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Abstract: This paper presents the FBT (FIL to Büchi automaton Translator) tool which 
automatically translates any formula from FIL (Future Interval Logic) into its semantically 
equivalent Büchi automaton. There are two advantages of using this logic for specifying and 
verifying system properties instead of other more traditional and extended temporal logics, such 
as LTL (Linear Temporal Logic): firstly, it allows a succinct construction of specific temporal 
contexts, where certain properties must be evaluated, thanks to its key element, the interval; and 
secondly, it also permits a natural, intuitive, graphical representation. The underlying algorithm 
of the tool is based on the tableau method and is specially intended for application in on-the-fly 
model checking. In addition to a description of the design and implementation structure of 
FBT, we also present some experimental results obtained by our tool, and compare these results 
with the ones produced by another tool of similar characteristics (i.e. based on an on-the-fly 
tableau algorithm), but for LTL. 
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1   Introduction 

The FBT (FIL to Büchi automaton Translator) tool presented in this paper 
automatically translates a formula from FIL (Future Interval Logic) [Ramakrishna et 
al. 1992] into its semantically equivalent Büchi automaton [Büchi 1962]. The 
underlying algorithm [Hornos, Capel 2002] is based on the tableau method [Wolper 
1985], and is specially intended to be applied to on-the-fly model checking [Gerth et 
al. 1995], in such a way that the property automaton can be generated simultaneously 
with, and guided by, the construction of the system model. It is therefore possible to 
detect that a property has been violated by constructing only a part of both state 
spaces. Until very recently, the integration of both approaches (tableau and on-the-fly) 
for an interval logic was considered unfeasible for this type of logic. For this reason, 
we consider FBT to be not only an innovation but also an important achievement. 

Traditional temporal logics, such as LTL (Linear Temporal Logic) [Manna, Pnueli 
1992] and CTL (Computation Tree Logic) [Ben-Ari et al. 1983], allow reasoning 
about the relative ordering of events in a system. However, we must formulate quite 
intricate expressions with them in order to describe a temporal context in which 
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certain requirements or properties must only be satisfied within it. This, together with 
the fact that these logics do not have an intuitive representation, such as a semantically 
equivalent graphical notation, has lead many system designers to believe that they are 
difficult to use as formal description languages for the requirement specification of 
systems, and that many of the specifications created with them are formulas which are 
too complicated to understand. All of this has hindered a more extended use of the 
mentioned logics as specification languages during the analysis phase of the 
development cycle of industrial applications. 

Unlike these logics, the formal specification language FIL, which our tool uses, 
allows the succinct construction of bounded temporal contexts, thanks to its key 
element, the interval, which defines such contexts clearly and concisely. In addition to 
the textual representation of its formulas, this logic also has a natural, intuitive, 
graphical representation called GIL (Graphical Interval Logic) [Dillon et al. 1994], 
and both the textual and graphical representation are semantically equivalent. 

This paper is organized as follows. [Section 2] introduces the specification 
formalism used, i.e. the graphical syntax of GIL and the textual syntax of FIL, and 
also the semantics associated with their constructions. Moreover, it shows some 
examples of how certain temporal properties of a real-world system are specified in 
both representations. [Section 3] describes the main characteristics of the design and 
implementation structure of our tool (FBT) in addition to its input and output 
interfaces, while [Section 4] presents some of the experimental results obtained with 
it, and compares these with the results obtained with another similar tool (i.e. based on 
an on-the-fly tableau algorithm), but with LTL as the specification formalism. Finally, 
we present the conclusions and related future lines of research to be followed. 

2   Specification Formalism  

The specification formalism used in this paper is a propositional, linear and discrete 
time temporal logic with two different representations: one graphical and the other 
textual. Its key construct is the interval, which allows us to carry out logical reasoning 
at the level of time intervals, instead of instants. However, its primitive elements are 
not intervals but instants. An interval is therefore formed by identifying its end-points, 
which are instants satisfying certain properties. These points are searched for in the 
global context, which represents an infinite sequence of states corresponding to a 
system execution. Once the end-points of an interval have been located, the semantics 
of the nested formula (to the interval) is restricted to the subtrace delimited by these 
points. Each interval therefore represents a specific temporal context. 

There are two main reasons for using this logic: firstly, the visually intuitive and 
natural representation of its graphical specifications makes them easier to develop and 
understand (even for experts involved in the system development process who are not 
familiar with this notation) than the textual representation of more traditional temporal 
logics, such as LTL (Linear Temporal Logic) [Manna, Pnueli 1992]; and secondly, in 
spite of having a graphical representation, it has a formally defined semantics on the 
basis of its textual representation.  
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2.1 Graphical Specifications of Temporal Properties 

In order to specify the temporal properties of a system in a formalism that is very close 
to the way in which a human being reasons, we use the pictorial version of the logic, 
called GIL (Graphical Interval Logic) [Dillon et al. 1994]. 

The three graphical formulas in [Figure 1] show the basic types of properties that 
can be expressed over an interval. Thus, (a) is an initial property, which states that the 
formula f expressing such a property holds at the first state of the interval, where f is 
drawn left-justified below its left end-point; (b) represents an invariant property over 
the interval, where f  is placed below it and indented to the right of its left end-point to 
express that f  holds at every state of the interval; and (c) give us an eventuality 
property stating that f eventually holds at some state within the interval, where a 
diamond is placed on it with the target formula left-justified below the diamond. 

 

 (a) Initial property 
f

 

(b) Invariant property 
f

 

(c) Eventuality property 
f

 

Figure 1: GIL formulas expressing the basic types of properties over an interval 

In the formulas explained, f can be any GIL formula, even another interval formula, 
and the intervals in them can represent the global context or a subinterval extracted 
from a larger interval. Each end-point of a subinterval is defined by a search pattern 
represented by a horizontal concatenation of dashed search arrows, where search 
targets are left-justified below the arrowheads. Thus, the formula in [Figure 2] states 
that i is an initial property in the subinterval extracted from the global context by using 
a first search that locates the earliest state at which f  holds (its left end-point), and 
from this, the right end-point is located by searching for the formula h from the state 
where g is found. 

.
f

g h

i
 

Figure 2: Initial property within a subcontext 
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GIL formulas can be joined using the usual infix Boolean operators laid out 
horizontally or vertically. In addition, a specification can be refined by replacing the 
names of the formulas appearing in it with any GIL formula. Following these rules, 
therefore, the (more abstract) specification of [Figure 2] is converted into the (more 
concrete and complex) formula of [Figure 3]. It should be noted that the conjunction 
symbol can be omitted in the vertical layout, as occurs between the two lower 
formulas (¬i4 and i5) in [Figure 3]. 

.
f1∧f2

g1∨g2 h1
⇒
h2

≡

.
i1

i2

i3
.

i3

¬i4
i5

 

Figure 3: Specification obtained by replacing the formulas f, g, h and i in [Figure 2] 

Every GIL formula is read from top to bottom and from left to right. The topmost 
interval represents the global context (i.e. the entire computation of the system). 
Braces can be used in order to disambiguate formulas. Consequently, it is clear in 
[Figure 3] that the equivalence of the two bottom intervals is nested to the previous 
one, which in turn is nested to the topmost interval. Further details about the visual 
syntax of GIL can be found in [Dillon et al. 1994]. 

2.2 FIL as the Textual Representation of GIL 

We could say that FIL (Future Interval Logic) [Ramakrishna et al. 1992] is the formal 
basis for GIL and its textual representation since it serves as the basis for defining the 
semantics of all the constructions of the logic and there is an equivalence (established 
in [Dillon et al. 1994]) between the textual formulas of FIL and the corresponding 
graphical formulas in GIL. 

The syntax of FIL for a finite set P   of primitive propositions, where p∈P, is 
defined as follows: 

  f ::== p   |   ¬f   |   f1 ∨ f2   |   I f /* FIL formulas */ 

  I ::== [θ1|θ2)   |    [−|θ2)   |   [θ1|→) /* Intervals */ 

 θ ::== →f    |   →f,θ /* Search patterns */ 
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A FIL formula is purely propositional when it does not contain any interval. 
Otherwise, it is an interval formula, with its structure given by I f, where I represents 
an interval and f represents any other FIL formula nested to it. All the intervals are 
half-open, including their left but not their right end-point. Each interval end-point is 
defined by a search pattern, which is either a sequence of one or more searches or a 
trivial pattern (represented by − or →). Each search, e.g. →f, locates the first point in 
the reflexive future (which includes the current state) where the target formula f holds. 
When several searches are sequentially composed, such as in →g,→h, each 
subsequent search begins in the state located by the previous search; the last of these 
therefore locates the end-point of the interval that such a pattern defines. The trivial 
search pattern − leaves us at the point where we are, while → takes us to the end of 
the current context. Thus, the interval modality [−|θ2) tries to construct a prefix of the 
current context, which goes from the current state to the state prior to the one located 
by the search pattern θ2; whereas the expression [θ1|→) tries to construct a suffix of 
the current context, beginning in the state located by θ1 and extending it until the last 
state of the current context. 

Every interval modality [θ1|θ2) defines a context, which is either the null context or 
the subsequence that begins in the state located by the search pattern θ1, and finishes 
in the state prior to the one located by the search pattern θ2. A null context occurs 
when a search fails (i.e. its target formula cannot be located in the current context) or, 
since the searches of both end-points start at the same state, when the state located by 
θ1 does not precede the state located by θ2; the interval cannot therefore be 
constructed, which is why the formula [θ1|θ2)f is assumed to be vacuously satisfied. 
The semantic interpretation of [θ1|θ2)f would therefore be: “If the interval [θ1|θ2) can 
be identified within the current context, then f must be satisfied within the subcontext 
that it represents”. This default-to-true semantics yields the following meaning for 
¬[θ1|θ2)f: “An interval of the form [θ1|θ2) compulsorily exists in the reflexive future 
and f does not hold at its first state”. The complete FIL formal semantics can be found 
in [Ramakrishna et al. 1996]. 

The other standard constructs of Propositional Logic are defined as abbreviations 
of certain expressions, i.e. T=p∨¬p, F=¬T, ¬¬f = f,  f1∧ f2 = ¬(¬f1∨¬f2) and f1⇒f2 = 

¬f1∨f2. The restricted syntax presented above for FIL can be extended with several 
LTL temporal operators, defined as abbreviations for the following interval formulas. 
Since the logical constant F can only hold in the null context (which is given by an 
interval that cannot be constructed), the formula [→¬f |→)F can never therefore be 
satisfied in a trace in which ¬f  holds at some state of the reflexive future, with this 
formula being equivalent to !f. Its dual, ¬[→f |→)F, states that there is some instant 
in the future where f  holds, which is why it is equivalent to ◊f. The operator strong 
until is defined as f1U f2 = ¬[→(¬f1∨ f2)|→)¬f2. 

Consequently, using the extended syntax of FIL, the formulas corresponding to the 
GIL ones in [Figure 1] are: (a) f, (b) !f, and (c) ◊f, while [→f |→f,→g,→h)i is the 
equivalent FIL formula to the GIL one represented in [Figure 2] and this other 
[→f1∧f2|→f1∧f2,→g1∨g2,→h1⇒h2)([→i1|→i1,→i2)◊i3≡[−|→i3)!(¬i4∧i5)) is the 
analogous one to the formula shown in [Figure 3]. 
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2.3 Examples of Specifications: Properties of a Traffic Light 

In this subsection, we present some examples of how certain temporal properties 
(security, recurrence, precedence and response) are specified in both representations 
(GIL and FIL) by applying them to the specification of a real-world system, 
specifically a traffic light. 

The meaning of the security property represented in [Figure 4] is that whenever the 
traffic light is red (i.e. in all the intervals from when the traffic light changes to red 
until it changes to green again), the cars must stop. 

(a)  

.
red

green

stop-cars
 

(b)  ![→red | →red,→green) !stop-cars 

Figure 4: Security property expressed in: (a) GIL, and (b) FIL 

The formula of [Figure 5], which can be read as “infinitely often the green lights”, 
asserts that for each instant of the execution, there will always be a state in the future 
at which the traffic light is green, which explains why it is a recurrent property. It 
should be noted that the right end-points of both intervals must match, since every 
time the green must come on between the corresponding current state and the end of 
the current context, which is given by the upper interval.  

(a)  
green

 

(b)  !◊ green 

Figure 5: Recurrent property expressed in: (a) GIL, and (b) FIL 

The specification of [Figure 6] is a property of precedence, since it expresses the 
condition that before the red lights, the amber must light at some previous instant. 

 (a)  
.

red

amber
 

(b)  [− | →red) ◊amber 

Figure 6: Property of precedence expressed in: (a) GIL, and (b) FIL 
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Finally, the formula of [Figure 7] states that in response to the request made by a 
pedestrian pressing the button, the traffic light will eventually respond by lighting the 
green for the pedestrians. It is therefore a property of response. 

(a)  
.

press-button

green-pedestrians
 

(b)  [→press-button | →) ◊ green-pedestrians 

Figure 7: Property of response expressed in: (a) GIL, and (b) FIL 

3   Design and Implementation of FBT 

3.1 General Structure of the Tool 

The structure of the different classes of FIL formulas considered in the design and 
implementation of FBT is described in [Figure 8], using a class diagram in UML 
(Unified Modelling Language) [Rumbaugh et al. 1999]. Fil is an abstract class that 
defines the elements which are common to the different types of formulas, defined in 
its subclasses: FilAtom, the class that represents the literals (atomic propositions, 
negated or not); FilConstant stands for the logical constants (T or F); FilJunct 
implements the conjunctions and disjunctions of (two) FIL formulas, while FilIff does 
something similar, but with equivalences and exclusive disjunctions; and FilInterval, 
the class that builds interval formulas, comprising two search patterns which attempt 
to locate each end-point of the interval, and a FIL formula nested to this. An instance 
of the class SearchPattern is a sequence of zero (if it is a trivial pattern) or more FIL 
formulas, as many searches as comprise that pattern. 

Fil
1         nested_formula

2

SearchPattern

2

2

0..N searches

FilAtom FilJunct FilIff FilIntervalFilConstant

 

Figure 8: UML class diagram representing the different types of FIL formulas 
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The UML class diagram shown in [Figure 9] describes the structure of the graph 
that FBT generates from a FIL formula. FilGraph is therefore the class representing 
the graph, which is formed by the aggregation of nodes (i.e. objects of class 
FilGraphNode). Two nodes of the graph are related if a transition exists between 
them. This has been represented by means of an association with two role names: 
predecessor and successor. The structure of each node is constituted for the 
aggregation of the following sets of (zero or more) FIL formulas: 

• New: Temporal properties that must hold in the node and have not yet been 
processed. When a node has been processed completely, this set is empty, 
which is why all the resulting nodes do not contain any formula in it. 

• Old: Formulas that must hold in the node and have already been analysed. It 
should be noted that all the formulas that finally constitute this set in a node 
have previously been part of the set New of the same node. 

• Next: Temporal properties that must be satisfied in all the next nodes (i.e. states 
which are the immediate successors of the node). This set can only contain 
interval formulas, since these are the only FIL formulas that can postpone their 
fulfilment. 

• Literals: Literals stored in Old. Although this is a redundant set, it is used to 
obtain greater efficiency, since certain searches and verifications can be carried 
out more quickly on this set than on the set Old. 

Next

FilGraph

FilGraphNode

FilAtomFil FilInterval

nodes
successor

OldNew Literals

1..N
predecessor

1..N

0..N

0..N0..N 0..N0..N

 

Figure 9: Structure in UML of the graph generated from a FIL formula 

3.2 About the Implementation 

The implementation of FBT is based on the C++ [Stroustrup 1986] code of LBT (LTL 
to Büchi automaton Translator)1, a tool of similar characteristics, since it is based on 
an on-the-fly tableau algorithm [Gerth et al. 1995], but with LTL as the specification 
formalism. Consequently, both tools share the same input and output interface, and the 
syntax and notation for all the formula components that are commonly accepted by 
both, i.e. the logical constants, literals, propositional operators and temporal operators 

                                                           
[1] http://www.tcs.hut.fi/Software/maria/tools/lbt/  
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of LTL. Our initial intention was to integrate FBT into MARIA [Mäkelä 2002], a tool 
that performs on-the-fly model checking. This was the main reason for reusing part of 
the LBT code in order to make integration easier, since LBT is the translator used in 
MARIA. Obviously, we have had to incorporate a series of specific classes and 
functions for the analysis of interval formulas, which are not present in LTL. We have 
also implemented a series of heuristics in order to improve and optimise the code; we 
have therefore managed to generate automata with fewer nodes and edges and in less 
time, and to determine the accepting states more quickly than if these heuristics had 
not been used. Among these heuristics, the following should be highlighted: 
1. During the expansion process of the graph nodes, FBT considers two nodes to 

match (i.e. they represent the same state) if their fields Literals and Next store the 
same respective set of formulas, and this is why the two nodes are merged into one. 
LBT, however, only fuses two nodes when the fields Old and Next of one node 
contain the same respective sets of formulas as their homologous ones in the other 
node. The advantage of applying our approach is that in many cases it is possible to 
reduce the number of nodes generated with regard to those that would be produced 
if the condition considered in LBT had been implemented. 

2. The first thing that FBT does with the chosen formula (η) from the field New is to 
check whether its negation (¬η) is included in the field Old and if so, this node 
should be discarded. In this way, the contradictions in a node are rapidly detected, 
thus avoiding the processing of many formulas of a node (which will eventually be 
discarded) until we reach the level of literals, which is where the contradictions are 
detected in LBT. With this heuristics, we are able to carry out the expansion 
process of interval formulas more quickly and efficiently. 

3. In order to establish the acceptance sets (i.e. the acceptance conditions), our 
translator uses an improved heuristics with respect to LBT, where the search for the 
formulas expressing eventuality (i.e. those having either the operator U (strong 
until) or the operator ◊ (finally, eventually) as the main operator), is carried out in 
the field Old of the nodes stored in the set of the graph nodes, instead of in the field 
Next, as FBT does. This last field obviously contains fewer formulas than the 
previous field as it only stores the temporal formulas (interval formulas, in the case 
of FBT) that must be satisfied (although not immediately) in the state which that 
node represents. The field Old, meanwhile, holds not only these formulas, but also 
all the propositional and temporal formulas that have been processed in such a 
state. Some of these formulas are either totally or partially satisfied in that state and 
they are not therefore present in the field Next. Consequently, this heuristics 
enables FBT to calculate the acceptance conditions more quickly. 

4. In order to determine the accepting states, i.e. the states that belong to each 
acceptance set, FBT need only check that none of the eventuality formulas 
associated to the corresponding acceptance condition is stored in the field Next of a 
node. By checking in the field Next rather than in the field Old (as LBT does) our 
procedure is able to gain the advantages of speed and simplicity. Moreover, in 
order to determine whether a state belongs to an acceptance set or not, LBT must 
check not only for the presence or absence of the corresponding eventuality 
formula (which is either of the type ◊f or gUf, where f and g represent any formula 
accepted by LBT), but also for the formula that satisfies that eventuality ( f ). 

1506 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...



Consequently, the procedure for calculating the accepting states is more complex in 
LBT than in FBT. 

3.3 Input and Output Interface 

Designed to be invoked as a subprocess for an on-the-fly model checker, FBT 
analyses a FIL formula supplied in textual format using the standard input. Once it has 
been processed, FBT writes (also in textual format) the generalized Büchi automaton 
which is semantically equivalent to this formula in the standard output. Both in the 
input and output, the formulas are written in prefix notation, since this facilitates the 
recursive-descent parsing that our translator must carry out. The final part of this 
section explains how a graphical representation may be obtained from the textual 
output generated by FBT. 

 

Figure 10: Syntax of the formulas accepted by FBT (I): the simplest formulas 

3.3.1 Syntax of the Input Formulas 

This subsection presents the grammar that defines the syntax of all the types of 
formulas accepted by FBT as input. The grammar, which is shown using the BNF 
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(Backus-Naur Form) [Naur 1960], has been divided into two figures in order to obtain 
a more elegant presentation, since not all its production rules fit into the available 
space of a page. [Figure 10] shows the rules which build the simplest types of FIL 
formulas, while [Figure 11] describes how the formulas containing some temporal 
operators are formed. Comments delimited by the symbols /* and */ have been added 
to the right of certain production rules in both figures. These comments and the 
expressions in bold that separate the grammar rules into different groups or sections 
(so as to make them easier to read) are not part of the formal grammar. Terminal 
symbols are enclosed within single quotes or presented as regular expressions in the 
style used by the lexical analyser generator FLEX2. Non-terminal symbols are enclosed 
within angles, and these are also represented in the usual link-style (i.e. underlined) 
when they appear in the righthand part of a production rule. 

 

Figure 11: Syntax of the formulas accepted by FBT (II): temporal formulas 

                                                           
[2] http://www.gnu.org/software/flex/flex.html  
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It should be noted that FBT also accepts LTL temporal operators, but only as 
abbreviations of the corresponding FIL interval formulas (as indicated in the first 
comment of [Figure 10] and also in [Figure 11]). This means that once FBT has 
parsed one of these formulas, it immediately transforms it into its equivalent interval 
formula, which is the one that it actually stores and processes. Consequently, all the 
temporal formulas that our algorithm must decompose (i.e. expand) are interval 
formulas, and therefore it has no expansion rule for decomposing formulas with LTL 
temporal operators, since these operators are not present in the internal formulas that 
must be processed. In other words, the interval is the only temporal operator that the 
algorithm must consider internally. 

It can be seen in the last two lines of the first production rule in [Figure 10] that 
FBT ignores white spaces, horizontal and vertical tabulators (\t and \v), carriage 
returns (\r), and line and form feeds (\n and \f). We can therefore introduce any 
number of these separators between two terms of the formula that we want to supply 
as input to FBT. 

3.3.2 Syntax of the Generated Output 

[Figure 12] shows the syntax used by FBT for returning the generalized Büchi 
automaton (gba, as it is referred to in the lefthand part of its first production rule), 
which is equivalent to the FIL formula that was introduced as input. It should be noted 
that the same notation explained in the previous subsection has been used in this 
figure, and that the non-terminal symbol <proposition> used in it is defined in [Figure 
10]. 

The following example attempts to clarify the grammar presented in [Figure 12], 
and also to explain how the tool may be operated and some of its main characteristics. 

 
Example 1: Let us suppose that the formula ¬!p0 (i.e. !Gp0, in the FBT syntax) is 
supplied to the tool and that we want to obtain the corresponding output in a file 
named automaton.txt. In this case, the command that we would have to type would 
be: echo '!Gp0' | fbt >automaton.txt. If this formula is the content of a file 
(for example: formula.txt), then we should type: fbt <formula.txt 

>automaton.txt. Obviously, if we want the output to appear on the screen, we only 
need to omit the last part of the command (from the redirection symbol >) in both 
cases. [Figure 13] shows what FBT returns after executing one of the previous 
commands (i.e. the contents of the file automaton.txt) and explains its meaning. 
FBT converts the formula given into its equivalent interval formula: ![!p0 > f (i.e. 
¬[→¬p0 |→)F, in the standard FIL syntax presented in section 2.2), which is the one 
that it actually stores and processes. FBT would obviously perform in exactly the same 
way and would generate the same output if the formula inputted had been, for 
example, any of the following: F!p0 (◊¬p0), | F!p0 !Gp0 (◊¬p0 ∨ ¬!p0) or & 

F!p0 !Gp0 (◊¬p0 ∧ ¬!p0), since all of these are equivalent. 
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Figure 12: Syntax of the output generated by FBT 

3.3.3 Graphical Visualization of the Generated Automata  

In order to graphically visualize the textual output generated by FBT, we should 
execute a filter, which we have named GBA2DOT since it converts the generalized 
Büchi automaton that FBT produces into the language dot, which is directly accepted 
by the directed graph visualization tool GRAPHVIZ3 [Gansner, North 2000]. 

The following example shows how a graphical representation may be obtained 
from the textual output produced by our translator. It uses the result obtained in 
[Example 1] (i.e. the contents of the file automaton.txt), which is shown in [Figure 
13]. 

 

                                                           
[3] http://www.graphviz.org/ 

1510 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...



4 1

0 1 –1 End of the label of node 0

2 ! p0 Transition to node 2 labelled with !p0

4 p0 Transition to node 4 labelled with p0

-1 End of the transitions for node 0

2 0 0 –1

3 t

-1

3 0 0 –1

3 t

-1

4 0 –1

2 ! p0

4 p0

-1

Node 0

Node 2

Node 4

Node 3

Total number of states, 
including the initial one

Total number of acceptance sets 

Node identifier 

This is the initial state 

These nodes satisfy the conditions of 
the acceptance set 0 

These nodes are not the initial state

 

Figure 13: Textual output generated by FBT from the formula ¬!p0 

Example 2: The execution of the command gba2dot <automaton.txt 

>graph.txt translates the generalized Büchi automaton stored in the file 
automaton.txt (presented in [Figure 13]) into the language dot. The execution 
result of the previous command is shown in [Figure 14] and stored in the file 
graph.txt. From this file, with its easier to understand contents, the visualization 
tool GRAPHVIZ automatically generates the corresponding graphical representation. 
We therefore only need to type the following command: dotty - <graph.txt, and 
the window presented in [Figure 15] will appear on the screen. This contains the 
graphical representation of the generalized Büchi automaton that FBT produces for 
the input formula !Gp0 (i.e. ¬!p0).  
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Figure 14: Filter execution result for the output generated by FBT from the formula 
¬!p0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Graphical representation of the Büchi automaton generated by FBT from 
¬!p0 

Additional details about the tool design and implementation can be found in 
[Hornos 2002] and at http://www-lsi.ugr.es/~mhornos/fbt, where the tool code can be 
downloaded. 
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4   Experimental Results 

As FBT has been implemented from the LBT code, this section not only presents 
some experimental results obtained with our tool, but also those generated by LBT for 
the same or equivalent specifications so that both tools may be compared. 

As [Figure 11] shows, not only does FBT recognize the only temporal operator of 
FIL, i.e. the interval, but also the following temporal operators of LTL: ! (always or 
henceforth) and its dual ◊ (eventually), and U (until strong) and its dual V (release), 
but only as abbreviations of the corresponding FIL interval formulas. FBT therefore 
accepts LTL formulas, such as the one shown in [Example 3], but automatically 
transforms them into their FIL equivalents, these being the ones that it actually stores 
and processes, as mentioned previously. 

 

Figure 16: Büchi automaton generated by FBT from the formula ◊p0 ∧ ◊p1 

Example 3: For the input specification ◊p0 ∧ ◊p1, FBT processes the FIL formula 
¬[→p0|→)F

 ∧ ¬[→p1|→)F in order to build its semantically equivalent automaton, 
which is graphically represented in [Figure 16]. It should be noted that each edge is 
labelled with the conjunction of literals (in prefix notation) that enables that transition. 
The upper number labelling each node is its state identifier, while the lower numbers 
identify the acceptance conditions that it satisfies. The initial state is always shaded 
and numbered 0. In order to compare the automata generated by FBT and LBT, we 
count the number of nodes, edges and acceptance conditions, as well as the number of 
states that satisfy each condition. Since both tools produce generalized Büchi 
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automata, the resulting automaton generally have k acceptance conditions; each one 
defines a set of accepting states, Fi (with i=1..k), which contains those states that 
satisfy it. The automaton in [Figure 16] has 9 nodes (the initial node is not 
considered), 20 edges (the ones leaving the initial node are counted), and two 
acceptance conditions (k=2), the first (identified by the number 0) is satisfied by six 
states (nodes 3, 4, 5, 7, 8 and 13), while the second one (identified by the number 1) is 
satisfied by another six (nodes 3, 4, 7, 11, 13 and 14). When k>1, if we want to obtain 
a classic Büchi automaton, i.e. one with only one set of accepting states, F, we only 
need to obtain the states that are in the intersection of the sets Fi (i.e. F=∩Fi). There 
are therefore four accepting states in our example (nodes 3, 4, 7 and 13).  

[Table 1] gathers the values counted in the automata generated by FBT and LBT 
for various input specifications which only have LTL temporal operators. The one 
explained in [Example 3] is shown in Case 5. Each case occupies two rows: the first 
corresponds to the results obtained with LBT, and the second is for those produced by 
FBT. It should be noted that in the second row of each case, the input specification is 
represented in the extended syntax of FIL, while the processed formula is expressed in 
its restricted syntax. We can observe that for the simplest specifications (Cases 1 and 
2), the same values are obtained in the automata generated by both tools (except in the 
column Time, a variable which will be discussed at a later stage). However, for 
slightly more complex specifications (Cases 4, 5 and 6), FBT generally produces 
smaller automata than those obtained with LBT. The formulas containing either the 
operator U or its dual V are usually the exception to this rule, since for these, LBT 
usually produces automata which are slightly simpler than those generated by FBT 
(Case 3). This is due to the fact that the corresponding interval formula which is 
analysed by FBT attempts to “simulate” the property that these operators represent 
more naturally. Something similar happens in the opposite way with interval formulas: 
since LBT does not admit interval formulas, it is necessary to resort to appreciably 
more complicated expressions (see [Table 2]) in order to provide it with an equivalent 
LTL formula, as [Example 4] explains in detail for Case 1 of  [Table 2]. 

Example 4: Since LBT does not recognize the formula [→p0|→p1)!¬p2, we must 
input an equivalent LTL formula. The semantics associated with this interval formula 
indicates that it holds whenever one of the following four conditions is fulfilled: 

1. p0 does not hold in the reflexive future, i.e. the LTL formula !¬p0 holds. 
2. p1 never holds in the reflexive future, i.e. !¬p1 is true. 
3. p1 precedes p0, which is expressed as p1V¬p0 in LTL. This formula asserts that in 

the first state where p1 holds as well as in all the previous ones to it ¬p0 holds. 
4. Either p0 and p1 hold in the same state or p0 holds strictly before p1 and (in this 

latter case) ¬p2 is invariantly satisfied from the instant in which p0 holds until p1 is 
fulfilled. Both conditions are formulated in LTL as ¬p1 U (p0 ∧ ¬p2 U p1). 

Consequently, the equivalent formula to [→p0|→p1)!¬p2 that must be inputted 
into LBT is the disjunction of the previous four LTL formulas, i.e. !¬p0 ∨ !¬p1 ∨ 
p1V¬p0 ∨ ¬p1 U (p0 ∧ ¬p2 U p1). The interval formula clearly expresses the 
explained property more concisely and elegantly. Moreover, the analysis carried out 
by FBT produces a simpler automaton (see Case 1 in [Table 2]).  
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 Specification Size Accepting states Time 
 Input Processed Nodes Edges k |Fi| |∩Fi| µs 

!¬p0 1 2 0 ⎯ ⎯ 30 
1 !¬p0 [→p0|→)F 1 2 0 ⎯ ⎯ 120 

◊p0 3 6 1 2 ⎯ 50 
2 ◊p0 ¬[→p0|→)F 3 6 1 2 ⎯ 238 

p1 U p2 3 6 1 2 ⎯ 60 
3 p1 U p2 ¬[→(¬p1∨ p2)|→)¬p2  4 9 1 3 ⎯ 624 

◊◊p1 6 13 2 4, 5 3 98 
4 ◊◊p1 ¬[→¬[→p1|→)F|→)F 4 8 2 3, 3 2 435 

◊p0 ∧ ◊p1 13 29 2 8, 8 4 232 
5 ◊p0 ∧ ◊p1 ¬[→p0|→)F ∧ ¬[→p1|→)F 9 20 2 6, 6 4 999 

!◊p1 ⇒ !◊p2 9 19 2 7, 7 5 172 
6 !◊p1 ⇒ !◊p2 ¬[→[→p1|→)F|→)F ∨ [→[→p2|→)F|→)F 5 15 3 4, 3, 4 2 900 

  

Table 1: Comparison of results obtained with LBT        and FBT        from LTL 
formulas 

The contents of [Table 2] are similar to those of [Table 1] but for more complex 
properties which are inputted as interval formulas to FBT and as their equivalent LTL 
formulas to LBT. Except for the formulas of Case 1 (explained in [Example 4]), the 
remaining formulas of [Table 2] have been taken from an online repository of property 
specification patterns4 that are commonly used in the specification and (finite-state) 
verification of concurrent and reactive systems. These patterns, which are available in 
various formalisms (including LTL and GIL), are classified in terms of the kinds of 
properties they describe and are defined using specific scopes (i.e. the extent of the 
execution over which the property must hold). Case 2 specifies that p0 is always false 
before p1; it is therefore an absence property defined over the scope before. Case 3 
states that p0 becomes true after p1; it is therefore an existence property defined over 
the scope after. Case 4 represents a universality property over the scope between, 
since it specifies that p0 is always true between p1 and p2. Finally, the two last cases 
are bounded existence properties, meaning that transitions to p0-states occur at most 2 
times globally (i.e. its scope is the entire execution) in Case 5 and before p1 in Case 6.  

In both tables, the last column indicates the average execution time taken by each 
tool to translate the corresponding formula. These times have been calculated on 
average by running the same formula 30 times under the SuSE Linux 7.2 operating 
system on a PC with an AMD Athlon 1 GHz processor and 256 MB of RAM. It 
should be noted that these times are expressed in terms of microseconds (µs) in [Table 
1], while milliseconds (ms) are used in [Table 2]. It can be appreciated that LBT is 
faster than FBT for all the formulas analysed. This is due to the fact that processing 
interval formulas is more complex than processing LTL formulas since every 
expansion (or tableau) rule of the LBT algorithm [Gerth et al. 1995] generates two 
new formulas at most, whereas the expansion rules of the FBT algorithm [Hornos, 
Capel 2002] can generate more than two new formulas for each analysed formula 

                                                           
[4] http://patterns.projects.cis.ksu.edu/documentation/patterns.shtml  
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when it is decomposed (i.e. expanded). Nevertheless, the running time of FBT can be 
perfectly assumed since it is sufficiently small, and in most of the analysed formulas, 
the resulting automata are simpler than those produced by LBT, as both tables show. 
Particularly significant is the difference in size between the automata generated by 
LBT and FBT in bounded existence properties (Cases 5 and 6 of [Table 2]). 

 Specification Size Accepting states Time 
 Input Processed Nodes Edges k |Fi| |∩Fi| µs 

!¬p0 ∨ !¬p1 ∨ p1V¬p0 ∨ ¬p1 U (p0 ∧ ¬p2 U p1)  17 33 2 15, 14 12 0.3 

1 [→p0|→p1)!¬p2 [→p0|→p1)[→p2|→)F 12 25 2 9, 9 7 3.4 

◊p1 ⇒ (¬p0 U p1) 7 12 1 5 ⎯ 0.1 

2 [−|→p1)!¬p0 [−|→p1)[→p0|→)F 4 8 1 3 ⎯ 0.6 

!¬p1 ∨  ◊(p1 ∧ ◊p0) 11 22 2 8, 9 6 0.2 

3 [→p1|→)◊p0 [→p1|→)¬[→p0|→)F 7 15 2 5, 6 4 0.9 

!((p1 ∧ ¬p2 ∧ ◊p2) ⇒ (p0 U p2)) 13 66 1 8 ⎯ 0.7 

4 ![→p1|→p2)!p0 [→¬[→p1|→p2)[→¬p0|→)F
 | →)F 13 58 2 9, 9 7 16.8 

!¬p0 ∨ (¬p0 U (!p0 ∨ (p0 U (!¬p0 ∨ (¬p0 U (!p0 ∨ (p0 U !¬p0))))))) 31 86 4 
29, 28, 
27, 26 

17 0.9 5 
[→p0,→¬p0,→p0,→¬p0|→)!¬p0 [→p0,→¬p0,→p0,→¬p0|→)[→p0|→)F 9 20 1 5 ⎯ 7.6 

◊p1 ⇒ ((¬p0 ∧ ¬p1) U (p1 ∨ ((p0 ∧ ¬p1) U (p1 ∨ ((¬p0 ∧ ¬p1) U  

(p1 ∨ ((p0 ∧ ¬p1) U (p1 ∨ (¬p0 U p1))))))))) 
43 134 5 

41, 40, 
39, 38, 37 

23 1.5 6 
[−|→p1)[→p0,→¬p0,→p0,→¬p0|→)

!¬p0 
[−|→p1)[→p0,→¬p0,→p0,→¬p0|→) 

[→p0|→)F 
12 30 1 3 ⎯ 50.1 

  

Table 2: Comparison of results obtained with LBT        and FBT        from interval 
formulas 

5   Conclusions and Future Work 

In this paper, we have presented the FBT tool, which is specially intended to be 
applied to the automatic verification of systems, using the on-the-fly model checking 
method and FIL formulas. We have adopted this logic as the specification formalism 
of our tool for two reasons: firstly, its ability to succinctly express limited temporal 
contexts in which certain properties must be satisfied; and secondly, its natural, 
intuitive, graphical representation, which makes the specifications easier to develop 
and understand. 

We have shown class diagrams illustrating the design structure of FBT, and 
discussed the main characteristics of its implementation. We have also included some 
experimental results which have been compared with the results obtained with LBT 
for the same or equivalent formulas. The automata generated by both translators are of 
a similar complexity, but those produced by FBT are slightly simpler in most of the 
analyzed cases. As a good specification formalism is the one that describes the most 
frequently used properties in verification with specifications that are relatively short 
and not difficult to check in practice, we can conclude that FIL is a good specification 
formalism and that FBT is a good tool for the efficient translation of its formulas into 
Büchi automata. 
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In our most immediate future work, we intend to supply FBT with a graphical 
editor for GIL formulas so that the specifications can be pictorially inputted rather 
than in the FIL textual syntax. One editor of this type is GILED [Kutty et al. 1993], 
which automatically translates the editor-created graphical specifications into the 
corresponding FIL formulas. The idea is to adapt this editor or to build one of similar 
characteristics for FBT. We also intend to integrate our translator into an on-the-fly 
model checking tool. For this purpose, FBT has been designed so that it may be easily 
incorporated into the model checker of MARIA [Mäkelä 2002], and as we outline in 
[Gallardo et al. 2004] we are working on the integration of FBT into SPIN [Holzmann 
2003], which is one of the most popular finite-state verification tools. Our final aim is 
to apply our tool to the specification and automatic verification of real-world systems, 
using interval logic formulas for describing the properties to be checked. 

References 

[Ben-Ari et al. 1983] Ben-Ari, M., Pnueli, A., Manna, Z.: “The temporal logic of branching 
time”; Acta Informatica, 20 (1983), 207–226 

[Büchi 1962] Büchi, J.R.: “On a Decision Method in Restricted Second-Order Arithmetic”; 
Proceedings of the 1960 International Congress on Logic, Methodology and 
Philosophy of Science; Stanford University Press, Stanford (1962), 1–11 

[Dillon et al. 1994] Dillon, L.K., Kutty, G., Melliar-Smith, P.M., Moser, L.E. Ramakrishna, 
Y.S.: “A Graphical Interval Logic for Specifying Concurrent Systems”; ACM 
Transactions on Software Engineering and Methodology, 3, 2 (1994), 131–165 

[Gallardo et al. 2004] Gallardo, M.M., Hornos, M.J., Martínez, J., Merino, P.: “Integration of 
Interval Logic Specifications into the Model Checker SPIN”; XII Jornadas de 
Concurrencia y Sistemas Distribuidos, Las Navas del Marqués, Ávila, Spain (2004), 
317–322 

[Gansner, North 2000] Gansner, E.R., North, S.C.: “An open graph visualization system and its 
applications to software engineering”; Software: Practice and Experience, 30, 11 
(2000), 1203–1233 

[Gerth et al. 1995] Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: “Simple On-the-fly 
Automatic Verification of Linear Temporal Logic”; Proceedings of the 15th 
International Symposium on Protocol Specification, Testing and Verification, Warsaw, 
Poland; Chapman & Hall (1995), 3–18 

[Holzmann 2003] Holzmann, G.J.: “The SPIN Model Checker: Primer and Reference Manual”; 
Addison-Wesley, Boston (2003) 

[Hornos 2002] Hornos, M.J.: “Tool Design and Implementation”; In: From Interval Logic 
Specifications to Property Automata: A Tableau Construction for Application to On-
the-fly Model Checking, Chapter 6, PhD. Thesis, University of Granada (2002), 153–
182 (in Spanish) 

[Hornos, Capel 2002] Hornos, M.J., Capel, M.I.: “On-the-fly Model Checking from Interval 
Logic Specifications”; ACM SIGPLAN Notices, 37, 12 (2002), 108–119 

[Kutty et al. 1993] Kutty, G., Dillon, L.K., Moser, L.E., Melliar-Smith, P.M., Ramakrishna, 
Y.S.: “Visual Tools for Temporal Reasoning”; Proceedings of the IEEE Symposium on 
Visual Languages, Bergen, Norway (1993), 152–159 

[Mäkelä 2002] Mäkelä, M.: “Maria: Modular Reachability Analyser for Algebraic System 
Nets”; Proceedings of the 23rd International Conference on Application and Theory of 
Petri Nets, Adelaide, Australia; Lecture Notes in Computer Science, 2360, Springer-
Verlag (2002), 434–444 

1517Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...



[Manna, Pnueli 1992] Manna, Z., Pnueli, A.: “The Temporal Logic of Reactive and Concurrent 
Systems: Specification”; Springer-Verlag, New York (1992) 

[Naur 1960] P. Naur (ed.): “Revised Report on the Algorithmic Language ALGOL 60”; 
Communications of the ACM, 3, 5, (1960), 299–314 

[Ramakrishna et al. 1992] Ramakrishna, Y.S., Dillon, L.K., Moser, L.E., Melliar-Smith, P.M., 
Kutty, G.: “An Automata-Theoretic Decision Procedure for Future Interval Logic”; 
Proceedings of the 12th Conference on Foundations of Software Technology and 
Theoretical Computer Science, New Delhi, India; Lecture Notes in Computer Science, 
652, Springer-Verlag (1992), 51–67 

[Ramakrishna et al. 1996] Ramakrishna, Y.S., Dillon, L.K., Moser, L.E., Melliar-Smith, P.M., 
Kutty, G.: “Interval Logics and Their Decision Procedures. Part I: An Interval Logic”; 
Theoretical Computer Science, 166, 1–2 (1996), 1–47 

[Rumbaugh et al. 1999] Rumbaugh, J., Jacobson, I., Booch, G.: “The Unified Modeling 
Language Reference Manual”; Addison-Wesley, Reading (1999) 

[Stroustrup 1986] Stroustrup, B.: “The C++ Programming Language”; Addison-Wesley, 
Reading (1986) 

[Wolper 1985] Wolper, P.: “The Tableau Method for Temporal Logic: An Overview”; Logique 
et Analyse, 110–111 (1985), 119–136 

1518 Hornos M.J.: FBT: A Tool for Applying Interval Logic Specifications ...


