action that “resolves’ such conflicts. Intuitively, this means that the system P must also
allow the designer to separately specify the action Update. This is subject to further
studies.

4.1 Design Implications

We revisit briefly the example proposed in Section 3.2. Consider that instead of the
parallel composition P = S || B || F, we write the description of our system as P =
S # B F.Itiseasy to check that the components S, B, F are proper AS. Therefore, we
do not have to add communication channels to any of the subsystems, which all remain
asdescribedin Figure 2. Also, in case of asynchronized environment, the multiplicity of
targets stops being an issue for the system P. We can introduce as many F-like systems
asrequired, without modifying 5 or S in order to accommodate the presence of the new
modules. Additionally, an external observer will always observe only the state (Y (n +
1), W(n + 1)), regardless of the order in which the systems F and the corresponding
M (M without the communication variables) are selected for execution.

5 Design Process

Faced with the complexity of modern day devices, the designer of such systems has
to start the design process at higher levels of abstraction, which may provide him with
a simpler model of the whole system. A correct partitioning and identification of the
necessary components is the next step. Crucial to a module-based design context is the
possibility to separately analyze and, if necessary, improve the functionality of the sub-
systems, optimizethem for agiven technol ogy, or map them to existent library elements.
All these actions involve, most usually, certain transformations of the initial represen-
tations. One has to certify that the modifications imposed on the modules represent a
correct transformation of the initial specification, with respect to behavior. Within the
refinement calculus [Back and von Wright 1998], the correctness of such transforma-
tionsis ensured by action-level and system-level refinement rules. In the following, we
firstly introduce the basic notions that help us produce correct-by-construction models,
and then we continue with exemplifications of how the mentioned rules apply to system
design. We analyze the techniques from both an interleaved, and also a synchronized
perspective.
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5.1 Refinement of actionsand AS

A predicate I(vA) — I in short —is an invariant of the action A = g — S, if it holds
prior to and after the execution of A. We then say that I is preserved by A, that is,
g NI = wp(S,I). Atthe system level, apredicate I(v.A) isaninvariant of the AS A,
given by (1), if it is established by Init, that is, true = wp(Init,I), and dso if itis
preserved by each action A;.

An action A is (algorithmically) refined by the action C', written A < C, if, when-
ever A establishes a certain postcondition, so does C' [Back 1990]:

A<SC 2 YQ ewp(4,Q) = wp(C,Q)

Next, let R(a, ¢, z) (sSimply written as R) be a boolean abstraction relation, which
links the abstract local variables a to the concrete local variables ¢. Additionaly, let
I(c, z) beaninvariant of the action C'. Then, action A is data refined by action C using
therelation R and theinvariant I, that is, A <gr ; C, if

VQ e RAIAWDP(A, Q)= wp(C,Ja e RAIAQ),

where @ is a predicate on the variables a, z, and (Ja.R A I A Q) is a predicate on
a,c,z. If R istheidentity relation (R £ a = c), we then write A <; C. Similarly,
if I = true, wewrite A <g C. If both are trivial, we run into the usual agorithmic
refinement of actions, A < C, as defined above.

The semantics of an ASisgivenintermsof behaviors[Back and von Wright 1994].
A behavior of an ASis a sequence of states, b = ((xo, v0), (z1,41) .. .), where each
state has two components. The first component is the local state and the second is the
global state. Behaviors can be finite or infinite. A finite behavior is called terminating
if it endsin a proper state, or aborting if it ends improperly, indicated by the symbol
L. A trace of abehavior is obtained by removing all finite stuttering (no change of the
visible states), and the local state component in each state of a given system.

In ageneral, less forma manner, we say that an action system C refines A, written
as A C C, if every trace of C contains atrace of A. In practice, we use the following
lemmato prove trace refinement of action systems [Back and Sere 1994-2].

Lemmal Given the action systems

begin var a e a,z4 :=ag,z49; do Aod

=
N
&
> 1>

begin var ¢ e ¢,z¢c :=c¢p,2c0; do C'| X od end,

let R(a, ¢, z4, zc) bean abstraction relation and I (¢, z¢) an invariant of the systemC.
The concrete system C (trace) refines the abstract system .4, denoted A C  ; C, if:

1. Initialization: R(ag, co, 240, zc0) A I(co, z2c0) = true

2. Mainaction: A <p; C
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3. Auxiliary action: skip <p 1 X
4. Continuation condition: RA I A gA = gC Vv gX

5. Internal convergence: R A I = wp(do X od , true).

5.2 Refinement Example

L et us see next how the refinement procedureis applied to the design example outlined
in section 3.2. Considering a hardware implementation of our example, a direct map-
ping of the filter functionality on hardware elements (registers, multipliers, adders, etc)
is represented in Figure 5 a). However, characteristic to this implementation of system
F isthe parallel processing and the large area occupied by the hardware elements. A
functionally equivalent implementation (Figure 5 b)) would result from a seria repre-
sentation of the filtering device, which will reguire a more reduced silicon area. We
transform the original system F into Fg, with the AS model givenin Figure 6. Isthisa
correct transformation of F ? Is the whole system still working according to the func-
tional specification ?

z[0] —L Z[0]
*
Y

ZIN-3] | | T Y ZIN-3]

ZIN-1] ZIN-1]

h[0]

el
* |
] h[N-2]

h[N-2] T

St
b1

a) b)

- m temp

step

Figure5: The hardware implementation of the filter Fg.

In isolation, one may prove (see Appendix E), using Lemma 1, that the system F g
isarefinement of F, under the invariant /:

step—1
FC;Fs, I £ stepe[2.N] = temp= Z hlk] x Z[k — 1]
k=1

However, our task is not completed yet. From a system level point of view, we
should check that S || B || F C1 S || B || Fs. Unfortunately, as B does not respect I,
the refinement is not possible (see [Back and von Wright 2003] for details). Thisfact
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Fs(X,Z[0.N —2],Y : T)
begin var h[0..N — 1],temp : T ; step : 0..N o
X, Z,h,Y = xg, 20, ho, yo ; temp := 0 ; step := 0;
do step =0 — temp := 0; step := step+ 1
| step € [1..N — 1] — temp := temp + h[step] x Z[step — 1] ; step := step+ 1
| step=N —Y :=temp+ X x h[0] ; step:=0
od
end

Figure 6: The new system Fg.

has a simple explanation; since the controller may choose an enabled action from either
B or Fg, let us suppose that it chooses only actions from Fg, until step = N, after
which it selects B for execution. Hence, following the update on Z, the invariant 1 is
no longer valid. The solution comes, again, from employing communication channels
as described in section 3.2. Theinvariant I hasto be rewritten so as to take into account
these channels, and the systems will gain some independence in this respect. Still, the
same problems arise when introducing another filtering unit (M), in which case both
the system models and the invariant must be reshaped.

5.3 Refinement of Component Systemsin Synchronized Environments

Definition 3 A predicate I isa proper invariant of a proper system A, if Vz ¢ wS -
gs = (I[w'S/wS, z] = I[w'S/wS]), where w'S' is the new value of wS, after the
execution of S.

The above definition saysthat, following the execution of the global actiong ¢ — S,
the computed value of a proper invariant I depends on the variablesin wS, only. Next,
we give alemmathat can be used to prove trace refinement of proper action systems.

Lemma 2 Given the proper action systems

A(ZA)ébegin vara e a,za := ag, 240 ; do g5 — La] g4 — Sa od end

C(z¢) £ begin var c e ¢, z¢ := cg, 200 ; do g§ — L] g5 — S%] gx — X od end,

let R(a,c,z4,zc) be an abstraction relation and I(c, z¢) a proper invariant of the
system C. The system A is (trace) refined by the systemC, AC g ; C, if:

1. Initialization: R(ao, co, 240, 2c0) A I(co, zco) = true
2. Mainactions: (g3 — La <g, 9 — L'y) A (94 — Sa <gr,1 9§ — S4)
3. Auxiliary action: skip <gp;gx — X

4. Continuation condition: RA T A (g4 V g8) = ¢ vV g§ Vv gx
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5. Properness. RA I = wp(do gx — X[ ¢¢ — Ly od ,—(gx V ¢%) A g§).

Thefirst four requirements of the lemma are adaptations of the original ones (given
by Lemma 1), to our case. The fifth, however, strengthens the original request by spec-
ifying that not only the auxiliary action g x — X, taken in isolation, must terminate,
but also that the new group of local actions, gx — X[ ¢§ — L', must terminate and,
moreover, must also establish the necessary conditionsfor the (possibly) new global ac-
tion g§ — S, to execute. The proof that the above Lemma establishes the conditions
for atrace refinement is given in Appendix B.

5.3.1 Modularity

Along the line established by Lemma 2, we prove the following theorem.

Theorem 2 Consider the synchronized environment P L Ait ... 1A, where each of
the component systems preserves the proper invariants 4, . . ., I,,, respectively. Wethen
havethat I £ I, A... AT, A Niepi.ny(s€l[k] A =(run = k) = I}), where I 2
Iy, [wSyc/wSy], isa proper invariant of P.

The theorem states that in a synchronized environment, the global properties of the
system are obtained from the individual properties of the components, as I = I A
... N I,,. The additional terms of I help us make the connection between the copies of
the write variables and the respective original variables, at the moment when the action
Update is executed. The theorem is proved in Appendix C.

Corollary 1 Consider the proper action systems .4, asin Definition 2, and the abstrac-
tion relation R ;. Moreover, the system A preserves its respective proper invariant ;.
Then
A; CR;.1, 'A/i
A BAE B AL TRy Au - BANE A,

The statement of the corollary follows from Theorem 2 and Lemma 2 (see Appendix
D).

Theinterpretation of Corollary 1 isthat each component of a synchronized parallel
composition may be refined in isolation, without knowledge about the invariants of the
other components. The system designer may then empl oy the moduleswithout knowing
their respective internal details of functionality. The module designer is responsible
with improving the performance of the modules, in total transparency for the integrator
designer. Thisis a consequence of the fact that the systems exchange information at the
end of an execution cycle, rather than after each execution round. Observe thet, if I ; is
anew invariant for A’;, it will just be a new entry in the definition of 7, as specified by
Theorem 2.

A similar conclusion as ours is reached in [Back and von Wright 2003] for the
parallel composition of AS. However, thisis achieved while requiring that the invariants

Viel...n]
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of al the subsystems are known, and a noninterference relation between them proves
to hold. The corresponding noninterference condition corresponds to our requirement
thet the invariant I; is proper. Still, checking the properness of an invariant concerns
the respective modul e designer only, who does not have to obtain information about the
other invariants. Therefore, we have increased the independence of the module designer.

5.4 Refinement Example

Considering the analysis presented in section 5.2, if we check F C ; Fg in the context
of Lemma 2, meaning that we adopt a synchronized perspective on the subsystem com-
position, we will immediately obtainthat S B F C; St B ff Fs (notice that Fg
isaproper AS). Besides this, a previous addition of module M would not change the
refinement, and we couldhave S § B FE M C; S Bt Fs ff M.

6 ContinuousAction Systems
A continuous action system (in short, CAS) [Back et a. 2001] is of the form

C(z:Realy = T,) £ begin varz : Realy — T, o Init;
dogi — Si] ...] gm — Sm od end

Here, Real . stands for the non-negativereals, and models the time domain.

The execution of a CAS uses an implicit variable now, which denotes the present
time. The actions may refer the value of now, but they can not change it. After the
initiali zation, the system starts evolving, with time (measured by now) moving forward
continuously. The execution of a CASresemblesclosely that of an ordinary AS, withthe
differencethat, after the changes stipulated by S'; have been done, the system evolvesto
the next time instance when one of the actionsis enabled. We write x : — e rather than
x := e, to emphasize that only the future behavior of the variables z is changed.

We explain the meaning of C by trandating it into an ordinary (discrete) AS, C:

C(z) £ begin var now : Real,z : Real, — T, ® now :=0; Init; N ;
do g1.now — S1; N|...| gm-now — Sy, ; N od 3
end
N £ now = next.ggc.now,
{mz’n{t’ >t | ggot'}, if existst’ > t suchthat ggo.t/,

1>

next. 1 .
g9¢c t, otherwise

In C, the variable now is declared, initialized and updated explicitly. It models the
starting time and the succeeding moments when some action is enabled. The value of a
variable v or of an expression e at a given moment of time ¢ isidentified by v.t or e.t,
respectively. Their values at the current moment are consequently given by v.now and
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e.now. The value of now is updated by the statement V. The function next gives the
minimum moment of time when at least one action is enabled. If, after some point in
time, no action is ever enabled, the second branch of the definition will be followed, and
now Will denote the moment of time when the last discrete action has been executed,
the system terminating with the last assigned values for the variables.

Parallel CAS - Traditional Model. The parallel composition of two or more CAS
is defined by using the same method as for composing ordinary AS: it combines the
variables and the actions of the component systems, executing the enabled actionsin an
interleaved manner. One needs to combine the component CAS before transl ating them
into discrete action systems, to ensure that the composed system uses a unique now
variable.

Remarks. Theoriginal semanticsof CAS, asgiven by (3), does not guaranteeatimel ock
free model of the hybrid system in question. This claim is supported by the definition
of the statement NV itself. In order to advance time, the virtual controller calculates the
minimum moment of time greater than or equal to the current value of now, when the
disunction of the guards holds. This meansthat certain actions could be executed more
than once at the same moment of time. Therefore, they might never become disabled,
with time locked at now. Thus, the system is prevented from evolving, yet it does not
terminate. In consegquence, we may be faced with the situation of executing some action
forever, without advancing time. We call this situation atimelock. As an example, we
consider the following action system.

S(6 : Real; — Real) £ begin var now : Real; ® now :=0;0: —(At-4xt); N
do f.now =10 —
0:—(\t-0.now — 2 (t —now)) ; N
| 6.now =5 —
0:—(\t-0.now+ 3% (t —now)) ; N
od end

In the model above, the guard of the first action (that decreases the temperature 6)
remains true after having executed the corresponding action body. This happens be-
cause the next minimum moment of time when an action is enabled is the same as the
previous one (a now, 6.t = 6.now = 10). Therefore, looping in the same state at the
same moment of time goes on forever, thus the temperature never gets the chance to
increase again, and the AS does not terminate. Simulating such modelsis not possible.
This kind of problem can be avoided by disabling each action after it was executed at
moment now. Thus, we add a state variable that stores the current state of the system
(state.now), and aso the different future state. However, this solution works well for
systems with a small number of states, but it might be difficult to apply to systems hav-
ing alarge number of states. In the latter case, determining the next state of the system,
based on the information given by the values of the guards at time point now, could bea
heavy, if not impossibletask for the modeler. Therefore, we propose a generic modeling
solution that fixes the mentioned problem of the original CAS semantics.
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Timed Action Systems as New CAS Semantics. We trandate a CAS into a Timed
Action System (TAS) as follows.

C(z: Realy — T)
L begin var now, now, : Real;,x : Realy — Ty,

UL, ..., Uy : Realy — Bool e

now := 0; Init ; uy, ..., um : —(At - false) ; N ; now. := now;

do —uy.now A gr.now — uy : —(At - true) ; Sy ; N @
[ —Um.now A gm.now — wy, : —(At - true) ; Sy ; N
| now # nowe — uy, ..., um : —(Xt - false) ; now. := now

od

end
Thevariablesuy, ..., un,, in (4), force the system to execute each action only once

at the same moment of time, by disabling the respective action. In thisway, we prevent
timelocks at the action level. We aso use the copy of the variable now, now., to be
able to store both the previous (now.), and the current (now) moments of time when
the system has taken a discrete transition. In order to avoid timelocks at the system
level, we reset the variables u1, . . ., u,, (m - the number of actions), thus enabling a
new execution cycle, only if the currently computed value of now is different from the
previous one, stored in now,. In this way, the system continues its execution only if
time progresses, otherwise it terminates.

Synchronized Parallel CAS. In this paragraph, we give semantics to the synchronized
composition of CAS, which is similar in spirit to the one defined for the discrete case,
yet bearing its own particular features.

Firstly, we introduce the proper continuous action systems (PCAS):

A(z : Realy — T,) (5)

2 beginvarz : Realy — T, o Init; dogy — L] gs — S od end
Observe that in (5), we have separated the local actions from the global actions, as we
have also done for proper AS. Moreover, we impose similar requirements as stated by

Definition 1.
We explain the meaning of a PCAS by trandating it into the following TAS:

A(z : Realy — T)
£ begin var now, now, : Real,x : Real, — T,
ur,us : Realy — Bool e
now := 0; Init ; ur,us : —(At - false) ; N ; now. := now;
do ~uy.now A gp.now — ur, : — (Mt - true) ; L; N (6)
| ~us.now A gs.now — ug : —(At - true) ; S; N
| now # now. — ur,us : —(At - false) ; now. := now
od
end
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Further, let us consider n PCAS of the form given by (5). Their synchronized par-
allel composition isanew system, P = A, § ... §A,. ltssemanticsis defined in Fig-
ure 7. Apart from the specific differences due to using proper CAS rather than proper
AS, the synchronized parallel composition of PCAS does not need the test of gg p (as
in the discrete version) upon the entrance of the loop. Thisis motivated by the fact that
P cannot execute skip actions forever.

1>

Init
Update
Sk
9gAay

P(z: Realy — T)

begin var x : Realy — Ty, sel[l..n],ul, ..., u% : Realy — Bool,
run : Realy — Nat, now,now,. : Real; e

now = 0; Init ; N ; now. := now;

do

run.now = 0 A —sel[l].now — sel[l]:— (Mt - true) ; run:— (At - 1)

...

| run.now = 0 A =sel[n].now — sel[n] :— (At - true) ;run:— (At - n)

| (run.now = 1 A —uk.now A gt .now — Ly ;ut :— (Mt - true) ; N

run.now = 1 A ~ug.now N\ =gy.now A gg.now — wo1C:— wWd1;97;
1A -l b L Sic:i-wSy;S;
run:— (M- 0);uf:— (M- true) ; N
run.now = 1 A ~ug.now A\ —gga, .now — run :— -0);
1 L A . At -0
ug :— (Mt - true) ; N)

| (run.now = n A —~u .now A gf.now — Ly, ;ul :— (At - true) ; N

| run.now = n A —u.now A —gf.now A ge.now — wSpe:— wSy;Sh;
run:— (At -0);ud:— (At -true) ; N

| run.now = n A —ud.now A —gga, .now — run :— (At - 0);
ug :— (At -true) ; N)

| sel.now A run.now = 0 A now, # now — Update ; sel : — (At - false);

u}n Ces UG (Mt - false) ; now,. := now

| sel.now A run.now = 0 A nowc = now — Update

od
end

> 11> >

Inity ;... ; Init, ;wSic, ..., wS,c:— wSy, ..., wSy, ;run:— (At-0);
sel,uk, ..., u:— (\t- false)

Updates ; ...; Update,, where Updatey 2 wSg :— wSkc

Sk[wSkc/wSk.]

g5 v g%

Figure 7: Synchronized parallel composition of PCAS.

In subsection 6.1, we present an example of a simple linear hybrid system, which
is representative for the class of hybrid systems that requires the synchronized environ-
ment, in order to model afunctionally correct behavior.
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6.1 Example- Hybrid system analysis

Let us consider the abstract model of a hybrid control system, which evolves accord-
ing to the function plotted in Figure 8, above the time axis. The output Y is either
increased or decreased, at different speeds (v1, vs, v3), respectively. From an observer
point of view, we are interested in the behavior of the system (modeled by CAS S4)
between the output value Y7, and the output value Y. As one may naotice in Figure
8, the continuous evolution of the hybrid model has a number of discontinuities. The
specification requires an external controller to take certain actions whenever the trgjec-
tory change points are encountered. This happens when the output signal, Y, reaches
the values Yy, Y1 or Y,. Therefore, the external observer must be able to record, at
any moment, the number of times when the output did change its trgjectory. For thisto
happen, a second module (S-) is brought into the system representation. The CAS S,
model s a counter, which provides the observer with the required information that hasto
be supplied to the external controller. The counter incrementsthe value of an observable
variable (counter), each timethe conditionY =Y, VY =Y; VY =Y, holds. The
intended behavior of the counter is shown in Figure 8, under the time axis.

f—_—— - E— e s g —

counter

A\

Figure 8: The graph of the timed evolution of variables Y and counter.

Even if the system is simple enough to be designed as a monolith, we would rather
design it modularly, to create the premises for further extensions, which may require
additional modules. The two CAS modules, S1, Sz, are represented in Figure 9.
Interleaved design approach. Following the interleaved execution model, of the par-
alel composition S = S1||Ss, a some moment in time, when Y.now = Y7, both first
actions of S; and S, are simultaneously enabled. If the controller chooses for execu-
tion the respective action of Sy, first, the variable Y will be updated to Y, therefore
disabling the enabled action of S». Thus, the counter will miss to record this trajec-
tory change. Alternatively, in both other situations when such an event happens, that
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S1(Y : Realy — Realy)
L begin
Y:— (A\t-0);
do Ynow=0—-Y:— (At v * (t — now))
| Ynow=Y, =Y :— (At Yy — v x (t — now))
| Ynow=Y; - Y :— (At Y1 + v * (t — now))
| Yinow=Ys =Y :— (At - Ys — vz * (t — now))
od
end

S2(Y : Realy — Realy, counter : Real; — Nat)
£ begin
counter :— (At-0);Y :— (At -0);
do Y.now =Yy VYnow=YVYnow=Y; —
counter :— (At - counter.now + 1)
od
end

Figure 9: Thetimed action systems S; and S,.

is, when Y.now = Y7 and Y.now = Y3, theinterleaved model allows a correct update
of the variable counter, since the value Y.now is the same as the one mentioned by
the guard of the first action in So. Hence, the “old” value of Y is still possible to be
observed by Ss, even though the latter has been selected for execution in the second
round.

Thissituation can be solved by adding extrainformation to the component systems,

regarding their communication, or by employing other operators on CAS, which could
determinethe component systemsto react in away that producesa correct output. How-
ever, either of the solutions implies extra coding effort, and moreover, it deterioratesthe
system modularity.
Synchronized design approach. Let us now compose the CAS S; and S», by using
our newly defined operator, ‘ff’, given the fact that they are PCAS. As aresult, we get
the new PCAS S,..., = S1 # So. Then, we trandate S,,.., iNt0 S,,e., (Figure 10), by
applying the definition givenin Figure 7.

If we repeat the previously described scenario, when Y.now = Y, the semantics
of S,.ew l€ts us preserve the old values of Y, thus enabling the system S, to correctly
updatethe variable counter, evenwhen S, is selected for execution after S ;. Thus, due
to the synchronized semantics, we can design the overall system modularly, by simply
plugging S; and S, together, without encoding any kind of communication between
these subsystems. Also, in case we need to add similar modul esto the composed system,
the synchronized composition lets us reuse the already existing components, and at the
same time it ensures correct outputsto al inputs.

Finally, since the semantics of PCAS is given in terms of discrete AS (6), the theo-
retical results of the discrete synchronized proper AS apply to PCAS, too.
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Spew(counter : Real; — Nat)

11>

begin var Y, Y, : Real; — Real,, counter, : Real; — Nat, now, now, : Real,
sel[l..n] : Real; — Bool, run : Real; — Nat, uj,us : Real; — Bool

counter, countere :— ,run(At - 0); Y, Y. :— (At-0) ; ur,uz :— (At - false);
sel :— (At - false) ; N ; now, := now;

do
=sel[1].now A run.now = 0 — sel[1] :— (At - true) ;run:— (Mt - 1)
[ —sel2].now A run.now = 0 — sel[2] :— (Xt - true) ; run :— (At - 2)
[ (run.now = 1 A ~ug.now A Yonow =0 — Yo :— (At - v * (t — now))

| run.now =1 A ~uy.now A Yonow =Yy, — Yo :— (At - Y — va x (t — now))
| run.now = 1 A ~uy.now AY.now =Yy — Yo :— (At - Y7 + v1 * (& — now))
[ run.now =1 A ~uy.now A Yonow =Yy — Y. :— (At - Yo — vz * (£ — now)));
run:— (At -0);uy:— (Mt - true) ; N
| run.now =1 A —uy.now A =(Y.now =0V Yonow =YL VY.now =Y; VY.now =Ys) —
run:— (At -0);uy:— (Mt - true) ; N
| run.now =2 A —us.now A (Yonow =Yy, VY.now = Y1 VY.now = Ys) —
countere :— (At - counter.now + 1) ;run :— (Xt - 0) ;ug :— (At - true) ; N
| run.now =2 A ~us.now A ~(Y.now =Yy VY.now =Y; VY.now =Ys) —
run:— (At -0);ug:— (Mt - true) ; N
[ sel.now A run.now = 0 A now # now, — Y :— Y. ; counter :— counter.;
sel :— (Nt false) ;ur,ug :— (Mt - false) ; now. := now
[ sel.now A run.now = 0 A now = now, — Y :— Y. ; counter :— counter,
od
end

Figure 10: Thesystem S,,c.,.

7 Conclusions

This study was mativated by an analysis of control aspects and of modular design tech-
niques, as supported by the current AS formal framework. We exemplified that the in-
terleaved model of concurrency may not suffice for modeling parallel reactive systems.
Our solution comes as a synchronization mechanism, implying a new virtual execution
model of AS, applicableto both discrete and hybrid designs. We eliminate intermediate
results that could affect the global state, as the system gives complete answers to the
stimuli provided by the environment.

The product operator of SCCS [Milner 1983] offers a somewhat similar approach
to synchronization. However, while we synchronize on the updates of a group of vari-
ables, the SCCS approach is based on simultaneous execution of actions, which we only
reach in the last execution round of a synchronized composition. Moreover, synchro-
nization restrictions must be analyzed for each particular synchronized composition,
thus decreasing the possibility of reuse.

Bellegarde et a. introduce a similar idea of synchronized parallel composition for
event-B systems [Bellegarde et al. 2002]. In opposition to our model, which increases
the external determinacy, while preserving theinternal nondeterminism, the event-B so-
lution preserves also the external nondeterminism. Moreover, agluing invariant is nec-
essary when synchronized modules are refined. This requirement comes from the fact
that the synchronization is performed only with regard to selected events, collected in
a synchronization specification. Therefore, the supplier of modules should also deliver
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to the system integrator, besides the modules themselves, the synchronization specifi-
cation. From this point of view, the approach is similar to the one adopted by Back and
von Wright [Back and von Wright 2003], where information about the invariants of
all the composing subsystems must be known in order to perform refinements.

In the temporal logic of actions of Lamport [Lamport 2002], synchronization is
specified as a way of applying noninterleaving to system design. This is reached by
employing joint actions, aconcept nonexistent in our framework. The conclusion, how-
ever, supports our point of view: interleaving “blurs’ the distinction between the com-
ponents used in design.

Treharne and Schneider [Treharne and Schneider 1999] employ CSP processes to
control B-machines. The basic problems are raised by the interleaved execution seman-
tics of both formalisms. Playing the state-based formalism (B), against the event-based
approach (CSP), one may get a controllable environment for modeling certain applica
tions. Our study shows, on the other hand, that it is possible, within the same state-based
framework, to obtain the desired controlled behaviors.

An execution mechanism quite close to our synchronized environment is described
by the semantics of statecharts, as offered in [Harel and Naamad 1996]. We can identify
the execution of local actionsthat come from a single component, in an execution cycle,
as a compound transition — CT. There are as many such nonconflicting CTs, as subsys-
temsin a synchronized composition. By adding theinitial and final state corresponding
to a given execution cycle, we obtain afull CT.

In VHDL [Ashenden 2002], the update mechanisms for variables and signals are
relatively similar to our solution concerning local and global variables. The difference
resides in the fact that already executed processes (assimilated to action systems) may
be reschedul ed for execution, withinthe same VHDL execution cycle, dueto new values
of watched signals, assigned by other processes. The validity of such an approach is
supported by the fact that, targeting a hardware implementation, the VHDL designer
may assume that eventually, such reaction-triggering events will cease to appear (the
combinational logic outputs will eventually settle to some value).

Oneimportant remark isthat our approach does not necessarily address synchronous
designs. The existence of a common clock signal is not suggested by any of our con-
structs. It istrue that synchronous designs can be easily obtained from our models. This
is furthermore supported by the underlying “ synchrony hypothesis’, as the time to per-
formindividua actionsis assumed to be null. From this perspective, we are close to the
synchronous group of languages (Esterel, Lustre, Signal, etc.).

By providing the new virtual execution environment, we have tackled two important
problems of system design: behavior control and modularity. The essential result of the
study is mentioned by Corollary 1. Based on this, we can say that the system level in-
tegrator and the module designers gain an increased independency with respect to each
other, during the design process. We believe that our achievement of using maximal
synchronization to increase the modular design capabilities of the AS framework is a
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contribution that could be easily adapted to other similar formal environments.
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Appendix

Before presenting the proofs of the statements of the paper, we introduce some results
that help us achieve our goals.
o We will make use of Corollary 27 proved in [Back and von Wright 1999]:

Corollary 2 Assume that G and H are conjunctive predicate transformers and that
g A h = false. Then

dog— G|h— Hod = doh— Hod ; dog— (G; doh— Hod)od

In the above, intuitively speaking, the condition g A h = false states that the state-
ments G and H exclude each other, that is, they cannot be enabled simultaneously.
o We will also make use of the Theorem 31 proved in [Back and von Wright 1999]:

Theorem 3 Assumethat G and H are conjunctive predicate transformers. Assume fur-
ther that wp(H, true) = true A g ¢ wH, which means that statement H terminates
and preserves g. Then

dog— G]-gANh— Hod = dog— God ; doh — H od (7
o We recall some of the weakest precondition rules [Dijkstra 1976], which we apply:
1. wp rulefor guarded action: wp(g — A, Q) L g= wp(4, Q)
2. wp rulefor choice: wp(A1] A2, Q) £ wp(A1, Q) A wp(As, Q))
3. wprulefor assignment statement: wp(z, Q) L Qle/x]
4. wp rulefor sequential composition: wp(A4; ; Az, Q) L wp(A1,wp(Asz,Q))

o We additionally recall the definition of aloop as the least fixed point of the unfolding
function [Back and von Wright 1998]:

dog— Sod £ (uX- if gthen S; X else skip fi) (8)

o \We state here another hel pful theorem, and threeloop transformation rules (g, o pred-
icates), asfollows.

Theorem 4 Assumethat G, H and W are conjunctive predicate transformers. Then
(GIH); W = (G;W)[ (H; W)
e Loop elimination rule [Back and von Wright 1998].
{~g}; dog— Sod ={-g} 9
e Remove one iteration loop.

{g}; dog— S;{~g}od =5;{~g} (10
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Proof.
{g9}; dog — S;{~g} od
= { definition (8), unfolding}
{g};ifgthen S;{~g}; dog— S;{—g} od else skip fi
= {logic}
S;{~g}; dog— S;{~g}od
= {loop eimination rule (9)}
S {~g}
e Propagation of assertion inside loop [Back and von Wright 1998]:

{a}; dog— Sod ={a}; dog— {a};Sod (11)

A Proof of Theorem 1

(a) By Definition 2, the synchronized parallel composition of the proper action systems
Ai(z1) &

= begin var z; e Init;; dogt — Ly [ g}; — 51 od end
Az (22) 2 begin var z e Inits; do g% — Lo | g% — S5 od end

is given by the system
P(2)
L begin var x ; sel[1..2] : Bool ; run : Nat e Init;
do gga — (run = 0 A —sel[l] — sel[l] := true ; run :=1
| run = 0 A —sel2] — sel[2] := true ; run := 2

Jrun=1Agt — Li] run = 1A =gl A gl — wSic:=wS1 ;8] ;run =0
| run = 1A —gga, — run:=0
| run =2 A g2 — La| run = 2 A —g% A g% — wSac := wSs ; Sh 3 run =0
| run =2 A —gga, — run :=0)
| sel Arun =0 — Update ; sel := false
od
end

We denote the actions of P as (where j € [1..2]):

Sel 2 run=0— Sely| Sely
Sely & —sel[l] — sel[l] := true ; run =1
Sely & —sel[2] — sel[2] == true ; run = 2
A AL A2 A3
Aj - Al A3 A3 4
Aj zrun:j/\giﬁ[/j'
A? érun:j/\ﬂg]L/\g]S—>C'j;S}‘;run:zO
Ag? L run = j A —gga; — run =0
C;j £ wSjc = wS;
U 2 selArun=0— Update ; sel := false
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Notice that the composition L £ gga — Sel] A1] Az constitutesthe local action
of P, while the action U isits global action. The first two requirements for showing
that P isaproper AS areimmediate. Next, we analyze the third one, that is, we have to

show that wp( do L od , ~gL A gU) = true.
We start by observing that only the situation when gg 4 = true is of interest, other-
wise the whole system P is disabled. Therefore, we only have to show that

wp( do Sel]| A1 Az od ,—gL A gU) = true
We proceed as follows:

do Sel] A1] Az od
= { Corollary 2 }
do Selod ; do A1 Az ; do Sel od od
> {Init or A%] A? establish run = 0, {p} < skip, introduce assertions }
{run =0}; dorun =0 — Sely|] Sely; {run # 0} od ;
do A;] Az ; do Sel od od
= { rule (10), drop assertion }
(Sel1] Selz) ; do A1] Az ; do Sel od od
= { Theorem4 } (13)
(Sely; do Ay Ay ; do Selod od)
| (Sely; do A1] Az ; do Selod od)
— { Theorem 4, notation: Choices 2 (Sely ; do Ay] Ay ; do Selod od )}
(Sely ; do A ; do Selod | Az ; do Sel od od )| Choices
= { Corollary 2 }
(Sely ; do Ay ; do Selod od ;
do Ay ; do Selod ; do A; ; do Sel od od od )| Choicey

We continue by focusing on the sequence Sel; ; do A; ; do Sel od od:

Sely; do A1 ; do Sel od od
= { definition of 4,, Theorem4 }
Sely ; do Al ; do Selod | A% ; do Sel od | A ; do Sel od od
= { Theorem3w.r.t. A} ; do Sel od | A? ; do Sel od and A3} (14)
Sely ; do Al ; do Selod | A?; do Selod od ; do A% ; do Sel od od
= { Theorem3w.r.t. Al ; do Sel od and A? ; do Sel od }
Sely ; do Al; do Selod od ; do A?; do Sel od od;
do A3 ; do Sel od od
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Next, since gga = true, the last element of the sequence do A% ; do Sel od od
can be replaced by skip. We focus on the first two terms of the sequence:;

Sely ; do Al; do Sel od od
={run ¢ wAl }

Sely ; do Al ; {run =1} ; do Sel od od (15)
= { definition of Sel, rule (9), drop assertion }

Sely ; do A} od

We already know (A; is proper) that do g; — L; od terminates and establishes
-9} A g. Hence, (run = 1 — dogi — Ljod) = do Al od terminates and
establishesrun = 1A—gk Agl. Assel[l] ¢ wA}, weactualy havethat, after executing
do Al od, sel[l] Arun =1 A =g} A gL holds.

We continue with the analysis of do A? ; do Sel od od . Considering the above,
we have

{sel[l] Arun = 1A —g} Agt}; do A?; do Sel od od
= {generd rule: {p A q} = {p}; {q}}
{sel[1]}; {run = 1 A —gr A gs}; do A?; do Sel od od
= {rule(11), as sel[1] ¢ wA? }
{sel[1]}; {run = 1 A =g} A gk} ; do A2 ; {sel[1]}; do Sel od od
= { A? egtablishes run = 0, strengthen assertion } (16)
{sel[1]}; {run = 1 A —gr A g5} ; do A% ; {sel[l] Arun = 0} ; do Sel od od
= { definition of Sel, rewrite using context information ({sel[1] A run = 0}) }
{sel[1]}; {run = 1 A =g} Ags}; do A3 {sel[1] A run = 0} ;
dorun =0 — Sels od od
= { introduce assertion {run # 0} }
{sel[1]}; {run = 1 A ~g} A gb}; do A2
{sel[l] Arun = 0} ; dorun =0 — Sely ; {run # 0} od od
= { rule (10), drop assertions }
do A% ; Sely od
Theaboveloop terminates, sinceboth A% and Sel, terminate. Moreover, wp( do A%;
Sely od ,run = 2 A sel[2]) = true.

Applying a similar reasoning for the action Choice o, we eventually come to the
conclusion that:

wp(do Sel] A1] Az od , sel A run = 0) = true,

which meansthat the local action terminates, and it enables the execution of the global
action of the system P.
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It is easy to check that the other requirements of Definition 1 are also satisfied, thus,
P isaproper AS.
(b) Follows from the commutativity of the choice operator.

B Proof that Lemma2isavalid trace refinement lemma for proper AS

Since the first four requirements of Lemma 2 are only adaptations of the origina four
requirements of Lemmma 1, we concentrate here on showing that the fifth requirement
of Lemma 2 implies the corresponding requirement of the origina trace refinement
lemma:

RAT = wp(dogx — X|gf — Ly od,~(gx Vgf) Ag§)
= RAI = wp(dogx — X od,true)
We consider the definition of the weakest precondition of aloop, to establish some
postcondition @, as given by Dijkstra[Dijkstra 1976]:

wp(dog — Aod,Q) =3k > 0e Hy,
Hy=Q AN g, (17)
Hy =HyVwp(g— A, Hi—1)
In our context, established by Lemma 2, the new local action of the refined system
©)is
Lpew = gx _)Xl]gg _)Li4
We need to prove that wp( do Le, od ,=(g9x V ¢) A g§) = wp(dogx —
X od , true) holds.
In order to compute wp( do L ey od , —(gx V g%) A g¥), we apply (17):

Hj = —(gx vV g§) N g§
Hj = H,Vwp(gx — X[ g§ — L'y, H;_,)
= { wprulefor choice }
H(I) V (wp(gx — X, HI::—I) A Wp(gf - L;xv Hli:—l))

. 1
= {logic } (18)
(Hy Vv wp(gx — X, Hy_y)) A (Hy v wp(gf — Ly, Hi_,))
= {logic }
Hy VvV wp(gx — X, Hj_y)
We observethat H;, = H;,_, (by induction and monotonicity of wp):
Hy,
= { déefinition }
(Hy v wplgx — X, Hj_y)) A (Hg vV wplgf — Ly, Hy_y))
= { assumption H;_, = H; } (19)
(Hy v wp(gx — X, Hy)) A (Hg Vv wp(gf — Ly, Hy))
= { déefinition }
H/

k+1
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Next, by applying (17), we compute wp( do g x — X od , true):

Hp' = —gx
HY = HF Vwp(gx — X, Hi* )
= -gx Vwp(gx — X, H¥ )

Inasimilar manner as above (by induction and monotonicity of wp), we obtain that

Y = HX, (20)
Observe next that also:
H) = H
= { monotonicity of wp}
Wp(gX - X7 H(/)) = Wp(gX - Xa Hg() (21)

= { monotonicity of wp, induction, logic, (19), (20)}
Hy vV wplgx — X, Hy ) = Hg" Vwp(gx — X, Hi )

Summing up theresults of (18) . .. (21) we conclude that
wp(do Lyew 0od , —(gx V gf) A gg) = wp(dogx — X od, true)

Thus, considering that the requirements 1 to 5 of the Lemma2 are satisfied, also the
requirements of Lemma 1 are satisfied, hence, A C C.

C Proof of Theorem 2

We assume the system P as being the synchronized composition of two AS:

P(z)
L begin var x ; sel[1..2] : Bool ; run : Nat e Init;
do gga — (run =0 A —sel[l] — sel[l] := true ; run :=1

| run =0A —sel[2] — sel2] := true ; run =2
[ run =1Agi — Li] run = 1A =g} A gl — wSic:=wS1 ;5] ;run =0
| run =1A-gga, — run:=0
[ run =2 A g2 — Lo| run =2 A —g2 A g% — wSac := wSs ; S ;run =0
| run =2A—gga, — run:=0)
| sel Arun =0 — Update ; sel := false
od

end
First, we give, without proof, three simple invariants of system P:

22.1: (Vg9 (run = j)) = true
22.2:Vk € {1,2} e sel A (run = 0) = g& (22
22.3:Vk € {1,2} o (run = k) = sel[k]
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We state further that
I 2 LA (selll] A=(run =1) = I}) (23)
isan invariant of the system P, where

— I, isthe proper invariant respected by the system .4 ;. Therefore, we also have that
gé« = (Il[w’Sl/wsl,w] = Il[w/Sl/’LUSl]).

— I} = Lj[wS§/wSh],

In the following, we show that ¢ is an invariant of every action of P.

1. I} ispreserved by action A; L —sel[l]A(run = 0) — sel[1] := true;run := 1.

We have:

wp(Ala I(%)
= {definition of A;, wp rulesfor guarded action, sequential comp., assignment}
sel[1] V =(run = 0) V I}[true/sel[1],1/run])
= {définitionof I3, sel, run do not appearin I, orin I}, logic}
sel[l] V =(run=0) V I
< {definition (23), logic}
1

2. I} ispreserved by action Ay £ —sel[2] A (run = 0) — sel[2] := true;run = 2.
We have:

wp(Az, Ij)
= {definition of A, wp rulesfor guarded action, sequential comp., assignment}
sel[2] V =(run = 0) V I} [true/sel[2],2/run)
= {definitionof I¢, sel, run do not appearin I, orin I}, logic}
sellk] V =(run = 0) V (I1 A (sel[2] = I7))
< {logic, relation (22.1)}
Iy
3. That I} is preserved by the action A3 L (run = 2) A g2 — Lo, follows from
the fact that A5 does not write any of the variables mentioned by 7}, therefore the
latter is an invariant, trivially.
4. I} ispreserved by the action A4 L (run = 1) A g} — L; comes from the fact

that I isaninvariant of g1 — L;.

5. I} ispreserved by theaction A5 £ (run = 1) A—=gl A gl — wSic:= wS; ; S} ;

run := 0, where S = S1[wS1c/wS;]. We first have that:
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wp(z =y ; S[z/y], Qlx/y])

wp(z =y, wp(S[z/y], Qlz/y]))

wp(z =y, wp(S, Q)[x/y]) (24)

(wp(S, Q)[z/y])ly/x]

wp(S, Q)
Next, we get:

wp(A5,I(%)
{wp rulesfor guarded action, sequential comp., assignment}
=(run =1)V gt V =g V wp(wSic := wS ; S7, I3[0/run])
{definition of I}, run doesnot appearin Iy, orin I1}
=(run = 1) V g1 V =gl Vwp(wSic:=wS; ; S1, 11 A (sel[l] = 1))
{wp rulefor conjunctive statements, w.S; ¢ does not appear in I}
=(run =1)V g V =g V (I Awp(wSic = wS 5 81, (sel[l] = 1))
{wp rulefor sequential composition}
=(run = 1) V g+ V =gl v (I; Awp(wSic = wS1,wp(S], (sel[l] = I1}))))
{definition of I, relation (24), sel does not mention w.S; or wSic}
=(run = 1)V gt V =g V (I Awp(S1, (sel[l] = 11)))
<= {wp(S1,-sel[1] V I1) < wp(Sy, 1) V wp(Sy, —sel[l])}

=(run = 1)V g V =g V (I A (wp(S1, I1) V wp(Sy, —sel[1])))
<« {logic}

=(run = 1)V g V =gl v (I Awp(S1, 1))
< {L isinvariant of the original system: I; = wp(S1, 1), logic}

L
<« {définition of 1§, logic}

1

6. The fact that I is preserved by the action A 2 (run = 1) A g} A ~glk —
run := 0 followsthe lines of the previous proof.

7. 1} ispreserved by the action A~ L (run = 2) A=g3 A g% — wSac := wSs; 5 ;

run = 0, where S5 = So[wSa2c/wSs):
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wp(Ag, 15)
= {wp rulesfor guarded action, sequential comp., assignment}
=(run = 2) V g2 V —=g% V wp(wSac := wSs ; S, I}[0/run))
= {déefinitionof I, run,wSac, wS, do not appearin Iy, orin I}
=(run =2)V g2 V —g2 V (I1 A (sel[l] = I7))
< {logic, relation (22.1)}
1

8. Thefact that I} isan invariant of the action Ag 2 (run = 2) A g2 A g2 —
run := 0 hasasimilar proof to the one for action A .

9. Proof of the fact that I} is preserved by the action U £ sel A (run = 0) —
wS1 = wSic; wSy = wSsc; sel ;= false:

wp(U, I&)
= {wp rulesfor guarded action, sequential comp., assignment}

—sel V = (run = 0) V wp(wS; := wSic; wSs := wSac, I} false/sel))
= {definition of I3, succesive application of wp rules}

—sel V = (run = 0) V (I [wSie, wS2c/wS1, wSs] A =(run = 1))
= {relation (22.1)}

asel V = (run = 0) V I [wShc, wSac/wSt, wSs)

Further, we haveto show that I} = wp(U, I}). We also know that I is proper and
that sel A (run = 0) = g1 (relation (22.2)).

We denote: 17’ = I1 [wS1c, wSa2c/wSt, wSs]. Then:

IA(g =1 = 1) A (sel A (run =0) = g1)
= {logic, msel = —sely V —sela}
—sel V =(run =0) vV I}

The above show that 1} isan invariant of the system P. In asimilar manner, we can
show that

22 I A (sell2] A=(run = 2) = I)

isalso aninvariant of P. Hence, I £ I} A I2 isan invariant of P.
Properness. Notice further that:

sel Arun =0 = (I [wS1c,wSsc/wSy, wSs, false/sel, z] =
I} [wSyc,wSac/wSy, wSa, false/sel])
= {I, isproper:
95 = (Ii[wSic/wS1, wSac/wSs, false/sel, z] = I [wSic/wSh]),
relation (22.2), logic}
true

(25)
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Similarly, we obtain that sel A run = 0 = (I3 [wS1c, wSac/wS1, wSs, false/sel] =
I} wS1e,wSac/wS1, wSs, false/sel, 2]),resultingin the conclusion that 1} isaproper
invariant of P.

Repeating the above proof for the other invariant 73 and summing up, we reach the
conclusionthat I £ I} A I2 isaproper invariant of P.

The results can be generalized to the synchronized composition of k, & > 2 proper
AS.

D Proof of Corollary 1

Suppose that we have the proper AS A ;, as part of the synchronized composition P =
A f.4 A, Additionally, I; is some invariant respected by A ;, and we aso have that
A; Er; 1, A’ following the requirements of Lemma2. Thus, A’; is aproper AS, too.
Consequently [Back and von Wright 2003], I L Rj A Ijisaninvariant of A’. As
R; doesnot introduce any new global variables, it isindependent of other variablesthan
those of A;, A;, and using a similar line of proof as in (25), one can prove that ij is
proper.

We do not insist here on the (trivial, given the above assumptions) task of showing
tha P C P (P 2 A t.4 A’ .4 Ay). Relevant is to show that, using the notations
of Appendix C, I’ £ I} A .. AI)I A .. A I} isaninvariant of P’. Thisis solved by
following the same steps asin Appendix C. Moreover, we have

I]/- A Rj/\Ij
= { notation: Q; = sel[j] A ~(run = j) = I7,
IV £ RA I wS§/wSi),
definition (23): 17 2 R; A L; A Q;,
logic}
=1
= {logic}
SN AT A AT
SIIAAAAI
= {notation}
IlAQlA..AI;AQjA..AInAQn
:>Il/\Q1/\../\Ij/\Qj/\../\In/\Qn
= {logic}
Il/\../\ij/\../\In
=LHAANGACN

The aboveillustrate the fact that P C r,,;; P, and that P’ till preserves the prop-
erties of each of the original AS Ay, k € [l..n], as expressed by the conjunction
AN AN,
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E Refinement of sys F

We consider the systems:

F(X,Z[0.N—2],Y : T)
L beginvar h[0.N —1]: T e X, Z[0..N — 2], h[0..N — 1], Y := x0, 20, ho, Yo;
do Y :=h[0] x X + S0 h[k] x Z[k — 1] od
end

and

Fs(X,Z[0.N—=2],Y :T)
L begin var h[0..N — 1],temp : T ; step : 0..N o
X, Z h,Y := xg, 20, ho, Yo ; temp := 0 ; step := 0;
do step = 0 — temp := 0 ; step := step + 1
| step € [1..N — 1] — temp := temp + h[step| x Z[step — 1];
step := step + 1
| step =N —Y :=temp+ X x h[0]; step :=0
od
end

We denote the actions of the above systems as:

N—1
ALYy =X xn0+ Z hlstep] x Z[step — 1]
k=1
C £ Ci;Cy,
C1 £ step=N —Y :=temp+ X x h|0),
Cy A step :=0
X1 2 step =0 — temp := 07 ; step := step + 1,
X, £ step € [1,..,N — 1] — temp := temp + h[step] x Z[step — 1] ;

step := step + 1,

We first show that

step—1
I £ stepe2,.,N] = temp= Z hlk] x Z[k —1]
k=1

isan invariant of Fg. Observe that after the execution of either of the actions X ; or C,
step € [2..N] = false, therefore I = true, trivialy. We analyze in more detail the
situation that concerns action X 5. We have to show that I = wp(Xa, I).

’U)p(XQ, I)
= {wp rulesfor guarded action, sequential comp., assignment}
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step € [1,.., N] = I(stepnew/step, temppew/temp)
= {substitutions}

step € [1,.,N] =
step

(step € [2,.., N] = temp + h[step] x Z[step — 1] = Z hlk] x Z[k —1])
k=1

= { arithmetic }
step—1
step € [1,..,N] = (step € [2,..,N] = temp =Y h[k] x Z[k —1])
k=1

= { identification }
stepe [1,.,N] =1
=
I

Even if not necessary in this context, we aso show that I is a proper invariant.
For this, we only check what happens when the global action (C') becomes activated.
The guard of thisactionis g = (step = N). We have further that wp(C ; Ca,I) =
wp(Ch, I[0/step]) = g = true. Hence, trivialy, g = (I[wS’/wS, z] = I[ws' /wS]).
Thus, I isaproper invariant of .

Having decided that I is an invariant of Fg, in order to prove the above specified
refinement, we go through the requirements of Lemma 1:

1. Initidization: I(step = 0,temp = 07, h = hg, Z = zp) = true

2. Main action. We have to provethat A <; C. For this, we have to show that: I A
wp(4, Q) = wp(C, I A Q),VQ. We identify:

Derivation 1:
I ANwp(4,Q)
= {wp rulefor assignment}
step—1
(step € [2,..,N] = temp = Z hlk] x Z[k —1])
k=1

2

—1
AQIX x h[0] + S hlk] x Z[k — 1]/Y]

el
Il

= { notation }
step—1
(step € [2,..,N] = temp = Z hlk] x Zk—=1]) A Qa
k=1

= {logic }
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step—1

(step € [2,..,N]V =Q4) = (temp = Z hlk] x Zk = 1)) A Qa
k=1

= {step = N = step € [2,..,N]}
step—1

(step=NV—Qa) = (temp= > _ hlk] x Z[k—1]) A Qa
k=1

and

Derivation 2:

wp(C, I A Q)

{wp rulefor sequential composition}
wp(Cr,wp(Ca, I A Q))

{wp rulefor assignment}

wp(Cy, 1[0/ step) A Q[0/step))

{Q does not mention step, I[step = 0] = true}
wp(C1, Q)

{wp rulesfor guarded action, assignment}

step = N = Q[temp + X x h[0]/Y]

« {logic}
(step = N = Qltemp + X x h[0]/Y])
N-1
N(step = N = temp = Z hlk] x Z[k —1])
k=1
« {logic}
N-1
step=N = Q[ _ h[k] x Z[k — 1] + X x h[0]/Y]
k=1
= { notation }
step=N = Qa4
From the above, we have that:
I Awp(A,Q)
= {Derivation 1}
step—1

(step=NV-Qa) = (temp= > hlk] x Z[k—1]) A Qa
k=1

= {logic }
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step =N = Q4
= {Derivation 2}
wp(C, I A Q)

3. Auxiliary action. For the auxiliary actions X1, Xo, we have that wX;, wX, €
{step, temp}, therefore they behave like skip with respect to the global variables.
Hence, skip <; X7 A skip <1 Xs.

4. Continuation condition:
INgA=gCVgX
= {gX1VgXsVgC = true}

I NgA = true

true

5. Internal convergence. It is easy to observe that X'; terminates after one execution
asit disablesitself, while X, disablesitself after N — 1 executions.

From the above we have that, in isolation, the system F g is arefinement of F, under
theinvariant I: 7 C; Fs.
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