
Using Global Structural Relationships of Signals to
Accelerate SAT-based Combinational Equivalence

Checking1

Rajat Arora

(Cadence Design Systems, San Jose, CA, U.S.A.
raarora@cadence.com)

Michael S. Hsiao
(Department of Electrical & Computer Engineering, Virginia Tech, Blacksburg, VA, U.S.A.

hsiao@vt.edu)

Abstract: We propose a novel technique to improve SAT-based Combinational Equivalence
Checking (CEC). The idea is to perform a low-cost preprocessing that will statically induce
global signal relationships into the original CNF formula of the miter circuit under verification,
and hence reduce the complexity of the SAT instance. This efficient and effective
preprocessing quickly builds up the implication graph for the miter circuit under verification,
yielding a large set of direct, indirect and extended backward implications. These two-node
implications spanning the entire circuit are converted into binary clauses, and they are added to
the miter CNF formula. The added clauses constrain the search space of the SAT solver and
provide correlation among the different variables, which enhances the Boolean Constraint
Propagation (BCP). Experimental results on large and difficult ISCAS’85, ISCAS’89 (full
scan) and ITC’99 (full scan) CEC instances show that our approach is independent of the state-
of-the-art SAT solver used, and that the added clauses help to achieve noteworthy speedup for
each of the cases. Also, comparison with Hyper-Resolution (Hypre), Non-Increasing Variable
Elimination Resolution (NIVER) and the propositional formula checker HeerHugo, suggests
that our technique is more powerful, yielding non-trivial clauses that significantly simplify the
SAT instance complexity.

Keywords: Boolean Satisfiability (SAT), Static Logic Implications, Combinational
Equivalence Checking (CEC), Propositional Formula, Boolean Formula.
Categories: I.2.6, I.2.8, F.4.m, B.6.2

1 Introduction

In the past four decades, much progress has been made in the field of Boolean
Satisfiability (SAT). Due to its numerous Electronic Design Automation (EDA)
applications, such as Combinational Equivalence Checking (CEC) [Goldberg 01, Lu
03a, Novikov 03, Silva 99b, Silva 99c], Bounded Model Checking (BMC) [Biere 99,
Gupta 03] and Automatic Test Pattern Generation (ATPG) [Larrabee 92, Lu 03b,
Stephan 96], SAT continues to be a heavily studied area. The state-of-the-art SAT

1

Supported in part by NSF Grants CCR-0196470 and CCR-0305881.

Journal of Universal Computer Science, vol. 10, no. 12 (2004), 1597-1628
submitted: 26/10/03, accepted: 13/12/04, appeared: 28/12/04 © J.UCS

solvers [Moskewicz 01, Goldberg 02a, Ryan 03] are descendants of the DPLL-
algorithm [Davis 62] and usually operate on Boolean formulas represented in
Conjunctive Normal Form (CNF). This form consists of the logical AND
(conjunction) of clauses, such that each clause is a logical OR (disjunction) of one or
more literals. A literal is a variable in its true or complemented form. For the CNF
formula to be satisfied, each of the individual clauses should be satisfied (sat). Each
clause is also called an implicate of the CNF formula. While trying to satisfy a given
CNF formula, a SAT solver makes decisions based on a given set of variable selection
heuristics [Goldberg 02a, Moskewicz 01, Silva 99a, ZhangH 97]. It learns
dynamically from the conflicts encountered during the search and generates conflict-
induced clauses [Goldberg 02a, Moskewicz 01, Silva 99a, ZhangH 97] that can
subsequently constrain the search. However, the conflict clauses learnt dynamically
have the following disadvantages:
• Not all learned clauses are useful, especially the long clauses.
• The set of all learned clauses can grow very large.
• The clauses are learned gradually over the entire SAT search, which may take a

long time.

1.1 Previous Work

Recently, efforts have been made to improve the SAT-based CEC by inducing useful
information into the original CNF formula before the SAT solver starts. These efforts
have enabled to overcome the above disadvantages to some extent. In [Lu 03a],
probable correlations among signal pairs were first obtained by random simulation of
the miter circuit. Then, explicit learning was performed wherein the correlated signal
pairs were assigned values that would most likely result in a conflict. A SAT solver
was then invoked to quickly learn a fixed number of conflict-induced clauses,
corresponding to every pair of possibly correlated signals. Because random simulation
was used, only a subset of the signal correlations could be identified. In [Novikov 03],
the author introduced a technique that involved branching on small subsets of CNF
variables, and analyzing the results of unit propagation. A restricted version of this
technique was implemented, which focused on deducing constant values and
equivalence relationships. In [Li 00], equivalence reasoning was integrated into the
Davis-Putnam procedure [Davis 62] to enhance its performance on problems
containing equivalence clauses. In [Gupta 03], which focuses on improving SAT-
based BMC, local BDDs were used to capture relationships among the Boolean
variables of the CNF formula in the form of a characteristic function. The
nodes/variables for which BDDs were created were called seed nodes, and these were
selected statically or dynamically during the decision phase. Every path leading to the
terminal node 0 in the resulting local BDD denoted a conflict, and the negation of the
corresponding literals was added as a multi-literal learned clause to the existing CNF
formula. However, the locally built BDDs were not helpful in extracting the global
relations. In [Kuhelmann 01], the authors integrated BDD-based Boolean reasoning,
local structural transformations and circuit-based SAT procedure in one framework,
and a shared AND/INVERTER graph representation was used for solving the
problem. Probing-based preprocessing techniques for manipulating propositional
satisfiability formulae were proposed in [Lynce 03]; meaningful information was
inferred from a table of triggering assignments, built by assigning a value to each of

1598 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

the variables and carrying out unit propagation. The technique also subsumed the
additional binary clauses obtained in [Gelder 93]. In [Goldberg 03], the authors
integrated the notion of levels of variables inside the SAT solver, such that the
variables closer to the primary inputs were preferred during decision making. This
heuristic considerably improved the SAT solver performance on some of the CEC
instances.

In [Groote 00], the authors introduced a propositional formula checker HeerHugo
which is based on similar principles as the patented Stalmarck’s method [Stalmarck,
Sheeran 00]. HeerHugo first converts its input n-CNF formula (i.e., a CNF formula
with maximum clause length of n literals, where n is any natural number) into a 3-
CNF formula (i.e., a CNF formula where the clauses contain at most 3 literals), and
then applies a set of simple rules to determine if it could find some contradiction in
the CNF formula. These simple rules are the following:
• unit resolution—this rule identifies any clause with only one literal and assigns a
logic 1 to that literal. This assigned value is propagated throughout the CNF formula.
• implication cycle removal—this rule identifies any implication cycle and replaces
the literals in an implication cycle by a representative literal. For example, if p ⇒ q, q
⇒ r and r ⇒ p, then the literals p, q and r are equivalent and form an implication
cycle. Therefore, any of the three literals can be used as a representative literal for
denoting all of them.
• subsumption checking [Groote 00]—this rule adds a new clause to the CNF
formula only after checking if no similar clause already exists in the formula. For
example, if a clause (p ∨ q ∨ r) or (p ∨ q) or (p ∨ r) or (q ∨ r) already exists, then a
new inferred clause (p ∨ q ∨ r) will not be added.
• the classical Davis-Putnam rule [Davis 60]—this rule eliminates propositional
variables using binary resolution. In order to eliminate a propositional variable x, the
classical Davis-Putnam rule, also called Variable Elimination Resolution (VER)
method, forms two sets of clauses Px and Nx with the variable x appearing in positive
polarity and negative polarity, respectively. It then performs binary resolution on
these two sets of clauses resulting in a set of resolvents R. Finally, it eliminates the
variable x by removing all the clauses in (Px ∪ Nx) and adding all the clauses in R to
the CNF formula.

The Davis-Putnam rule used as a part of the simple rules in HeerHugo was
applied in a restricted manner such that a propositional variable was eliminated only
when it reduced the CNF formula size or when there was very limited growth. If no
contradiction was derived after applying the simple rules, HeerHugo adopted a
branch/merge rule to prove the satisfiability/ unsatisfiability of the CNF formula. For
a CNF formula Φold, with x as one of the propositional variables, applying the branch
merge rule results in a new CNF formula Φnew given by,

Φnew = Φold ∧ (Cx ∩ C¬x),
where Cx ≡ Φold ∧ x and C¬x ≡ Φold ∧ ¬x, represents the set of conclusions obtained by
applying simple rules with x added to Φold and ¬x added to Φold, respectively. This
branch/merge rule (called level 0 branch/merge rule) is iteratively applied to all the
propositional variables until the intersection between Cx and C¬x is empty for each of
them. If still no contradiction is obtained then the branch/merge rule is applied in a
nested way: for example, with the propositional variable x set to true in the CNF

1599Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

formula Φold, take the intersection of the conclusions obtained by setting the
propositional variable y first to true and then to false, independently, and likewise for
all the variables (called level 1 branch/merge rule). This way the branch merge rule
can be applied at higher levels, which in turn increases the computational complexity
of the algorithm. The reader is referred to [Groote 00] for all details.

More recently, in [Bacchus 02, Bacchus 03], preprocessing based on Hyper-
Resolution and Equality Reduction was explored. The Hyper-Resolution technique
takes as input the following:

(a) a single n-ary clause (n ≥ 2), i.e. (l1 ∨ l2 ∨ l3 … ∨ ln), and
(b) n – 1 binary clauses each of the form (¬li ∨ l) where (i = 1, …, n – 1)

It then produces as output a new binary clause (l ∨ ln). For example, using Hyper-
Resolution on the inputs (a ∨ b ∨ c ∨ d), (h ∨ ¬a), (h ∨ ¬c), and (h ∨ ¬d), the new
binary clause (h ∨ b) is produced. Hyper-Resolution is equivalent to a sequence of
ordinary resolution steps (i.e., resolution steps involving only two clauses). However,
a sequence of ordinary resolution steps would generate clauses of intermediate length
while Hyper-Resolution side-steps this to only generate a final binary clause. In a
SAT solver it is generally counter-productive to add these intermediate clauses to the
CNF database, but it can be very useful to add the final binary clause. The above
resolution steps also help to generate unit clauses (clauses with only one literal) which
further simplify the CNF formula. Their preprocessing algorithm also performs
equality reduction if the CNF database has equivalent literals. For example, if the
CNF formula contains (¬a ∨ b) as well as (a ∨ ¬b) (i.e, a ⇒ b as well as b ⇒ a), then
by equality reduction we can replace b with a. The steps involved in equality
reduction are:
• replace all instances of b in the CNF formula by a,
• remove all clauses which now contain both a and ¬a,
• remove all duplicate instances of a (or ¬a) from all clauses.
This process might generate new unit clauses. The Hyper-Resolution technique was
shown to be highly effective on a large variety of SAT benchmarks.

Lately, a SAT preprocessor based on VER method [Davis 60] namely NIVER
was introduced in [Subbarayan 04]. This preprocessor is a special case of VER [Davis
60] such that it does not allow an increase in the formula size, with respect to the total
number of literals in the original CNF formula Φ. For a propositional variable x to be
eliminated, NIVER forms two sets of clauses Px and Nx and finally the set of
resolvents R (similar to the VER method described before). Now if the total number
of literals in (Px ∪ Nx) is greater than or equal to the total number of literals in R,
NIVER eliminates the variable x by removing all the clauses in (Px ∪ Nx) from Φ and
adding all the clauses in R to Φ. Except checking for tautology in the resolvents,
NIVER does not do any complex steps like subsumption checking. Unlike Hypre,
NIVER does not perform any unit propagation nor does it check for any unit clauses.
It continues to iterate until no more variables can be removed from the CNF formula.

1.2 Our Approach

In our approach, unlike [Lu 03a, Novikov 03, Gupta 03] we statically and efficiently
identify useful non-trivial relations among signals (variables) over the entire miter
circuit. We then augment the existing CNF formula by adding these relations as

1600 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

clauses, before the SAT solver starts. Instead of working on the CNF formula as in
[Bacchus 02, Bacchus 03, Lynce 03, Gelder 93, Subbarayan 04], we work on the
circuit netlist for inferring additional clauses. The preprocessing step quickly builds
the implication graph [Zhao 01] for the miter-circuit under verification. The resulting
indirect and extended backward implications help us to deduce pure literals (unit
clauses), equivalent literals and other non-trivial implication relations among the CNF
variables. The non-trivial implication relationships are converted into two-literal
clauses, which are added to the CNF database. These added clauses prune the search
space and provide correlation among different variables, which enhances the Boolean
Constraint Propagation [Zabih 88, Moskewicz 01, Silva 99a]. Unlike NIVER
[Subbarayan 04], we don’t do any variable elimination through resolution, nor do we
remove any existing clauses from the original CNF database. Instead, we focus on
adding many binary clauses which embed in them powerful relations among the CNF
variables that are difficult to deduce otherwise. Two state-of-the-art SAT solvers are
used in our experiments: BerkMin [Goldberg 02a] and Siege [Ryan 03]. Experimental
results for combinational circuit equivalence checking show that our proposed method
is independent of the underlying SAT solver, and we achieve significant speedup in
each of the cases. Comparison with the recently developed preprocessing technique
hyper-binary resolution [Bacchus 02, Bacchus 03], suggests that our proposed
technique is much more powerful and the resulting non-trivial clauses are difficult to
obtain using the hyper resolution approach. These new clauses when added to the
original CNF formula reduce the SAT instance complexity significantly. The
superiority of our technique is further underlined by comparison with the other recent
preprocessor NIVER [Subbarayan 04]. We show through experimental results that we
outperform NIVER by a huge margin. Also, we compare our results with a
propositional formula checker HeerHugo [Groote 00] to further show the
effectiveness of our approach.

The rest of the paper is organized as follows. Section 2 gives the background of
static implications that we have used in our implementation. Section 3 presents
observations when the static implications consisting of indirect and extended
backward implications are utilized in a SAT framework. Section 4 discusses the
formalization of static implications in the CNF formula. We present a suite of
Lemmas and Theorems to prove that the clauses added using static implications are
implicates of the CNF formula and preserve its satisfiability. Section 5 gives the
implementation algorithm. Experimental results are discussed in Section 6, and
Section 7 concludes the paper.

2 Preliminaries

2.1 Static Implications

Static implications are obtained by setting each gate in the Boolean circuit to logic
value 1 and 0 independently, and analyzing the result of propagating these values
throughout the circuit. An efficient way for representing the implication relations is
by using an implication graph where the nodes represent gate with values and edges
represent implication relationships [Zhao 01]. For a given circuit with K gates, the

1601Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

total number of nodes in this graph is 2K, since each gate can take on a logic value of
0 or 1.
The following terminology is used:
• (N, v): Assign logic value v to gate N where v ∈ {0, 1}.
• (N, v) → (M, w): Assigning logic value v to gate N implies gate M would be

assigned a value w.
• impl[N, v]: Set of all implications resulting from assigning logic value v to gate N.
• contrapositive law [Schulz 88]: If (N, v) → (M, w), then the contrapositive law

states that (M, w’) → (N, v’), where w’ and v’ are the complementary values of w
and v, respectively. This property can be used to identify additional (possibly non-
trivial) implications.

• impossible/constant nodes: If (M, w) → (N, v) and (M, w) → (N, v’) or if (M, w)
→ (M, w’), then (M, w) is impossible, i.e., gate M would never be able to acquire
value w and would be a constant with value w’ (for clear understanding refer to
Figure 2 and the text under direct implications).

• transitive law: If (M, w) → (N, v) and (N, v) → (P, u), then the transitive law
states that (M, w) → (P, u).

• fanins: fanins of a gate N is the set of adjacent gates driving gate N.
• fanouts: fanouts of a gate N is the set of adjacent gates driven by gate N.
• target gate: The gate whose implications are being computed by assigning it value

v.
• unjustified gate: A gate G that has a specified output signal or at least one

specified input signal; if the output signal is specified, it is not determined by its
inputs/fanins. And if any of the inputs/fanins are specified, they do not determine
the gate’s output value.

• unjustified output specified gates: Subset of unjustified gates whose output value
is specified, but is not determined by its inputs/fanins.

• controlling value: A logic value at any of the fanins which can determine the
gate’s output value (see Table 1 for controlling values of different gate types).

• inversion value: If the output of the gate is inverted as in the case of NOT, NAND,
and NOR gates, the inversion value is 1; otherwise 0 (see Table 1 for inversion
values of different gate types).

• unit-clause rule: If a clause has n literals and n – 1 of its literals have been
assigned to logic value 0 by the current state of decision assignments, then the
unassigned literal should take on logic value 1 for the CNF formula to be
satisfiable. This literal is called a pure literal or implied value.

• Boolean Constraint Propagation (BCP) [Zabih 88, Moskewicz 01, Silva 99a]:
Applying the unit-clause rule repeatedly until no more pure literals can be
obtained.

• BCP (x, v): Set of values implied by performing BCP with x assigned to logic
value v.
The static logic implications are made up of direct, indirect and extended

backward implications. Direct implications can be easily determined whereas indirect
and extended backward implications [Zhao 97, Zhao 01] are non-trivial, and their
discoveries require combination of simulation, transitive law and contrapositive law
[Schulz 88]. The mathematical definitions of direct, indirect and extended backward

1602 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

implications are given below and the concepts are illustrated using the example circuit
shown in Figure 1.

2.1.1 Direct Implications

Direct implications of a gate G consist of implications associated with the gates
driving and driven by G. Such implications are easily computed by traversing through
the immediate fanins and fanouts of the gate. The direct implications are of two types:
1) direct forward implications, and 2) direct backward implications. To compute
direct forward implications, a controlling value of c at any of the fanins implies a
value of c XOR i at the gate output, where i is the inversion value of the gate. Table 1
gives the controlling value (c), the non-controlling value (nc) and the inversion value
(i) for different gates. Note that the non-controlling (nc) value is just the complement
of the controlling value (c). Similarly, to compute direct backward implications, a
value of nc XOR i at the output implies a value of nc at all the fanins.

 Consider the example circuit in Figure 1. Here, e represents an OR gate, f, h and k
are NAND gates, i and m are AND gates, g is a NOT gate and j is an XOR gate. Now
consider gate f. When we assert a logic value 0 on its output, the direct forward
implications are (g, 1) and (h, 1). The direct backward implications are (e, 1) and (c,
1). Therefore, impl[f, 0] = {(f, 0), (g, 1), (h, 1), (e, 1), (c, 1)}.

 1

Figure 1: Example circuit

An example circuit showing how direct implications lead to constant nodes is
shown in Figure 2. Here, impl[c, 0] = {(c, 0), (a, 1), (b, 1)}, impl[b, 1] = {(b, 1), (a,
0)}, impl[b, 0] = {(b, 0), (a, 1), (c, 1)}, impl[a, 1] = {(a, 1), (b, 0)} and impl[a, 0] =
{(a, 0), (b, 1), (c, 1)}. Hence, taking transitive closure of (c, 0) we get impl[c, 0] =
{(c, 0), (a, 1), (b, 0), (c, 1) (a, 0), (b, 1)}. Since impl[c, 0] contains both (a, 1) and (a,
0), therefore (c, 0) is impossible and should be constant with value (c, 1). We can also

Gate Controlling
value (c)

Non-Controlling
value (nc)

Inversion
value (i)

AND 0 1 0
NAND 0 1 1
OR 1 0 0
NOR 1 0 1

Table 1: Controlling, non-controlling and inversion values for various gates

a

b

i

k

m

d h

f

g

1

1

e

c

0

j

1603Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

interpret this in a different way. Since, impl[c, 0] contains (c, 1), i.e., (c, 0) → (c, 1)
therefore c is a constant with logic value 1.

Figure 2: Example circuit illustrating constant/impossible nodes

2.1.2 Indirect Implications

The indirect implications of a node are computed by applying the gate values
pertaining to all its direct implications to the circuit netlist and performing logic
simulation. All gates, where the output value changes from a don’t-care to logic 0 or
1, form the indirect implications of the node. Mathematically, impl[N, v] = impl[N, v]

∪ [LogicSimulate(impl[N, v])]. Here LogicSimulate() refers to performing logic
simulation with the implications applied to the circuit. Note that

LogicSimulate(impl[N,v]) ⊄ impl[N, v]. In fact, the above expression must be

interpreted as impl[N, v]new = impl[N, v]old ∪ LogicSimulate(impl[N, v]old). We follow
this convention throughout the manuscript.

Consider the direct implications of (f, 0) in Figure 1. We see that (g, 1) or (h, 1)
individually do not imply anything on gate i. However, together they imply (i, 1).
Therefore, (f, 0) → (i, 1) is an indirect implication and can be computed by a simple
logic simulation of the list impl[f, 0]. These indirect implications are added to the
implication graph of the circuit along with their corresponding contrapositive
implications. Thus, impl[f, 0] = {(f, 0), (g, 1), (h, 1), (e, 1), (c, 1), (i, 1)}. These
indirect implications have been used in the past with the name of global implications
and non-local implications. Schulz et al. in [Schulz 88] utilized these non-local
implications to improve the performance of ATPG engine and later Larrabee
[Larrabee 92] and Stephan et al. [Stephan 96], respectively, used them for
combinational test generation in a SAT framework.

2.1.3 Extended Backward Implications

The extended backward implications were first introduced by Zhao et al. in [Zhao 97].
These implications are computed by considering (1) the target gate, and (2) the
unjustified output specified gates in the implication list of the target gate.

Let (G, v) ∈ impl[N, v], and suppose gate G has p inputs among which m inputs
(l1, …, lm) are unspecified. Here N is the target gate and G is the unjustified gate with
specified output.

Case 1: G is an AND gate:

If (G, 0) ∈ impl[N, v] and (lj, 0) ∉ impl[N, v], (j = 1, 2, …, m), then

impl[N, v] = impl[N, v] ∪ [∩m

i=1
LogicSimulate(impl[N, v] ∪ impl[li , 0])]

c
b a

NAND gate NOT gate

1604 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

The above mathematical formulation states that if the implication set of (N, v)
contains an AND gate G which is unjustified output specified (i.e., it has an output
value of 0 which is not determined by the value of its fanins), then the common set of
implications obtained by setting each of the unspecified fanins to 0 under the current
assignment of (N, v), will be appended to the implication set of (N, v).

Case 2: G is an OR gate:

If (G, 1) ∈ impl[N, v] and (lj, 1) ∉ impl[N, v], (j = 1, 2, …, m), then

impl[N, v] = impl[N, v] ∪ [∩m

i=1
LogicSimulate(impl[N, v] ∪ impl[li , 1])]

The above mathematical formulation states that if the implication set of (N, v)
contains an OR gate G which is unjustified output specified (i.e., it has an output
value of 1 which is not determined by the value of its fanins), then the common set of
implications obtained by setting each of the unspecified fanins to 1 under the current
assignment of (N, v), will be appended to the implication set of (N, v).

In the same way, extended backward implications can be computed for NAND and
NOR gates.

Case 3: G is a 2-input XOR gate:

If (G, 1) ∈ impl[N, v] and both inputs l0 and l1 are unspecified, then,

impl[N, v] = impl[N, v] ∪ {LogicSimulate(impl[N, v] ∪ impl[l0, 0] ∪ impl[l1, 1]) ∩

LogicSimulate(impl[N, v] ∪ impl[l0 , 1] ∪impl[l1, 0])}
The above mathematical formulation states that if the implication set of (N, v)
contains an XOR gate G which is unjustified output specified (i.e., it has an output
value of 1 which is not determined by its fanins), then the common set of implications
obtained by setting its two fanins to logic value 0 and 1 and then to 1 and 0,
respectively, under the current assignment of (N, v), will be appended to the
implication set of (N, v).

If (G, 0) ∈ impl[N, v] and both inputs l0 and l1 are unspecified then,

impl[N, v] = impl[N, v] ∪ {LogicSimulate(impl[N, v] ∪ impl[l0, 0] ∪ impl[l1, 0]) ∩

LogicSimulate(impl[N, v] ∪ impl[l0 , 1] ∪impl[l1, 1])}
The above mathematical formulation states that if the implication set of (N, v)
contains an XOR gate G which is unjustified output specified (i.e., it has an output
value of 0 which is not determined by its fanins), then the common set of implications
obtained by setting both the fanins to logic value 0 and then to 1, under the current
assignment of (N, v), will be appended to the implication set of (N, v).

Case 4: G is a 2-input XNOR gate:

If (G, 0) ∈ impl[N, v] and both inputs l0 and l1 are unspecified then,

impl[N, v] = impl[N, v] ∪ {LogicSimulate(impl[N, v] ∪ impl[l0, 0] ∪ impl[l1, 1]) ∩

LogicSimulate(impl[N, v] ∪ impl[l0 , 1] ∪impl[l1, 0])}
If (G, 1) ∈ impl[N, v] and both inputs l0 and l1 are unspecified then,

1605Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

impl[N, v] = impl[N, v] ∪ {LogicSimulate(impl[N, v] ∪ impl[l0, 0] ∪ impl[l1, 0]) ∩

LogicSimulate(impl[N, v] ∪ impl[l0 , 1] ∪impl[l1, 1])}

Since we are dealing with miter circuits, the extended backward implications
pertaining to XOR/XNOR gates help to identify many powerful implications, which
in turn play an important role in proving the equivalence of the two circuits.

To illustrate the concept of extended backward implications, consider again the
example circuit of Figure 1. We see that impl[f, 0] = {(f, 0), (g, 1), (h, 1), (e, 1), (c, 1),
(i, 1)}. The implication list of (f, 0) contains (e, 1) and the OR gate e is unjustified
with a specified output. Now justifying e = 1 by setting the fanin a = 1 yields XOR
gate j = 0 and j = 0 → m = 0. On the other hand, justifying e = 1 by setting the fanin
b = 1 results in NAND gate k = 0 and k = 0 → m = 0. Thus, if the OR gate e is
justified by any of the fanins, we get a common implication m = 0. Therefore, f = 0
→ m = 0 is an extended backward implication of (f, 0), and is appended to the list
impl[f, 0]. These extended backward implications help to identify the hard-to-find
implications, and hence are effective for various applications such as capturing
additional untestable faults [Zhao 97, Zhao 01].

3 Application of Static Implications to SAT

When a circuit netlist is converted into its equivalent CNF-form, the resulting formula
is devoid of global structural information. Also, the topological ordering among the
signals is lost. All the internal signals in the original circuit become primary inputs
(variables) in the two-level OR-AND CNF formula. As a result, the SAT solver
heuristically picks up a variable for decision, without having much information about
its impact on future decisions. For example, successive decisions on two different
variables might be correlated in some way, but due to absence of global relationships,
these variables may be assigned values that may eventually lead to a conflict in the
future. In our approach, we try to induce structural relationships into the CNF formula
of the miter circuit under verification, such that conflicts are either completely
avoided or can be deduced early in the decision process. We first compute the
implications on the circuit netlist, and then convert these implications into clause
form. These clauses when added to the original CNF formula induce signal
correlations among the variables, which in turn accelerates the SAT solver
performance.

3.1 Enhanced Boolean Constraint Propagation

Consider again the example circuit of Figure 1. Its CNF formula is shown below. The
CNF formula derivation is straightforward and the reader is referred to [Tseitin 68,
Larrabee 92] for all details.

1606 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

In this CNF formula, the clauses (¬a ∨ e)(¬b ∨ e)(¬e ∨ a ∨ b) represent the OR
gate e, (f ∨ e)(f ∨ c)(¬f ∨ ¬e ∨ ¬c) represent the NAND gate f, (¬f ∨ ¬g)(f ∨ g)
correspond to NOT gate g, (¬j ∨ a ∨ i)(¬j ∨ ¬a ∨ ¬i)(j ∨ ¬a ∨ i)(j ∨ a ∨ ¬i)
correspond to XOR gate j and so on.

Now, let us suppose that the SAT solver heuristically makes the first decision i =
0. On assigning i = 0 and performing BCP, no unit clauses are obtained. However,
from our implication engine, we know that f = 0 → i = 1, and by contrapositive law
i = 0 → f = 1. The two-literal clause corresponding to this implication is (i ∨ f). If we
add this clause beforehand to the original CNF formula, setting i = 0 will imply f = 1
immediately, which in turn will imply g = 0. Therefore, learning the information i = 0
→ f = 1, helps us to satisfy a total of 10 clauses instead of satisfying only 4. This is
illustrated in Figure 3.

3.2 Identification of Equivalent/Complement Literals

The basis of Combinational Equivalence Checking (CEC) is to identify equivalent
signals in the two circuits incrementally, proceeding from the primary inputs towards
the primary outputs. In SAT-based CEC, identification of such equivalent signals
helps to reduce the problem complexity; a decision on one of the signals in the
equivalent pair implies a value on the other corresponding signal, which in turn
enhances the BCP and reduces the number of decisions required to prove the
satisfiabilty/unsatisfiabilty of the CNF formula. The implication graph that we build
(as a preprocessing step) for the miter circuit under verification helps us to identify
these equivalent signals, which are in turn added as binary clauses to the existing CNF
database.

(¬a ∨ e) (¬b ∨ e) (¬e ∨ a ∨ b) (f ∨ e) (f ∨ c)
(¬f ∨ ¬e ∨ ¬c) (¬f ∨ ¬g) (f ∨ g) (¬f ∨ ¬d ∨ ¬h) (f ∨ h)
(d ∨ h) (g ∨ ¬i) (h ∨ ¬i) (¬g ∨ ¬h ∨ i) (¬j ∨ a ∨ i)
(¬j ∨ ¬a ∨ ¬i) (j ∨ ¬a ∨ i) (j ∨ a ∨ ¬i) (h ∨ k) (b ∨ k)
(¬h ∨ ¬b ∨ ¬k) (j ∨ ¬m) (k ∨ ¬m) (m ∨ ¬j ∨ ¬ k)

 {NULL} Implied Values

(g ∨ ¬i)(h ∨¬i) (¬j ∨ ¬a ∨ ¬i)
(j ∨ a ∨ ¬i)(f ∨ g)(f ∨ e)(f ∨c)
(f ∨ h)(¬f ∨ ¬g)(¬g ∨ ¬h ∨ i)

(b) After (a) Before

0

i

 {f=1, g=0}

0

i

(g ∨ ¬i)(h ∨¬i)
(¬j ∨ ¬a ∨ ¬i)
(j ∨ a ∨ ¬i)

Satisfied clauses
Decision variable

Figure 3: Implied values and satisfied clauses in the CNF formula, before and after
adding the clause (i ∨ f)

1607Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

Consider below the CNF formula for the circuit shown in Figure 4:

We can see that the decision p = 0 on unit propagation implies x = 1, y = 1, and
finally q = 0. Similarly, the decision q = 0 implies x = 1, y = 1, and finally p = 0. But
p = 1 implies nothing on q; likewise, q = 1 implies nothing on p. Hence, we cannot
deduce that the two signals p and q are equivalent. However, our implication engine
can deduce this relation: impl[p, 0] = {(p, 0), (x, 1), (y, 1), (q, 0)}, where (p, 0) →
(q, 0) is an indirect implication. By the contrapostive law, (q, 1) → (p, 1). Similarly,
impl[q, 0] = {(q, 0), (x, 1), (y, 1), (p, 0)}, such that (q, 0) → (p, 0) is an indirect
implication. Again, using the contrapositive law, (p, 1) → (q, 1). Thus, p ↔ q.
Therefore, for the two indirect implications, (p, 0) → (q, 0) and (q, 0) → (p, 0), we
add up the clauses (p ∨ ¬q) and (q ∨ ¬p), respectively. The addition of such two
clauses proves the equivalence of two variables p and q. It should be noted that every
two-literal clause we add embeds in itself both the indirect implication as well as its
contrapostive. Similar to equivalent literals, our approach can also identify
complementary signals in the circuit. These relations between intermediate points of
the circuit are propagated in the forward direction and help to identify additional
relations and implications throughout the circuit.

3.3 Identification of Constant/Impossible Nodes

In order to prove the equivalence of two circuits, the corresponding primary outputs
of the two circuits are XOR-ed (i.e., a miter circuit is created), and the XOR outputs
are checked if they are at constant 0 value. In our approach, building the implication
graph for the miter circuit under verification may deduce a few XOR outputs to be
constant at logic 0. This happens whenever implications of the following type are
obtained:

a. (Z, 1) → (Y, 0) and (Z, 1) → (Y, 1) or
b. (Z, 1) → (Z, 0),

Here Y and Z can be any pair of signals in the miter circuit. The implication of type a
suggests that when Z is set to logic value 1, Y must take on both 0 and 1 as logic
values. This is impossible since Y cannot be both 0 and 1 simultaneously. Hence, Z =
1 must be impossible, indicating that Z should always be a constant with logic value
0. Similarly, the implication of type b suggests that Z = 1 implies Z = 0, i.e., a conflict
on itself. This again suggests that Z = 1 is impossible and Z has to be a constant with
logic value 0. After the implication graph for the miter circuit under verification has
been built, all the nodes identified as constants are added as unit clauses (pure literals)

p

q

x

y

Figure 4: Equivalent/Complement literal identification

NAND gate

(x ∨ p)(y ∨ p)(¬x ∨ ¬y ∨ ¬p)(x ∨ q)(y ∨ q)(¬x ∨ ¬y ∨¬q)

1608 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

to the original CNF database. This in turn prunes the search space of the SAT solver
engine, thereby enhancing its performance.

3.4 Significance of Extended Backward Implications

The concept of extended backward implications helps us to learn some very useful,
non-trivial two-node implications. When added as two-literal clauses to the original
CNF formula, they play a significant role. We will illustrate this by means of the
example circuit in Figure 1. The corresponding CNF formula for this circuit has been
given earlier. Now, suppose our objective is to satisfy m = 1. Let us assume that the
SAT solver makes the following decisions: m = 1 (given objective), followed by f =
0, and then a = 0. (Note that different SAT solvers make decisions based on different
heuristics, and hence the set of decisions may vary from one SAT solver to another.
We assume these decisions just to explain the efficacy of our technique.) However,
we can see that assigning a = 0 results in a conflict. Also, on backtracking a = 1
yields a conflict. The SAT solver again backtracks and sets f = 1, and finally the
decisions d = 0, b = 0 make the formula satisfiable. The resulting decision tree is
shown in Figure 5.

Now, we use our implication engine as a preprocessing step. From extended

backward implications, we learned that f = 0 → m = 0. Applying the contrapostive
law, we obtain m = 1 → f = 1. Hence, we statically insert the clause (f ∨ ¬m) in the
original CNF formula. Now, if we ask the SAT solver to satisfy the objective m = 1,
then f = 1 will be implied immediately, and our decision tree will be as shown in
Figure 6. We see that adding the two-literal clause results in fewer decisions with no
backtracks, and at the same time improves the BCP.

Figure 5: Decision tree without adding any clauses

m

d

f

a

b

{j=1, k=1}

{e=1, c=1,
g=1, h=1, i=1}

 {g=0, i=0, a=1,
 e=1, c=0}

{h=1}
{j=0}

Conflict at j Conflict at k

Formula satisfiable

1

0

0

1

0

0

1

Decision Variables

{b=1, k=0}

Implied Values

1609Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

3.5 Comparison of our method with Hypre

We compared our preprocessing technique with the Hyper-Resolution technique
introduced in [Bacchus 03]. We observed that their tool Hypre can only deduce a
subset of the clauses deduced by our method. This was experimentally verified by
running Hypre [Bacchus 03] on the example circuit of Figure 1. It was observed that
Hypre was not able to deduce the two-literal clause (f ∨ ¬m). We then ran Hypre on
another example circuit shown in Figure 7. In this case, our preprocessing tool
deduced six additional non-trivial clauses. On the other hand, Hypre deduced only
three clauses. All clauses deduced by our method are listed below, in which only half
of them (3 clauses) were obtained by Hypre:
• (¬c ∨ g), (f ∨ i), (¬f ∨ k) were deduced by Hypre as well
• (f ∨ ¬m), (p ∨ ¬k), (p ∨ ¬a) were deduced only by our preprocessing tool.
Here, the clause (f ∨ i) is obtained by computing indirect implications for node (f, 0),
the clauses (¬c ∨ g), (¬f ∨ k) and (f ∨ ¬m) are deduced by computing extended
backward implications for nodes (g, 0), (k, 0) and (f, 0), respectively. And finally the
above implication relations help to deduce the non-trivial clauses (p ∨ ¬k) and (p ∨
¬a), by performing extended backward implications on (p, 0). This corroborates the
fact that our technique is more powerful than Hypre, since more implications can be
obtained by our method. In Section 6, we give more experimental results, which
further underpin the superiority of our technique.

m

d

b

Formula satisfiable

0

0

1

{j=1, k=1, f=1, g=0, i=0,
 a=1, e=1, c=0}

{h=1}
Implied Values

Figure 6: Decision-tree after adding the two-literal clause (f ∨ ¬m), derived using extended
backward implication.

1610 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

Figure 7: Second example circuit

3.6 Related Work

In [Silva 99b, Silva 99c], the Recursive Learning technique [Kunz 92, Kunz 93] was
incorporated into SAT solvers and applied to combinational equivalence checking.
The Recursive Learning technique is guaranteed to find all possible necessary
assignments in the circuit, given enough levels of recursion. However, as the depth of
recursion increases, the time to compute the implications increases exponentially. As
a result, in [Silva 99b, Silva 99c], the authors preprocessed the CNF formula using
only depth one in Recursive Learning [Kunz 92, Kunz 93]. The depth one Recursive
Learning is different from extended backward implications [Zhao 97] used in our
approach. Recursive Learning of depth one is equivalent to performing only direct
backward implications on each of the fanins of the unjustified output specified gates,
and determining the common set of implications. On the other hand, extended
backward implications make use of the following:

• the implication list of the target gate (this implication list includes the
unjustified output specified gates and their corresponding implications), and

• the implication list of the fanins of the unjustified output specified gates
It then performs logic simulation on both implication lists to determine the common
set of assignments. Extended backward implications help to quickly identify the
powerful non-trivial implications which may require more than one level of recursion
by the Recursive Learning procedure [Kunz 92, Kunz 93].

4 Formalizing Static Implications in the CNF Formula

In this section, we provide a suite of lemmas and theorems that help us to formalize
static implications consisting of direct, indirect and extended backward implications
in the CNF formula. These lemmas and theorems infer additional clauses that are a
superset of the clauses deduced using static implications. Thus, we show that these
implications when added as two-literal clauses to the existing CNF database will
preserve the satisfiability of the CNF formula. The CNF formula Φ for the example
circuit of Figure 1 is shown below.

b

k

m i
c

d

j

n
p

g

f

a
e

h

1611Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

ω1 = (¬a ∨ e) ω2 = (¬b ∨ e) ω3 = (¬e ∨ a ∨ b) ω4 = (f ∨ e)
 ω5 = (f ∨ c) ω6 = (¬f ∨ ¬e ∨ ¬c) ω7 = (¬f ∨ ¬g) ω8 = (f ∨ g)

ω9 = (¬f ∨ ¬d ∨ ¬h)

ω10 = (f ∨ h) ω11 = (d ∨ h) ω12 = (g ∨ ¬i)
ω13 = (h ∨ ¬i) ω14 = (¬g ∨ ¬h ∨ i) ω15= (¬j ∨ a ∨ i) ω16 = (¬j ∨ ¬a ∨ ¬i)
ω17 = (j ∨ ¬a ∨ i) ω18 = (j ∨ a ∨ ¬i)

ω19 = (h ∨ k) ω20 = (b ∨ k)

 ω21 = (¬h ∨ ¬b ∨ ¬k) ω22 = (j ∨ ¬m) ω23 = (k ∨ ¬m)

ω24 = (m ∨ ¬j ∨ ¬ k)

Note that each of the gates in the example circuit of Figure 1 corresponds to the
propositional variables in the CNF formula shown above.

4.1 Direct implications in the CNF formula

As described in Section 2.1.1, direct implications of a gate x consist of implications
associated with the gates directly connected to x. For the propositional variable x in
the CNF formula Φ, these directly connected gates can be interpreted as all the
propositional variables which occur with x in all the clauses. We call these
propositional variables propositional variables directly affected by x. Unlike the
circuit netlist there is no notion of direct forward or direct backward implications in
the CNF formula, since there is no circuit structure. Here, direct implications of a
variable x can be interpreted as the implications obtained on propositional variables
directly affected by x. The direct implications of the variable x set to logic value 1 or
0 are the values implied after single application of the unit-clause rule to the CNF
formula Φ after setting x to 1 or 0. This in turn will mean the implications obtained on
propositional variables directly affected by x. For example in the CNF formula Φ, for
the propositional variable f, the directly affected propositional variables are {e, c, g, d,
h}. Now when f is set to logic value 0, the values implied by application of unit-clause
rule to clauses ω4, ω5, ω8, ω10 are (e, 1), (c, 1), (g, 1) and (h, 1). These values are in
immediate compliance with the direct forward and direct backward implications
obtained when the gate f is set to logic value 0 in Section 2.1.1. Note that these
implications are already embedded in the original CNF formula, and no new clauses
need to be added.

4.2 Formalizing indirect implications in the CNF formula

We firstly give a lemma and a theorem which helps us to infer additional clauses in
the CNF formula, and then finally through an observation we show how these inferred
clauses form a superset of the clauses obtained using indirect implications.

Lemma 1 [Lynce 03]: Given a CNF formula Φ, if (y, 1) ∈ BCP(x, 1), then the clause
(¬x ∨ y) is an implicate of Φ.

Proof: The clause (¬x ∨ y) results in two cases:

1. (x, 1) → (y, 1): This has been given to us since (y, 1) ∈ BCP(x, 1)
2. (y, 0) → (x, 0): This is obtained by applying contrapositive law to the first

case (x, 1) → (y, 1)

1612 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

Hence, the clause (¬x ∨ y) can be safely added to the CNF formula Φ under the
condition (y, 1) ∈ BCP(x, 1). The added clause will always preserve the satisfiability
of the CNF formula. □

Theorem 1 [Lynce 03]: Given a CNF formula Φ, if (yi , 1) ∈ BCP (x, 1), i = 1, 2, …,
n, then each clause of the form (¬x ∨ yi), i= 1, 2, …, n, is an implicate of Φ.
Proof: The theorem directly follows from Lemma 1. If a single clause (¬x ∨ y) is an
implicate of Φ under the condition (y, 1) ∈ BCP (x, 1), then all the clauses (¬x ∨ yi)
where i = 1, 2, …, n are implicates of Φ. □

Observation 1: The set of clauses obtained by Theorem 1 fully subsumes all the
clauses obtained using indirect implications.

Indirect implications of a gate G set to value v are obtained by performing logic
simulation with direct implications of (G, v) applied to the circuit. This is similar to
doing BCP (i.e., repeated application of the unit-clause rule to the CNF formula)
when the CNF variable G is set to value v. For example, when f is set to logic value 0
in Φ, BCP(f, 0) = {(f, 0), (e, 1), (c, 1), (g, 1), (h, 1), (i, 1)}, where (e, 1), (c, 1), (g, 1),
(h, 1), and (i, 1), are obtained from clauses ω4, ω5, ω8, ω10 and ω14, respectively. Using
Theorem 1, we can add up the clause (f ∨ i) to Φ. Now, we see that the above values
and hence the clause (f ∨ i) are in immediate compliance with the values and the
clause obtained using indirect implications when the gate f is set to logic value 0 in
Section 2.1.2. However, it must be noted that LogicSimulate(impl[x, v]) is a proper
subset of BCP(x, v), since we can only imply new values in the forward direction
using logic simulation. On the other hand, in BCP we don’t have any notion of
forward/backward directions and the logic reasoning using BCP might lead to some
more implications that logic simulation cannot yield. An example is a 2-input AND
gate with its output and one of its inputs set to 1. In such a case, BCP will deduce that
the other input is also 1, whereas LogicSimulate() cannot figure that out. Thus, all the
clauses obtained by BCP(G, v) using Theorem 1 will subsume the indirect
implications obtained with (G, v). Thus, the above observation will always hold. □

4.3 Formalizing extended backward implications in the CNF formula

We firstly give two lemmas and a theorem which helps us to infer additional clauses
in the CNF formula, and then finally through an observation we show how these
inferred clauses form a superset of the clauses obtained using extended backward
implications.

Lemma 2 [Lynce 03]: Given a CNF formula Φ, for any clause ω = (l1 ∨ l2 ∨ ... ∨ ln) ∈
Φ, if (y, 1) ∈ [∩n

i = 1(BCP (lk, 1))], then (y, 1) will be a necessary assignment of Φ.

Proof: We are given the following:
• Clause ω has n literals, i.e. ω = (l1 ∨ l2 ∨ … ∨ ln), and
• BCP (l1, 1) implies (y, 1), (1)
• BCP (l2, 1) implies (y, 1), (2)
• . . .
• BCP (ln, 1) implies (y, 1) (n)

1613Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

We prove this Lemma by contradiction.
Suppose that (y, 1) is not an implicate of Φ. In other words, there exists a satisfying
assignment to the CNF formula with (y, 0). However, using equations (1) to (n) by the
contrapositive law we obtain (y, 0) → (l1, 0), (y, 0) → (l2, 0), …, (y, 0) → (ln, 0).
Since, (y, 0) implies each of the literals l1, l2, …, ln to logic 0, the clause ω would
evaluate to 0, causing the CNF formula to become unsatisfiable. Hence, our
assumption is wrong and the assignment (y, 0) is not possible. Therefore, (y, 1) is an
implicate of Φ. □

Lemma 3: Given a CNF formula Φ, for any clause ω = (l1 ∨ l2 ∨ ... ∨ ln) ∈ Φ, if under
the assignment (x, 0), the literals l1, l2, …, lj (j < n) are implied to 0, and if (y, 1) ∈
[∩n

k = j + 1BCP (lk =1 and x=0)], then (x ∨ y) will be an implicate of Φ.

Proof: We know that for the original CNF formula Φ to be satisfied, every clause ω ∈
Φ needs to be satisfied. If the current assignment (x, 0) causes the literals l1, l2, ..., lj (j
< n) of ω to evaluate to 0, the clause ω can only be satisfied if any of its remaining
literals evaluates to logic 1. Therefore, the lemma states that the common assignment
obtained by setting each of the remaining literals to logic 1 will be a necessary
assignment under the condition (x, 0). In other words, (x, 0) → (y, 1) in Φ, or (x ∨ y)
is an implicate of Φ.

We continue the proof by contradiction. It is given that the assignment (x, 0)
results in the following:
• l1, l2, …, lj are implied to 0, and
• BCP (lj+1 = 1 and x = 0) implies (y, 1) (1)
• BCP (lj+2 = 1 and x = 0) implies (y, 1) (2)
• . . .
• BCP (ln= 1 and x = 0) implies (y, 1) (n –j)

Applying contrapositive law to equations (1) to (n – j) will yield the following
constraints:
• (y ∨ x ∨ ¬lj+1)
• (y ∨ x ∨ ¬lj+2)
• . . .
• (y ∨ x ∨ ¬ln)
Suppose, (x ∨ y) is not an implicate of Φ. This means that x and y can be 0
simultaneously. Now, when (x, 0) and (y, 0) hold together, the above constraints will
cause the literals lj+1, lj+2, …, ln to be implied to logic 0. Also, the assignment (x, 0)
already implies l1, l2, …, lj to logic 0 (given). Thus, the clause ω would evaluate to 0
and the CNF formula will become unsatisfiable. Hence, our contradiction statement is
false and x and y cannot be 0 simultaneously. Therefore, (x ∨ y) is an implicate of Φ.□

The Lemma 3 is an extension of Lemma 2 and states that if the current
assignment (x, 0) implies the literals l1, l2, …, lj (j < n) of ω to logic 0, then the
common assignment (y, 1) obtained by setting each of the remaining literals of ω to 1,
together with the current assignment (x, 0) will result in an implicate (x ∨ y) of Φ.

1614 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

Theorem 2: Given a CNF formula Φ, for any clause ω = (l1 ∨ l2 ∨ … ∨ ln) ∈ Φ, if
under the assignment (x, 0), the literals l1, l2, …, lj (j < n) are implied to 0, then for
every (yi, 1) ∈ [∩n

k = j + 1BCP (lk =1 and x =0)], i = 1, 2, …, m, (x ∨ yi) is an implicate
of Φ.

Proof: The theorem directly follows Lemma 3. If a single clause (x ∨ y) is an
implicate of Φ when (y, 1) ∈ [∩n

k = j + 1BCP (lk =1 and x=0)], then all the clauses (x ∨
yi) where i = 1, 2, …, m are implicates of Φ. □

Observation 2: The set of clauses obtained by Theorem 2 is a superset of all the
clauses obtained through extended backward implications.

Consider the CNF formula Φ for the example circuit of Figure 1. We assign (f,
0), perform BCP (f, 0) and get the following implications: {(e, 1), (c, 1), (g, 1), (h, 1),
(i, 1)}. Using Theorem 2, we see that along with other clauses, the clause ω3 = (¬e ∨
a ∨ b) is one of the affected clauses under the assignment (f, 0), since the literal ¬e of
ω3 evaluates to 0 and the propositional variables a and b are still unassigned. The
clause ω3 can be satisfied by setting (a, 1) or (b, 1). Hence, the implied values
common to BCP(a, 1) and BCP(b, 1) will be the inferred assignments under (f, 0). In
other words, the set {BCP(a=1 and f=0) ∩ BCP(b=1 and f=0)} will yield the inferred
assignments. In this case (m, 0) is the common assignment, and hence we can derive
the clause (f ∨ ¬m) from Theorem 2 and add it to the existing CNF database. Now let
us see how this logic reasoning in clauses is in exact compliance with the logic
reasoning utilized for extended backward implications in the gate level circuit netlist.
As described in Section 2.1.3, extended backward implications are computed by
considering the target gate and the unjustified output specified gates in the
implication list of the target gate. The unassigned fanins of the unjustified output
specified gate are set to a logic value v one by one, such that the unjustified gate
becomes justified and the resulting common set of implications become the new
implications of the target gate. Recalling the example in Section 2.1.3, f is the target
gate, e is the unjustified output specified gate, a and b are the unassigned fanins of the
gate e, and the consequent logic reasoning on unjustified output specified gate e
yields the implication f = 0 → m = 0 or the clause (f ∨ ¬m). Thus the logic reasoning
in the CNF formula and the circuit netlist yields the same clause. However, the set of
clauses obtained through extended backward implications is a subset of all the clauses
obtained by Theorem 2. The reason is that we work on the circuit netlist, and while
computing extended backward implications we consider only the unjustified output
specified gates in the implication list of the target gate. Hence, not all the affected
clauses ω ∈ Φ are checked for satisfiability under the current assignment. For
example, under the assignment (f, 0), Theorem 2 will cause the clauses ω3, ω15, ω16,
ω17, ω18 and ω21 to be checked for satisfiability, whereas extended backward
implications only checks the clause ω3 for satisfiability. This reduces the
computational complexity, although at a cost of loosing some highly non-trivial
implications which could otherwise be obtained by the implementation of Theorem 2
on to the CNF formula. □

1615Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

5 Implementation Algorithm

The flow of our algorithm is described below.
Algorithm:

Step 1. Generate the CNF formula for the miter circuit under verification.
Step 2. Compute the direct and indirect implications for each of the nodes in a

levelized fashion (from the primary inputs towards the primary outputs).
Step 3. (a) Convert the indirect implications obtained in Step 2 into two-literal

clauses. (b) Append these new clauses to the CNF database. (c) Add the
nodes identified as constants, as unit clauses.

Step 4. If more than n % of the mitered XOR outputs have been identified as
constant 0’s, go to Step 7, else go to Step 5.

Step 5. For each gate N, compute its extended backward implications.
Step 6. Convert the extended backward implications obtained in Step 5 into

binary clauses, and append them to the existing CNF formula.
Step 7. Give the modified CNF formula to a SAT solver for processing.
Step 8. Stop.

6 Experimental Results

The algorithm presented in Section 5 was implemented in C++ in a preprocessing
engine called IMP2C (Implications to Clauses). IMP2C builds the Implication Graph
for the miter circuit under verification, and formulates the two-literal clauses
corresponding to indirect and extended backward implications learned. The
experiments were run on a Pentium 4, 1.8-GHz machine, with 512 MB of RAM and
Mandrake Linux 7.2 as the operating system. The efficacy of our technique is
corroborated by using the large and difficult ISCAS’85 benchmark circuits [Brglez
85], the ISCAS’89 full-scan circuits [Brglez 89], the ITC’99 full-scan circuits [Corno
00] and some cascaded ITC’99 benchmarks. Two different types of miter circuits
were verified for equivalence: circuit_eqv represents an equivalence checking circuit
model where two identical copies of the same circuit are mitered, circuit_opt
represents mitering of the original copy of the circuit and an optimized version
(obtained by using Synopsys tool). For both miter circuits, we OR all the mitered
outputs, and ask the SAT solver to satisfy the OR gate output to logic 1.

6.1 Comparison with state-of-the-art SAT solvers

We used two different state-of-the-art SAT solvers, namely, BerkMin561 [Goldberg
02b] and Siege_v4 [Ryan 03] to check the satisfiability of each of the Combinational
Equivalence Checking (CEC) instances. All the experiments with BerkMin were run
using strategy 1 which is known to be a special strategy for equivalence checking.
Also, we added levels of variables to the CNF formula given to BerkMin, such that
offered the choice of variables to be used in decision making, the variables closer to
the inputs will be preferred [Goldberg 03]. Experiments were also run with ZChaff
2001.2.17 [ZhangL 01], but the results have not been reported since for most of the
instances ZChaff [ZhangL 01] was found to be 2-10 times slower than BerkMin
[Goldberg 02b] and Siege [Ryan 03].

1616 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

In Table 2, for each miter circuit, we report the execution time taken by our
preprocessing engine IMP2C, the time taken by the SAT solver alone, and the time
taken by IMP2C + SAT solver together. We also report the speedup ratio of IMP2C +
SAT solver over SAT solver alone. The results are reported with n = 25% in Step 4 of
the implementation algorithm described in Section 5. However, it should be noted that
our preprocessor can be tuned to handle any threshold given at run time.

*cascade_1 = b17_opt_b14_eqv, cascade_2 = b14_b22_1_opt_eqv, cascade_3 = b18_opt_b15_opt_eqv,
cascade_4=b17_opt_b15_opt_eqv, cascade_5 = b20_1_b21_1_eqv

Table 2: Results with SAT solver alone and (IMP2C + SAT solver)

From Table 2, we see that considerable speedup is achieved for almost all the

instances. In some cases, once the implication relations are computed, the SAT solver
can determine the formula to be unsatisfiable almost immediately. For instance, in the
miter circuits c7552_eqv and c3540_opt, without any added clauses, Siege spent
34.52 seconds and 30.34 seconds, respectively. When we augment the CNF formula
with the global implication relations (derived by IMP2C), the complexity of the CNF
instance is notably reduced, with IMP2C + Siege taking (1.71 + 0.05) 1.76 seconds
and (0.82 + 0.34) 1.16 seconds, respectively. Note that the SAT solver Siege takes
only a fraction of a second. For the instance b18_opt_eqv, BerkMin alone could not

Miter Circuit
IMP2C
(secs)

Siege
(secs)

IMP2C
+

Siege
(secs)

Sp
ee

d-
up

(c

ol
 3

 /
co

l 4
)

BerkMin
(secs)

IMP2C
+

BerkMin
(secs)

Sp
ee

du
p

(c
ol

 6
 /

co
l 7

)

c3540_eqv 0.94 22.21 0.97 22.89 1.33 0.97 1.37

c5315_eqv 0.68 12.04 0.69 17.44 1.60 0.80 2.00

c7552_eqv 1.71 34.52 1.76 19.61 11.88 2.10 5.65

c3540_opt 0.82 30.34 1.16 26.15 1.45 1.15 1.26

c5315_opt 16.24 16.23 16.25 0.99 2.32 16.29 0.14

c7552_opt 30.47 39.61 30.48 1.29 12.34 30.49 0.40

s38417_fs_eqv 62.77 336.02 88.60 3.79 163.22 112.24 1.45

s38584.1_fs_eqv 240.02 131.76 267.47 0.49 150.22 300.19 0.50

s35932_fs_eqv 66.28 97.27 81.58 1.19 134.16 69.76 1.92

b14_eqv 26.05 417.13 27.67 15.07 112.67 30.72 3.66

b14_1_eqv 14.50 284.20 15.77 18.02 39.20 17.44 2.24

b15_opt_eqv 57.72 73.90 69.38 1.06 104.67 89.78 1.16

b17_opt_eqv 245.02 458.04 316.08 1.44 846.84 344.78 2.45

b18_opt_eqv 2132.50 5780.29 2557.29 2.26 >14400.0 2497.48 5.76
b20_1_eqv 27.88 396.96 36.73 10.80 145.88 36.58 3.98

b21_1_eqv 29.61 427.63 37.37 11.44 142.67 39.75 3.58

b22_1_opt_eqv 43.11 507.00 61.33 8.26 299.72 57.54 5.20

cascade_1* 380.72 2785.30 440.26 6.32 1231.76 520.67 2.36

cascade_2 124.32 1892.65 140.62 13.45 502.62 120.45 4.17

cascade_3 2584.20 6217.78 2947.12 2.10 >14400.0 3078.53 4.67

cascade_4 428.67 8842.92 470.23 18.80 1623.67 404.43 4.01

cascade_5 102.23 1654.41 129.65 12.76 496.42 107.78 4.60

1617Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

finish even after 4 hours or 14,400 seconds, but after IMP2C clauses are added the
instance is solved in (2,132.50 + 364.98) 2,497.48 seconds; the time taken by
BerkMin being 364.98 seconds and the time taken by IMP2C being 2,132.50 seconds.

Unlike Siege, BerkMin uses special equivalence checking strategy (strategy 1 and
levels of variables), and hence for most of the cases the speedups with BerkMin are
somewhat smaller than with Siege. For some of the relatively easier CEC instances
(e.g., c5315_opt, c7552_opt, s38584.1_fs_eqv), the preprocessing due to indirect and
extended backward implications was a bit of an overhead, and thus not much speedup
was obtained. However, it should be noted that after our preprocessing has been
applied, the time taken by the SAT solver alone reduces significantly for all the
instances. This suggests that the clauses added are extremely powerful and cause
considerable search space pruning, reducing the SAT instance complexity immensely.
Overall, the results for IMP2C + SAT solver are very encouraging, with the maximum
speedup for IMP2C + BerkMin being 5.76× in b18_opt_eqv and for IMP2C + Siege
being 22.89× in c3540_eqv. Since considerable speedup is achieved with each of the
SAT solvers, our approach is orthogonal to the two SAT solvers used.

The ISCAS’85 benchmark c6288 is a 16-bit multiplier circuit and its
corresponding miter instances are known to be very difficult for SAT solvers. Hence,
we have treated c6288_eqv and c6288_opt instances separately. Table 3 shows the
performance of each of the SAT solvers for these instances without and with our
preprocessing technique. The results as we see are very encouraging. For example, the
Siege SAT solver could solve the c6288_eqv and c6288_opt miters in 4,852.30
seconds and 5,214.50 seconds, respectively. However, after our preprocessing
technique (IMP2C) was applied, the two instances were quickly solved by the SAT
solver in less than one-tenth of the second; the preprocessing time being 0.35 seconds
and 3.88 seconds for c6288_eqv and c6288_opt, respectively. BerkMin with its
special equivalence checking strategy and levels of variables also gave very good
results.

In Table 4 we give the number of clauses in the original CNF formula, the time

taken by our preprocessing technique (IMP2C), the number of clauses added using
IMP2C, and finally the ratio of added clauses to original clauses. We observe from
Table 4 that as the size of the circuit (# original clauses) increases, the time for
IMP2C increases in proportion, since many circuit nodes need to be processed for
static implications. Also, some circuit structures are such that there are a lot of
implication relations among the nodes and hence IMP2C takes a long time. One such
case is b15_opt_eqv for which IMP2C deduced more than twice the number of

Miter
Circuit

IMP2C
(secs)

Siege
(secs)

IMP2C
+

Siege
(secs)

Sp
ee

du
p

(c
ol

 3
 /

co
l 4

)

BerkMin
(secs)

IMP2C
+

BerkMin
(secs)

Sp
ee

du
p

(c
ol

 6
 /

co
l 7

)

c6288_eqv 0.35 4,852.30 0.36 13,478.60 145.30 0.39 372.56

c6288_opt 3.88 5,214.50 3.90 1,337.05 177.73 3.92 45.33

Table 3: Results for c6288 with SAT solver alone and IMP2C+SAT solver

1618 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

clauses that were in the original CNF formula. It must be noted that even though
many clauses were added, we achieved noteworthy speedup for almost all cases,
suggesting that the clauses deduced were extremely helpful in pruning the SAT solver
search space. Overall, the ratio of added clauses to original clauses varied from 0.29
for s38417_eqv to 2.37 for b15_eqv, with the mean being 0.95.

Table 4: Number of original and added clauses for different CEC instances

In Table 5, we compare our results with those obtained with C-SAT-Jnode [Lu

03a], P_EQ + Berkmin [Novikov 03] and Hypre [Bacchus 03] for ISCAS’85 ckt_eqv
versions. In [Lu 03a], the authors introduced incremental learn-from-conflict strategy.
Their algorithm divides the problem at hand into unsatisfiable sub-problems and adds
the conflict-induced clauses resulting from solving these sub-problems to the original
CNF formula. In [Bacchus 03], the authors utilize hyper binary resolution and
equality reduction to simplify the CNF formula. Their tool Hypre can either prove the
unsatisfiability of the given CNF formula or yield a simplified CNF formula with
fewer variables and clauses. The ckt_eqv versions in Table 5 were all proved
unsatisfiable by Hypre. According to Table 5, our results are mostly on the same

Miter Circuit
Original
#Clauses

IMP2C
(secs)

Added
#Clauses
(IMP2C)

Added #Clauses/
Original #Clauses

c3540_eqv 9,462 0.94 4,116 0.44

c5315_eqv 15,743 0.68 6,123 0.39

c6288_eqv 14,788 0.35 6,956 0.47

c7552_eqv 20,504 1.71 13,080 0.64

c3540_opt 9,262 0.82 3,780 0.40

c5315_opt 14,151 16.24 7,261 0.51

c6288_opt 14,719 3.88 8,700 0.59

c7552_opt 20,111 30.47 11,800 0.59

s38417_eqv 127,580 62.77 38,029 0.29

s38584.1_eqv 123,052 240.02 51,894 0.42

s35932_fs_eqv 111,200 66.28 39,977 0.35

b14_eqv 60,661 26.05 75,980 1.25

b14_1_eqv 42,203 14.50 45,968 1.09

b15_opt_eqv 51,329 57.72 121,928 2.37

b17_opt_eqv 165,189 245.02 361,882 2.19

b18_opt_eqv 486,717 2,132.50 866,832 1.78

b20_1_eqv 87,582 27.88 73,379 0.83

b21_1_eqv 87,760 29.61 80,483 0.93

b22_1_opt_eqv 103,173 43.11 84,789 0.82

cascade_1 226,143 380.72 405,874 1.79

cascade_2 164,043 124.32 220,174 1.34

cascade_3 537,289 2,584.20 1,006,745 1.87

cascade_4 217,054 428.67 462,183 2.12

cascade_5 175,985 102.23 168,143 0.95

1619Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

order of computational effort, and in a few cases better than [Lu 03a, Bacchus 03]. In
[Novikov 03], the author gave a theoretical framework for deducing multi-literal
relationships. However, a restricted version of the technique was implemented, which
deduced only pure and equivalent literals. In our approach, in addition to deducing
pure and equivalent literals we deduce non-trivial implication relationships as well.
These relationships, when added to the CNF database, are very helpful in reducing the
SAT instance complexity as has been shown in the experimental results.

6.2 Comparison with the preprocessor Hypre

We performed another set of experiments to show that the clauses obtained using our
preprocessing technique are more powerful and non-trivial than those obtained using
Hypre [Bacchus 03]. The results substantiating this are shown in Table 6. The ckt_opt
CNF instances shown here could not be proved unsatisfiable by Hypre alone and the
resulting simplified CNF formula was given to Siege for processing. The CNF
instance c7552_1_opt used here is much more optimized than c7552_opt used in
Table 2; c7552_opt was proved unsatisfiable by Hypre alone and did not yield any
simplified formula. For the ckt_eqv versions in Table 6, Hypre did not yield any
simplified formula and proved the unsatisfiability immediately. Therefore, for these
instances in columns 2 and 5 we take the Siege time to be 0.0 seconds. For each of the
circuits we give the time taken by Hyper + Siege together, followed by the total time
taken by IMP2C + Siege. In column 4 we give the speedup of IMP2C + Siege relative
to Hyper + Siege. It was observed that when the augmented CNF formula (with
IMP2C clauses) was given to Hypre for preprocessing and the resulting simplified
formula to Siege, the time to prove unsatisfiability further reduced. The results for this
are given in column 5. In column 6 we give the speedup of (IMP2C + Hypre + Siege)
over (Hypre + Siege). For a few of the larger instances s38417_fs_eqv,
s38584.1_fs_eqv, s35932_fs_eqv, b18_opt_eqv, b17_opt_eqv, cascade_1, cascade_3
and cascade_5, Hypre gave segmentation fault since it has a limit on the number of
literals it can handle in a clause (maximum clause length allowed being
approximately 1000). The results for these instances have therefore not been reported
with Hypre.

We observe from Table 6 that for most of the instances our technique is more
superior than Hypre. As evident from column 4, we consistently get a speed up of
close to 2×, with the maximum speedup being 5.76× for the instance b15_opt_eqv. It

Miter
Circuit

C-SAT-Jnode
[Lu 03a]

(secs)

P_EQ + Berkmin
[Novikov 03]†

(secs)

Hypre
[Bacchus 03]

(secs)

IMP2C +
BerkMin

(secs)

IMP2C +
Siege
(secs)

c1355_eqv 0.07 0.05 0.15 0.06 0.07
c1908_eqv 0.11 0.27 0.14 0.07 0.08
c2670_eqv 0.13 0.17 0.13 0.42 0.30
c3540_eqv 1.21 0.83 0.86 0.96 0.97
c5315_eqv 0.28 0.61 0.68 0.88 0.69
c6288_eqv 4.14 0.17 0.98 0.35 0.36
c7552_eqv 1.62 0.87 1.48 2.00 1.76

Table 5: Comparison of IMP2C with [Lu 03a], [Novikov 03] and [Bacchus 03]
for ISCAS’ 85 ckt_eqv benchmarks

 † Expts. were run on Pentium-III, 700 MHz with 640 MB RAM [Novikov 03]

1620 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

has been shown earlier by means of examples (see Section 3.3) that the non-trivial cl
auses obtained using our approach cannot be obtained using Hypre. We achieved
speedups ranging from 1.36× to 5.76×. For example, with b14_eqv Hypre + Siege
spent 74.2 seconds whereas IMP2C + Siege spent 27.67 seconds to prove the
unsatisfiability, yielding a speedup of 2.68×. For six cases, the speedup in column 6
is slightly greater than that in column 4; the reason is that in our approach (IMP2C +
Siege), we just augment the original CNF formula with non-trivial two-literal clauses,
but do not involve in any equality reduction as is done in Hypre (see Section 1). On
the other hand, the CNF formula in column 5 after preprocessing with IMP2C
undergoes equality reduction by Hypre, thereby yielding a much simplified and
smaller CNF instance. As a result, slightly better execution times are obtained in
column 5 than in column 3. One prominent instance where IMP2C + Siege
outperforms IMP2C + Hypre + Siege is b15_opt_eqv. For this instance, IMP2C +
Siege took just (57.72 + 11.66) 69.38 seconds, while IMP2C + Hypre + Siege spent
(57.72 + 196.78 + 0.0) 254.29 seconds for preprocessing. Here the preprocessing due
to Hypre was an overhead and did not help in reducing the overall execution time.

Table 6: Comparison of IMP2C with Hypre [Bacchus 03]

6.3 Comparison with the preprocessor NIVER

To further underpin the superiority of our technique we conducted some experiments
with a very recent preprocessor NIVER [Subbarayan 04]. The results are shown in
Table 7. As can be observed from column 4 of Table 7, except for a few easy cases,

Miter Circuit

Hypre
+

Siege
(secs)

 IMP2C
+

Siege
(secs)

Speedup
(col 2 / col 3)

IMP2C+
Hypre+
Siege
(secs)

Speedup
(col 2 / col 5)

c3540_opt 1.58 1.16 1.36 1.44 1.09

c7552_1_opt 8.68 12.24 0.70 7.24 1.20

s38417_fs_eqv SF* 88.60 —— SF ——

s38584.1_fs_eqv SF 267.47 —— SF ——

s35932_fs_eqv SF 81.58 —— SF ——

b14_eqv 74.20 27.67 2.68 30.07 2.46
b14_1_eqv 24.50 15.77 1.55 15.97 1.53

b15_opt_eqv 400.12 69.38 5.76 254.29 1.57

b17_opt_eqv SF 316.08 —— SF ——

b18_opt_eqv SF 2557.29 —— SF ——

b21_1_eqv 71.29 37.37 1.90 34.57 2.06

b20_1_eqv 65.33 36.73 1.77 33.60 1.94

b22_1_opt_eqv 105.81 61.33 1.72 46.36 2.28

cascade_1 SF 440.26 —— SF ——

cascade_2 186.23 140.62 1.32 134.54 1.38

cascade_3 SF 2,947.12 —— SF ——

cascade_4 SF 470.23 —— SF ——

cascade_5 265.67 129.65 2.04 117.41 2.26

*SF – Segmentation Fault

1621Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

IMP2C + Siege outperforms NIVER + Siege by a large margin with the maximum
speedup being more than 40,000× for the instance c6288_eqv. Similarly, with the
other benchmarks such as b14_eqv, b21_1_eqv and b20_1_eqv we achieve more than
50× speedup. Careful observations of the results show that NIVER may not be very
effective for equivalence checking (EC) instances. In fact, NIVER destroys the
structure of the EC problem in such a manner that it even becomes difficult for the
SAT solver to solve it. This is very much evident from the instances c6288_eqv,
c6288_opt and b18_opt_eqv which were all solved in less than 6,000 seconds by
Siege alone. But after preprocessing with NIVER they all took more than 4 hours or
14,400 seconds.
 Another set of experiments were conducted to see the effect of the combined
preprocessing of IMP2C + NIVER on the performance of the SAT solver. This time
the results were very notable with IMP2C + NIVER + Siege, yielding the best
speedup over NIVER + Siege. Comparing column 3 and column 5, we see that
IMP2C + NIVER + Siege takes the least time for almost all the cases. The reason is
that our preprocessing tool adds a large number of binary clauses which induces
signal correlations into the original CNF formula in terms of equivalent literals, unit
clauses and other implication relationships among the CNF variables. As a result,
variable elimination by NIVER no longer destroys the problem structure because
many relationships have already been deduced by IMP2C. Rather, variable
elimination through NIVER reduces the CNF size with the learned relationships from
IMP2C intact, and thus helps the SAT solver to prove unsatisfiability quickly.

Table 7: Comparison of IMP2C with NIVER [Subbarayan 04]

Miter Circuit

NIVER
+

Siege
(secs)

IMP2C
+

Siege
(secs)

Speedup
(col 2 / col 3)

IMP2C+
NIVER+

Siege
(secs)

Speedup
(col 2 / col 5)

c3540_opt 12.56 1.16 10.82 1.19 10.55

c7552_1_opt 13.54 12.24 1.10 10.58 1.24

c6288_eqv >14,400.00 0.36 >40,000.00 0.38 >37,894.70

c6288_opt >14,400.00 3.90 >3,962.30 3.91 >3,682.86

s38417_fs_eqv 57.61 88.62 0.65 62.87 0.91

s38584.1_fs_eqv 47.76 267.47 0.18 240.23 0.19

s35932_fs_eqv 46.54 81.58 0.57 66.37 0.70

b14_eqv 1,828.67 27.67 66.08 26.14 69.95

b14_1_eqv 468.52 15.77 29.70 14.50 32.31

b15_opt_eqv 70.64 69.38 1.01 63.25 1.11

b17_opt_eqv 472.34 316.08 1.49 260.15 1.81

b18_opt_eqv >14,400.00 2557.29 >5.63 2142.87 >6.71

b21_1_eqv 2,132.51 37.37 57.06 29.52 72.23

b20_1_eqv 3,150.42 36.73 85.77 31.48 100.07

b22_1_opt_eqv 1,688.45 61.33 27.53 43.51 38.80

1622 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

6.4 Comparison with the propositional formula checker HeerHugo

In Section 1 we mentioned a propositional formula checker HeerHugo [Groote 00]
which adopted a branch/merge rule to prove the satisfiability/unsatisfiability of CNF
instances. While the Boolean reasoning utilized in HeerHugo is similar to the
extended backward implications that we use, there are several differences. We
observed in Section 4.3 that the logic reasoning utilized in extended backward
implications is in immediate compliance with Theorem 2, and consequently the set of
clauses obtained through extended backward implications is a proper subset of clauses
obtained by Theorem 2. Hence, we will use Theorem 2 as the reference to show the
differences between extended backward implications and HeerHugo.

Our Boolean reasoning in Theorem 2 involves assigning a logic value 0 or 1 to
each of the propositional variables one at a time, and finding the common set of
implications required to satisfy the clauses affected under the given assignment.
These affected clauses are those where at least one literal evaluates to 0 and where
several literals are unassigned under the given assignment. For example, if ω = (l1 ∨ l2
∨ l3) and we make an assignment x = 0 such that the literal l1 evaluates to 0, then the
common set of implications obtained by setting l2 = 1 and l3 = 1 independently, will
result in binary clauses with x as one of the literals. Here l2 and l3 will be pertaining to
different propositional variables. Considering the branch/merge rule of level 1 in
HeerHugo (see Section 1), after the assignment x = 0 is made, another assignment is
made on a propositional variable y, no matter even if it appears or does not appear in
the clause ω. The common set of implications obtained by setting y = 0 and y = 1
independently under the assignment x = 0 yields binary clauses with x as one of the
literals. Note that in HeerHugo the intersection is under the same variable y, whereas
in our technique it is under different variables (pertaining to l2 and l3 here). The
clauses deduced using our technique might require application of the branch/merge
rule at higher levels (greater than 2 or 3), and hence the computational complexity of
HeerHugo will increase exponentially, since the length of proof to refute the CNF
formula Φ in HeerHugo is Ο(mh+1), where m is the total number of clauses and h is
the maximum branch/merge level required for proof refutation (please refer to
[Groote 00] for details). In our case, if we analyze Theorem 2, the worst case
complexity is Ο(n.m.p), where n is the total number of propositional variables, m is
the total number of clauses, and p is the maximum number of literals in a clause in Φ.
This is because Theorem 2 operates on each of the n propositional variables in Φ.
When any of these propositional variables is assigned to a logic value v, where v ∈
{0, 1} the number of clauses that can get affected in the worst case are m. For every
affected clause we need to set each of its unassigned literals to a logic value v, and in
the worst case the number of unassigned literals in each of the affected clauses would
be p – 1 (since at least 1 literal of an affected clause evaluates to 0). Thus the worst
case complexity would be Ο(n.m.p). However, from Observation 2 since we perform
our Boolean learning only on a selected set of clauses/variables, based on domain
knowledge (the circuit netlist, and not part of the CNF formula), the complexity is
significantly lower than Ο(n.m.p). We believe that the choice of variables on which
learning needs to be performed is really important, and selecting these variables
judiciously leads to significant gains in terms of inferring new clauses as well as the
preprocessor complexity. We use the circuit knowledge to select such variables and

1623Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

try to deduce non-trivial relations among variables that considerably simplify the
equivalence checking instance. The complexity of our preprocessing algorithm is far
less than that of a brute force approach involving unstructured reasoning on all the
variables. In Table 8 we report the performance of the HeerHugo tool (a complete
SAT solver) without and with our preprocessing technique for some of the
benchmarks.

Table 8: Comparison of HeerHugo[Groote 00] with IMP2C + HeerHugo

In Table 8, we report the time taken by our preprocessing engine IMP2C, the

time taken by the propositional formula checker HeerHugo, and the total time taken
by IMP2C + HeerHugo. We also give the speedup ratio of IMP2C + HeerHugo over
HeerHugo alone. From Table 8, it is evident that using our preprocessing technique
IMP2C boosts up the performance of HeerHugo significantly. For example,
HeerHugo alone took 1308.0 seconds to prove the unsatisfiability of the CNF instance
c3540_opt, whereas after preprocessing with IMP2C the total time reduced to only
60.10 seconds (with IMP2C taking 18.10 seconds and HeerHugo taking 42.0 seconds,
respectively). Similarly, for other instances such as c1908_opt, c2670_eqv,
c3540_eqv, c5315_eqv, c7552_eqv etc. the time taken by HeerHugo reduces from
several seconds to 1.0 second. The ITC benchmarks like b14_eqv, b14_1_eqv,
b15_opt_eqv etc. could not be solved by HeerHugo even after 4 hours (14,400

Miter Circuit
IMP2C
(secs.)

HeerHugo
(secs.)

IMP2C
+

HeerHugo
(secs.)

Speedup
(col 3 /
col 4)

c1908_opt 0.20 24.00 1.20 (0.20 + 1.00) 20.00

c2670_eqv 0.35 16.00 1.35 (0.35 + 1.00) 11.85

c3540_eqv 0.94 763.00 1.94 (0.94 + 1.00) 393.29

c3540_opt 18.10 1308.00 60.10 (18.10 + 42.00) 21.76

c5315_eqv 0.68 1902.00 1.68 (0.68 + 1.00) 1132.14

c5315_opt 12.25 1843.00 50.25 (12.25 + 38.00) 36.67

c7552_eqv 1.71 3443.00 2.71 (1.71 + 1.00) 1270.47

c6288_eqv 0.35 1.00 1.35 (0.35 + 1.00) 0.74

c6288_opt 3.88 1.00 4.88 (3.88 + 1.00) 0.20

s38417_fs_eqv 62.77 >14,400.00 67.77 (62.77 + 5.00) >212.48

s38584.1_fs_eqv 240.02 >14,400.00 246.02 (240.02 + 6.00) >58.53

s35932_fs_eqv 66.28 >14,400.00 71.28 (66.28 + 5.00) >202.02

b14_eqv 26.05 >14,400.00 74.05 (26.05 + 48.00) >194.46

b14_1_eqv 14.50 >14,400.00 19.50 (14.50 + 5.00) >738.46

b15_opt_eqv 57.72 >14,400.00 69.72 (57.72 + 12.00) >206.54

b17_opt_eqv 245.02 Memory Out

b18_opt_eqv 2,132.50 Memory Out

b22_1_opt_eqv 43.11 >14,400.00 50.11 (43.11 + 7.00) >287.36

1624 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

seconds), whereas after preprocessing with IMP2C, these instances became easily
tractable. Overall, we achieve speedups ranging from 20.0× for c1908_opt to
1270.47× for c7552_eqv, which is very impressive.

7 Conclusion

We presented a new method of augmenting the original CNF formula with static logic
implications. Two-literal clauses resulting from indirect and extended backward
implications were quickly computed and added to the existing CNF database. These
added clauses served as constraints and helped the SAT solver in the search process.
Experimental results for combinational circuit equivalence checking showed that
irrespective of the state-of-the-art SAT solver used, we achieved more than one order
of magnitude speedup for most of the instances, with the actual speedup ranging up to
22.89×. Comparison with the propositional formula checker HeerHugo [Groote 00]
and the recently developed preprocessing techniques such as Hypre [Bacchus 03] and
NIVER [Subbarayan 04] showed that our technique exploited the circuit structure very
effectively, and significantly reduced the SAT instance complexity achieving orders of
magnitude speedup over these methods.

Acknowledgements

We are thankful to the anonymous reviewers for their useful suggestions and
comments to improve the quality of the paper.

References

[Bacchus 02] F. Bacchus, “Enhancing Davis Putnam with Extended Binary Clause Recording,”
In Proceedings of National Conference on Artificial intelligence (AAAI-2002), August 2002,
pp. 613-619.

[Bacchus 03] F. Bacchus and J. Winter, “Effective Preprocessing with Hyper-Resolution and
Equality Reduction,” In Lectures notes in Computer Science, Theory and Applications of
Satisfiability Testing: 6th International Conference, SAT 2003, Volume 2919 / 2004, pp. 341-
355.

[Biere 99] A. Biere, A. Cimatti, E. Clarke and Y. Zhu, “Symbolic Model Checking Without
BDDs,” In Proceedings of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) Conference, March 1999, pp. 193-207.

[Brglez 85] F. Brglez and H. Fujiwara, “A Neural Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran,” In Proceedings of International Symposium on
Circuits and Systems (ISCAS) Conference, June 1985, pp. 663-698.

[Brglez 89] F. Brglez, D. Bryan and K. Kozminski, “Combinational Problems of Sequential
Benchmark Circuits,” In Proceedings of International Symposium on Circuits and Systems
(ISCAS) Conference, June 1989, pp. 1929-1934.

[Corno 00] F. Corno, M. Sonza Reorda and G. Squillero “RT-Level ITC 99 Benchmarks and
First ATPG Results,” In IEEE Design and Test of Computers, July-August 2000, pp. 44-53.

1625Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

[Davis 60] M. Davis, H. Putnam “A Computing Procedure for Quantification Theory,” In
Journal of ACM, Volume 7, Issue 3, July 1960, pp. 201-215.

[Davis 62] M. Davis, G. Longemann and D. Loveland “Machine Program for Theorem
Proving,” Communications of the ACM, Vol. 5, 1962, pp. 394-397.

[Goldberg 02a] E. Goldberg and Y. Novikov, “Berkmin: A Fast and Robust SAT Solver,” In
Proceedings of Design, Automation and Test in Europe Conference (DATE), March 2002, pp.
142-149.

[Goldberg 02b] E. Goldberg and Y. Novikov, BerkMin561, 2002
http://eigold.tripod.com/BerkMin

[Goldberg 01] E. Goldberg, M. Prasad, R. K. Brayton “Using SAT for Combinational
Equivalence Checking,” In Proceedings of Design, Automation and Test in Europe Conference
(DATE), 2001, pp. 114 -121.

[Goldberg 03] E.Goldberg, Y. Novikov. “Equivalence Checking of Dissimilar Circuits,” In
Proceedings of International Workshop on Logic and Synthesis, May 28-30, 2003.

[Groote 00] J.F. Groote, and J.P. Warners, “The propositional formula checker HeerHugo,” In
Journal of Automated Reasoning, Vol. 24, Nos. 1-2 (February 2000).
http://www.win.tue.nl/~jfg/heerhugo.html

[Gupta 03] A. Gupta, M. Ganai, C. W. Yang and P. Ashar, “Learning From BDDs in SAT-
based Bounded Model Checking,” In Proceedings of ACM/IEEE Design Automation
Conference (DAC), June 2003, pp. 824-829.

[Kuehlmann 01] A. Kuehlmann, M.K. Ganai and V. Paruthi, “Circuit-Based Boolean
Reasoning,” In Proceedings of IEEE/ACM Design Automation Conference (DAC), June 2001,
pp. 232-237.

[Kunz 92] W. Kunz and D.K. Pradhan, “Recursive Learning: An Attractive Alternative to the
Decision Tree for the Test Generation in Digital Circuits,” In Proceedings of International Test
Conference (ITC), September 1992, pp. 816-825.

[Kunz 93] W. Kunz, “HANNIBAL: An Efficient Tool for Logic Verification Based on
Recursive Learning,” In Proceedings of IEEE/ACM International Conference on Computer
Aided Design (ICCAD), November 1993, pp. 538-543.

[Larrabee 92] T. Larrabee, “Test Pattern Generation using Boolean Satisfiability,” In IEEE
Transactions on Computer Aided Design, Vol. 11, January 1992, pp. 4-15

[Li 00] C. Min Li, “Integrating Equivalency Reasoning into Davis-Putnam Procedure,” In
Proceedings of National Conference of Artificial Intelligence (AAAI-2000), July 2000, pp. 291-
296.

[Lu 03a] F. Lu, Li-C. Wang, K-T. Cheng and R. C-Y Huang, “A Circuit SAT Solver with
Signal Correlation Guided Learning,” In Proceedings of Design, Automation and Test in
Europe Conference (DATE), March 2003, pp. 892-897.

[Lu 03b] F. Lu, Li-C. Wang, K-T. Cheng, J. Moondanos and Z. Hanna, “ A Signal Correlation
Guided ATPG Solver and its Applications for Solving Difficult Industrial Cases,” In
Proceedings of ACM/IEEE Design Automation Conference (DAC), June 2003, pp. 436-441.

[Lynce 03] I. Lynce and J.P. Marques-Silva, “Probing-Based Preprocessing Techniques for
Propositional Satisfiability,” In 15th IEEE International Conference on Tools with Artificial
Intelligence, November 2003, pp. 105-110.

1626 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

[Moskewicz 01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik, “Chaff:
Engineering an Efficient SAT Solver,” In Proceedings of ACM/IEEE Design Automation
Conference (DAC), June 2001, pp. 530-535.

[Novikov 03] Y. Novikov, “Local Search for Boolean Relations on the Basis of Unit
Propagation,” In Proceedings of Design, Automation and Test in Europe Conference (DATE),
March 2003, pp. 810 -815.

[Ryan 03] L. Ryan, Siege v4, 2003 http://www.cs.sfu.ca/~loryan/personal, pertinent manuscript
available at http://www.cs.sfu.ca/~mitchell/papers/ryan-thesis.ps.

[Subbarayan 04] Sathiamoorthy Subbarayan and Dhiraj K Pradhan, “NiVER: Non Increasing
Variable Elimination Resolution for preprocessing SAT instances,” In Proceedings of The
Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT
'04), May 2004

[Schulz 88] M. H. Schulz, E. Trischler and T. M. Sarfert, “SOCRATES: A Highly Efficient
Automatic Test Pattern Generation System,” In IEEE Transactions on Computer Aided Design,
Vol. 7, January 1988, pp. 126-137.

[Sheeran 00] M. Sheeran and G. Stalmarck, “A Tutorial on Stalmarck's Proof Procedure for
Propositional Logic Propositional Proof,” In Formal Methods In System Design, 16(1), January
2000, pp. 23-58.

[Silva 99a] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability,” In IEEE Transaction on Computers, Vol. 48, May 1999, pp. 506-
521.

[Silva 99b] J. P. Marques Silva and L. Guerra E Silva, “Solving Satisfiability in Combinational
Circuits using Backtrack Search and Recursive Learning,” In Proceedings of XII Symposium on
Integrated Circuits and System Design, October 1999, pp. 192-195.

[Silva 99c] J. P. Marques-Silva and T. Glass,“ Combinational Equivalence Checking using
Satisfiability and Recursive Learning,” In Proceedings of Design, Automation and Test in
Europe Conference (DATE), March 1999, pp. 145-149.

[Stalmarck] G. Stalmarck, “System for Determining Propositional Logic Theorems by
Applying Values and Rules to Triplets that are Generated from the Boolean Formula,” United
States Patent Number 5,276,897.

[Stephan 96] P. Stephan, R.K. Brayton and A. L. Sangiovanni Vincentelli, “Combinational Test
Generation using Satisfiability,” In IEEE Transactions on Computer Aided Design, Vol. 15,
September 1996, pp. 1167-1176.

[Tseitin 68] G.S. Tseitin, “On the Complexity of Derivation in Propositional Calculus,”
In Studies in Constructive Mathematics and Mathematical Logic, Part 2, 1968, pp. 115-125.
Reprinted in J. Siekmann, and G. Wrightson, eds., Automation of Reasoning, Vol. 2, Springer-
Verlag, 1983, pp. 466-483.

[Van Gelder 93] A. Van Gelder and Y.K. Tsuji, “Satisfiability Testing with More Reasoning
and Less Guessing,” In Second DIMACS Implementation Challenge, American Mathematical
Society, editors D.S. Johnson and M. A. Trick, 1993.

[Zabih 88] R. Zabih and D. McAllester, “A Rearrangement Search Strategy forDetermining
Propositional Satisfiability,” In Proceedings of National Conference on Artificial intelligence
(AAAI-1988) , pp. 155-160

[ZhangH 97] H. Zhang, “SATO: An Efficient Propositional Prover,” In Proceedings of
International Conference on Automated Deduction, vol. 1249, LNAI, July 1997, pp. 272-275.

1627Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

[ZhangL 01] L. Zhang, C. Madigan, M. Moskewicz and S. Malik, “Efficient Conflict Driven
Learning in a Boolean Satisfiability Solver,” Proceedings of International Conference on
Computer Aided Design (ICCAD), November 2001, pp. 279-285.

[Zhao 97] J. Zhao, M. Rudnick and J. Patel, “Static Logic Implication with Application to Fast
Redundancy Identification,” In Proceedings of VLSI Test Symposium (VTS), April 1997, pp.
288-293.

[Zhao 01] J. Zhao, J. A. Newquist and J. Patel, “A Graph Traversal Based Framework for
Sequential Logic Implication with an Application to C-cycle Redundancy Identification,” In
Proceedings of VLSI Design Conference, January 2001, pp. 163-169.

1628 Arora R., Hsiao M.S.: Using Global Structural Relationships of Signals ...

