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Abstract: We propose a novel technique to improve SAT-based Combinational Equivalence 
Checking (CEC). The idea is to perform a low-cost preprocessing that will statically induce 
global signal relationships into the original CNF formula of the miter circuit under verification, 
and hence reduce the complexity of the SAT instance. This efficient and effective 
preprocessing quickly builds up the implication graph for the miter circuit under verification, 
yielding a large set of direct, indirect and extended backward implications. These two-node 
implications spanning the entire circuit are converted into binary clauses, and they are added to 
the miter CNF formula. The added clauses constrain the search space of the SAT solver and 
provide correlation among the different variables, which enhances the Boolean Constraint 
Propagation (BCP). Experimental results on large and difficult ISCAS’85, ISCAS’89 (full 
scan) and ITC’99 (full scan) CEC instances show that our approach is independent of the state-
of-the-art SAT solver used, and that the added clauses help to achieve noteworthy speedup for 
each of the cases. Also, comparison with Hyper-Resolution (Hypre), Non-Increasing Variable 
Elimination Resolution (NIVER) and the propositional formula checker HeerHugo, suggests 
that our technique is more powerful, yielding non-trivial clauses that significantly simplify the 
SAT instance complexity. 
 
Keywords: Boolean Satisfiability (SAT), Static Logic Implications, Combinational 
Equivalence Checking (CEC), Propositional Formula, Boolean Formula. 
Categories: I.2.6, I.2.8, F.4.m, B.6.2 

1 Introduction 

In the past four decades, much progress has been made in the field of Boolean 
Satisfiability (SAT). Due to its numerous Electronic Design Automation (EDA) 
applications, such as Combinational Equivalence Checking (CEC) [Goldberg 01, Lu 
03a, Novikov 03, Silva 99b, Silva 99c], Bounded Model Checking (BMC) [Biere 99, 
Gupta 03] and Automatic Test Pattern Generation (ATPG) [Larrabee 92, Lu 03b, 
Stephan 96], SAT continues to be a heavily studied area. The state-of-the-art SAT 
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solvers [Moskewicz 01, Goldberg 02a, Ryan 03] are descendants of the DPLL-
algorithm [Davis 62] and usually operate on Boolean formulas represented in 
Conjunctive Normal Form (CNF). This form consists of the logical AND 
(conjunction) of clauses, such that each clause is a logical OR (disjunction) of one or 
more literals. A literal is a variable in its true or complemented form. For the CNF 
formula to be satisfied, each of the individual clauses should be satisfied (sat). Each 
clause is also called an implicate of the CNF formula. While trying to satisfy a given 
CNF formula, a SAT solver makes decisions based on a given set of variable selection 
heuristics [Goldberg 02a, Moskewicz 01, Silva 99a, ZhangH 97]. It learns 
dynamically from the conflicts encountered during the search and generates conflict-
induced clauses [Goldberg 02a, Moskewicz 01, Silva 99a, ZhangH 97] that can 
subsequently constrain the search. However, the conflict clauses learnt dynamically 
have the following disadvantages: 
• Not all learned clauses are useful, especially the long clauses. 
• The set of all learned clauses can grow very large. 
• The clauses are learned gradually over the entire SAT search, which may take a 

long  time. 

1.1 Previous Work 

Recently, efforts have been made to improve the SAT-based CEC by inducing useful 
information into the original CNF formula before the SAT solver starts. These efforts 
have enabled to overcome the above disadvantages to some extent. In [Lu 03a], 
probable correlations among signal pairs were first obtained by random simulation of 
the miter circuit. Then, explicit learning was performed wherein the correlated signal 
pairs were assigned values that would most likely result in a conflict. A SAT solver 
was then invoked to quickly learn a fixed number of conflict-induced clauses, 
corresponding to every pair of possibly correlated signals. Because random simulation 
was used, only a subset of the signal correlations could be identified. In [Novikov 03], 
the author introduced a technique that involved branching on small subsets of CNF 
variables, and analyzing the results of unit propagation. A restricted version of this 
technique was implemented, which focused on deducing constant values and 
equivalence relationships. In [Li 00], equivalence reasoning was integrated into the 
Davis-Putnam procedure [Davis 62] to enhance its performance on problems 
containing equivalence clauses. In [Gupta 03], which focuses on improving SAT-
based BMC, local BDDs were used to capture relationships among the Boolean 
variables of the CNF formula in the form of a characteristic function. The 
nodes/variables for which BDDs were created were called seed nodes, and these were 
selected statically or dynamically during the decision phase. Every path leading to the 
terminal node 0 in the resulting local BDD denoted a conflict, and the negation of the 
corresponding literals was added as a multi-literal learned clause to the existing CNF 
formula. However, the locally built BDDs were not helpful in extracting the global 
relations. In [Kuhelmann 01], the authors integrated BDD-based Boolean reasoning, 
local structural transformations and circuit-based SAT procedure in one framework, 
and a shared AND/INVERTER graph representation was used for solving the 
problem. Probing-based preprocessing techniques for manipulating propositional 
satisfiability formulae were proposed in [Lynce 03]; meaningful information was 
inferred from a table of triggering assignments, built by assigning a value to each of 
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the variables and carrying out unit propagation. The technique also subsumed the 
additional binary clauses obtained in [Gelder 93]. In [Goldberg 03], the authors 
integrated the notion of levels of variables inside the SAT solver, such that the 
variables closer to the primary inputs were preferred during decision making. This 
heuristic considerably improved the SAT solver performance on some of the CEC 
instances. 

In [Groote 00], the authors introduced a propositional formula checker HeerHugo 
which is based on similar principles as the patented Stalmarck’s method [Stalmarck, 
Sheeran 00]. HeerHugo first converts its input n-CNF formula (i.e., a CNF formula 
with maximum clause length of n literals, where n is any natural number) into a 3-
CNF formula (i.e., a CNF formula where the clauses contain at most 3 literals), and 
then applies a set of simple rules to determine if it could find some contradiction in 
the CNF formula. These simple rules are the following: 
• unit resolution—this rule identifies any clause with only one literal and assigns a 
logic 1 to that literal. This assigned value is propagated throughout the CNF formula. 
• implication cycle removal—this rule identifies any implication cycle and replaces 
the literals in an implication cycle by a representative literal. For example, if p ⇒ q, q 
⇒ r and r ⇒ p, then the literals p, q and r are equivalent and form an implication 
cycle. Therefore, any of the three literals can be used as a representative literal for 
denoting all of them. 
• subsumption checking [Groote 00]—this rule adds a new clause to the CNF 
formula only after checking if no similar clause already exists in the formula. For 
example, if  a clause (p ∨ q ∨ r) or (p ∨ q) or (p ∨ r) or (q ∨ r) already  exists, then a 
new inferred clause (p ∨ q ∨ r)  will not be added. 
• the classical Davis-Putnam rule [Davis 60]—this rule eliminates propositional 
variables using binary resolution. In order to eliminate a propositional variable x, the 
classical Davis-Putnam rule, also called Variable Elimination Resolution (VER) 
method, forms two sets of clauses Px and Nx with the variable x appearing in positive 
polarity and negative polarity, respectively. It then performs binary resolution on 
these two sets of clauses resulting in a set of resolvents R. Finally, it eliminates the 
variable x by removing all the clauses in (Px ∪ Nx) and adding all the clauses in R to 
the CNF formula.  

The Davis-Putnam rule used as a part of the simple rules in HeerHugo was 
applied in a restricted manner such that a propositional variable was eliminated only 
when it reduced the CNF formula size or when there was very limited growth. If no 
contradiction was derived after applying the simple rules, HeerHugo adopted a 
branch/merge rule to prove the satisfiability/ unsatisfiability of the CNF formula. For 
a CNF formula Φold, with x as one of the propositional variables, applying the branch 
merge rule results in a new CNF formula Φnew given by,  

Φnew = Φold ∧ (Cx ∩ C¬x), 
where Cx ≡ Φold ∧ x and C¬x ≡ Φold ∧ ¬x, represents the set of conclusions obtained by 
applying simple rules with x added to Φold and ¬x added to Φold, respectively. This 
branch/merge rule (called level 0 branch/merge rule) is iteratively applied to all the 
propositional variables until the intersection between Cx and C¬x is empty for each of 
them. If still no contradiction is obtained then the branch/merge rule is applied in a 
nested way: for example, with the propositional variable x set to true in the CNF 
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formula Φold, take the intersection of the conclusions obtained by setting the 
propositional variable y first to true and then to false, independently, and likewise for 
all the variables (called level 1 branch/merge rule). This way the branch merge rule 
can be applied at higher levels, which in turn increases the computational complexity 
of the algorithm. The reader is referred to [Groote 00] for all details.  

More recently, in [Bacchus 02, Bacchus 03], preprocessing based on Hyper-
Resolution and Equality Reduction was explored. The Hyper-Resolution technique 
takes as input the following: 

(a) a single n-ary clause (n ≥ 2), i.e. (l1 ∨ l2 ∨ l3 … ∨ ln), and  
(b) n – 1 binary clauses each of the form (¬li ∨ l) where (i = 1, …, n – 1) 

It then produces as output a new binary clause (l ∨ ln). For example, using Hyper-
Resolution on the inputs (a ∨ b ∨ c ∨ d), (h ∨ ¬a), (h ∨ ¬c), and (h ∨ ¬d), the new 
binary clause (h ∨ b) is produced. Hyper-Resolution is equivalent to a sequence of 
ordinary resolution steps (i.e., resolution steps involving only two clauses). However, 
a sequence of ordinary resolution steps would generate clauses of intermediate length 
while Hyper-Resolution side-steps this to only generate a final binary clause. In a 
SAT solver it is generally counter-productive to add these intermediate clauses to the 
CNF database, but it can be very useful to add the final binary clause. The above 
resolution steps also help to generate unit clauses (clauses with only one literal) which 
further simplify the CNF formula. Their preprocessing algorithm also performs 
equality reduction if the CNF database has equivalent literals. For example, if the 
CNF formula contains (¬a ∨ b) as well as (a ∨ ¬b) (i.e, a ⇒ b as well as b ⇒ a), then 
by equality reduction we can replace b with a. The steps involved in equality 
reduction are: 
• replace all instances of b in the CNF formula by a,  
• remove all clauses which now contain both a and ¬a,  
• remove all duplicate instances of a (or ¬a) from all clauses. 
This process might generate new unit clauses. The Hyper-Resolution technique was 
shown to be highly effective on a large variety of SAT benchmarks. 

Lately, a SAT preprocessor based on VER method [Davis 60] namely NIVER 
was introduced in [Subbarayan 04]. This preprocessor is a special case of VER [Davis 
60] such that it does not allow an increase in the formula size, with respect to the total 
number of literals in the original CNF formula Φ. For a propositional variable x to be 
eliminated, NIVER forms two sets of clauses Px and Nx and finally the set of 
resolvents R (similar to the VER method described before). Now if the total number 
of literals in (Px ∪ Nx) is greater than or equal to the total number of literals in R, 
NIVER eliminates the variable x by removing all the clauses in (Px ∪ Nx) from Φ and 
adding all the clauses in R to Φ. Except checking for tautology in the resolvents, 
NIVER does not do any complex steps like subsumption checking. Unlike Hypre, 
NIVER does not perform any unit propagation nor does it check for any unit clauses. 
It continues to iterate until no more variables can be removed from the CNF formula. 

1.2 Our Approach 

In our approach, unlike [Lu 03a, Novikov 03, Gupta 03] we statically and efficiently 
identify useful non-trivial relations among signals (variables) over the entire miter 
circuit. We then augment the existing CNF formula by adding these relations as 
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clauses, before the SAT solver starts. Instead of working on the CNF formula as in 
[Bacchus 02, Bacchus 03, Lynce 03, Gelder 93, Subbarayan 04 ], we work on the 
circuit netlist for inferring additional clauses. The preprocessing step quickly builds 
the implication graph [Zhao 01] for the miter-circuit under verification. The resulting 
indirect and extended backward implications help us to deduce pure literals (unit 
clauses), equivalent literals and other non-trivial implication relations among the CNF 
variables. The non-trivial implication relationships are converted into two-literal 
clauses, which are added to the CNF database. These added clauses prune the search 
space and provide correlation among different variables, which enhances the Boolean 
Constraint Propagation [Zabih 88, Moskewicz 01, Silva 99a]. Unlike NIVER 
[Subbarayan 04], we don’t do any variable elimination through resolution, nor do we 
remove any existing clauses from the original CNF database. Instead, we focus on 
adding many binary clauses which embed in them powerful relations among the CNF 
variables that are difficult to deduce otherwise. Two state-of-the-art SAT solvers are 
used in our experiments: BerkMin [Goldberg 02a] and Siege [Ryan 03]. Experimental 
results for combinational circuit equivalence checking show that our proposed method 
is independent of the underlying SAT solver, and we achieve significant speedup in 
each of the cases. Comparison with the recently developed preprocessing technique 
hyper-binary resolution [Bacchus 02, Bacchus 03], suggests that our proposed 
technique is much more powerful and the resulting non-trivial clauses are difficult to 
obtain using the hyper resolution approach. These new clauses when added to the 
original CNF formula reduce the SAT instance complexity significantly. The 
superiority of our technique is further underlined by comparison with the other recent 
preprocessor NIVER [Subbarayan 04]. We show through experimental results that we 
outperform NIVER by a huge margin. Also, we compare our results with a 
propositional formula checker HeerHugo [Groote 00] to further show the 
effectiveness of our approach. 

The rest of the paper is organized as follows. Section 2 gives the background of 
static implications that we have used in our implementation. Section 3 presents 
observations when the static implications consisting of indirect and extended 
backward implications are utilized in a SAT framework. Section 4 discusses the 
formalization of static implications in the CNF formula. We present a suite of 
Lemmas and Theorems to prove that the clauses added using static implications are 
implicates of the CNF formula and preserve its satisfiability. Section 5 gives the 
implementation algorithm. Experimental results are discussed in Section 6, and 
Section 7 concludes the paper. 

2 Preliminaries 

2.1 Static Implications 

Static implications are obtained by setting each gate in the Boolean circuit to logic 
value 1 and 0 independently, and analyzing the result of propagating these values 
throughout the circuit. An efficient way for representing the implication relations is 
by using an implication graph where the nodes represent gate with values and edges 
represent implication relationships [Zhao 01]. For a given circuit with K gates, the 
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total number of nodes in this graph is 2K, since each gate can take on a logic value of 
0 or 1. 
The following terminology is used:  
• (N, v): Assign logic value v to gate N where v ∈ {0, 1}. 
• (N, v) → (M, w): Assigning logic value v to gate N implies gate M would be 

assigned a value w. 
• impl[N, v]: Set of all implications resulting from assigning logic value v to gate N. 
• contrapositive law [Schulz 88]: If (N, v) → (M, w), then the contrapositive law 

states that (M, w’) → (N, v’), where w’ and v’ are the complementary values of w 
and v, respectively. This property can be used to identify additional (possibly non-
trivial) implications.  

• impossible/constant nodes: If (M, w) → (N, v) and (M, w) → (N, v’) or if (M, w) 
→ (M, w’), then (M, w) is impossible, i.e., gate M would never be able to acquire 
value w and would be a constant with value w’ (for clear understanding refer to 
Figure 2 and the text under direct implications). 

• transitive law: If (M, w) → (N, v) and (N, v) → (P, u), then the transitive law 
states that (M, w) → (P, u). 

• fanins: fanins of a gate N is the set of adjacent gates driving gate N. 
• fanouts: fanouts of a gate N is the set of adjacent gates driven by gate N. 
• target gate: The gate whose implications are being computed by assigning it value 

v.  
• unjustified gate: A gate G that has a specified output signal or at least one 

specified input signal; if the output signal is specified, it is not determined by its 
inputs/fanins. And if any of the inputs/fanins are specified, they do not determine 
the gate’s output value. 

• unjustified output specified gates: Subset of unjustified gates whose output value 
is specified, but is not determined by its inputs/fanins. 

• controlling value: A logic value at any of the fanins which can determine the 
gate’s output value (see Table 1 for controlling values of different gate types). 

• inversion value: If the output of the gate is inverted as in the case of NOT, NAND, 
and NOR gates, the inversion value is 1; otherwise 0 (see Table 1 for inversion 
values of different gate types). 

• unit-clause rule: If a clause has n literals and n – 1 of its literals have been 
assigned to logic value 0 by the current state of decision assignments, then the 
unassigned literal should take on logic value 1 for the CNF formula to be 
satisfiable. This literal is called a pure literal or implied value. 

• Boolean Constraint Propagation (BCP) [Zabih 88, Moskewicz 01, Silva 99a]: 
Applying the unit-clause rule repeatedly until no more pure literals can be 
obtained. 

• BCP (x, v): Set of values implied by performing BCP with x assigned to logic 
value v.  
The static logic implications are made up of direct, indirect and extended 

backward implications. Direct implications can be easily determined whereas indirect 
and extended backward implications [Zhao 97, Zhao 01] are non-trivial, and their 
discoveries require combination of simulation, transitive law and contrapositive law 
[Schulz 88]. The mathematical definitions of direct, indirect and extended backward 
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implications are given below and the concepts are illustrated using the example circuit 
shown in Figure 1. 

2.1.1 Direct Implications 

Direct implications of a gate G consist of implications associated with the gates 
driving and driven by G. Such implications are easily computed by traversing through 
the immediate fanins and fanouts of the gate. The direct implications are of two types: 
1) direct forward implications, and 2) direct backward implications. To compute 
direct forward implications, a controlling value of c at any of the fanins implies a 
value of  c XOR i at the gate output, where i is the inversion value of the gate. Table 1 
gives the controlling value (c), the non-controlling value (nc) and the inversion value 
(i) for different gates. Note that the non-controlling (nc) value is just the complement 
of the controlling value (c). Similarly, to compute direct backward implications, a 
value of  nc XOR i at the output implies a value of nc at all the fanins. 

 
 Consider the example circuit in Figure 1. Here, e represents an OR gate, f, h and k 
are NAND gates, i and m are AND gates, g is a NOT gate and j is an XOR gate. Now 
consider gate f. When we assert a logic value 0 on its output, the direct forward 
implications are (g, 1) and (h, 1). The direct backward implications are (e, 1) and (c, 
1). Therefore, impl[f, 0] = {(f, 0), (g, 1), (h, 1), (e, 1), (c, 1)}. 
 
 
 
 
 
                                                
              
                                                                               1 
                                                                                                     
           
 

Figure 1: Example circuit 
 

An example circuit showing how direct implications lead to constant nodes is 
shown in Figure 2. Here, impl[c, 0] = {(c, 0), (a, 1), (b, 1)}, impl[b, 1] = {(b, 1), (a, 
0)}, impl[b, 0] = {(b, 0), (a, 1), (c, 1)}, impl[a, 1] = {(a, 1), (b, 0)} and impl[a, 0] = 
{(a, 0), (b, 1), (c, 1)}. Hence, taking transitive closure of (c, 0) we get impl[c, 0] = 
{(c, 0), (a, 1), (b, 0), (c, 1) (a, 0), (b, 1)}. Since impl[c, 0] contains both (a, 1) and (a, 
0), therefore (c, 0) is impossible and should be constant with value (c, 1). We can also 

Gate Controlling 
value (c) 

Non-Controlling 
value (nc) 

Inversion 
value (i) 

AND 0 1 0 
NAND 0 1 1 
OR 1 0 0 
NOR 1 0 1 

 
Table 1: Controlling, non-controlling and inversion values for various gates 

 

a 

b 

i 

k

 

m

d h

f 

g 
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e

c 

0 

j 
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interpret this in a different way. Since, impl[c, 0] contains (c, 1), i.e., (c, 0) → (c, 1) 
therefore c is a constant with logic value 1. 

 
 
 
 
 

 
 

Figure 2: Example circuit illustrating constant/impossible nodes 

2.1.2 Indirect Implications 

The indirect implications of a node are computed by applying the gate values 
pertaining to all its direct implications to the circuit netlist and performing logic 
simulation. All gates, where the output value changes from a don’t-care to logic 0 or 
1, form the indirect implications of the node. Mathematically, impl[N, v] = impl[N, v] 

∪ [LogicSimulate(impl[N, v])]. Here LogicSimulate() refers to performing logic 
simulation with the implications applied to the circuit. Note that 

LogicSimulate(impl[N,v]) ⊄ impl[N, v]. In fact, the above expression must be 

interpreted as impl[N, v]new = impl[N, v]old ∪ LogicSimulate(impl[N, v]old). We follow 
this convention throughout the manuscript. 

Consider the direct implications of (f, 0) in Figure 1. We see that (g, 1) or (h, 1) 
individually do not imply anything on gate i. However, together they imply (i, 1). 
Therefore, (f, 0) → (i, 1) is an indirect implication and can be computed by a simple 
logic simulation of the list impl[f, 0]. These indirect implications are added to the 
implication graph of the circuit along with their corresponding contrapositive 
implications. Thus, impl[f, 0] = {(f, 0), (g, 1), (h, 1), (e, 1), (c, 1), (i, 1)}. These 
indirect implications have been used in the past with the name of global implications 
and non-local implications. Schulz et al. in [Schulz 88] utilized these non-local 
implications to improve the performance of ATPG engine and later Larrabee 
[Larrabee 92] and Stephan et al. [Stephan 96], respectively, used them for 
combinational test generation in a SAT framework. 

2.1.3 Extended Backward Implications 

The extended backward implications were first introduced by Zhao et al. in [Zhao 97]. 
These implications are computed by considering (1) the target gate, and (2) the 
unjustified output specified gates in the implication list of the target gate.  

Let (G, v) ∈ impl[N, v], and suppose gate G has p inputs among which m inputs 
(l1, …, lm) are unspecified. Here N is the target gate and G is the unjustified gate with 
specified output.  
 
Case 1: G is an AND gate: 

If (G, 0) ∈ impl[N, v] and (lj, 0) ∉ impl[N, v], (j = 1, 2, …, m), then  

impl[N, v] = impl[N, v] ∪ [∩m

i=1
LogicSimulate(impl[N, v] ∪ impl[li , 0])] 

c 
b a 

NAND gate NOT gate 
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The above mathematical formulation states that if the implication set of (N, v) 
contains an AND gate G which is unjustified output specified (i.e., it has an output 
value of 0 which is not determined by the value of its fanins), then the common set of 
implications obtained by setting each of the unspecified fanins to 0 under the current 
assignment of (N, v), will be appended to the implication set of (N, v). 
 
Case 2: G is an OR gate: 

If (G, 1) ∈ impl[N, v] and (lj, 1) ∉ impl[N, v], (j = 1, 2, …, m), then 

impl[N, v] = impl[N, v] ∪ [∩m

i=1
LogicSimulate(impl[N, v] ∪ impl[li , 1])] 

The above mathematical formulation states that if the implication set of (N, v) 
contains an OR gate G which is unjustified output specified (i.e., it has an output 
value of 1 which is not determined by the value of its fanins), then the common set of 
implications obtained by setting each of the unspecified fanins to 1 under the current 
assignment of   (N, v), will be appended to the implication set of (N, v). 
 
In the same way, extended backward implications can be computed for NAND and 
NOR gates. 
 
Case 3: G is a 2-input XOR gate: 

If (G, 1) ∈ impl[N, v] and both inputs l0 and l1 are unspecified, then, 

impl[N, v] = impl[N, v] ∪ {LogicSimulate(impl[N, v] ∪ impl[l0, 0] ∪ impl[l1, 1]) ∩ 

LogicSimulate( impl[N, v] ∪ impl[l0 , 1] ∪impl[l1, 0])} 
The above mathematical formulation states that if the implication set of (N, v) 
contains an XOR gate G which is unjustified output specified (i.e., it has an output 
value of 1 which is not determined by its fanins), then the common set of implications 
obtained by setting its two fanins to logic value 0 and 1 and then to 1 and 0, 
respectively, under the current assignment of (N, v), will be appended to the 
implication set of (N, v). 
 

If (G, 0) ∈ impl[N, v] and both inputs l0 and l1 are unspecified then, 

impl[N, v] = impl[N, v] ∪ {LogicSimulate(impl[N, v] ∪ impl[l0, 0] ∪ impl[l1, 0]) ∩ 

LogicSimulate( impl[N, v] ∪ impl[l0 , 1] ∪impl[l1, 1])} 
The above mathematical formulation states that if the implication set of (N, v) 
contains an XOR gate G which is unjustified output specified (i.e., it has an output 
value of 0 which is not determined by its fanins), then the common set of implications 
obtained by setting both the fanins to logic value 0 and then to 1, under the current 
assignment of (N, v), will be appended to the implication set of (N, v). 

 
Case 4: G is a 2-input XNOR gate: 

If (G, 0) ∈ impl[N, v] and both inputs l0 and l1 are unspecified then, 

impl[N, v] = impl[N, v] ∪ {LogicSimulate(impl[N, v] ∪ impl[l0, 0] ∪ impl[l1, 1]) ∩ 

LogicSimulate( impl[N, v] ∪ impl[l0 , 1] ∪impl[l1, 0])} 
If (G, 1) ∈ impl[N, v] and both inputs l0 and l1 are unspecified then, 
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impl[N, v] = impl[N, v] ∪ {LogicSimulate(impl[N, v] ∪ impl[l0, 0] ∪ impl[l1, 0]) ∩ 

LogicSimulate( impl[N, v] ∪ impl[l0 , 1] ∪impl[l1, 1])} 
 

Since we are dealing with miter circuits, the extended backward implications 
pertaining to XOR/XNOR gates help to identify many powerful implications, which 
in turn play an important role in proving the equivalence of the two circuits. 

To illustrate the concept of extended backward implications, consider again the 
example circuit of Figure 1. We see that impl[f, 0] = {(f, 0), (g, 1), (h, 1), (e, 1), (c, 1),     
(i, 1)}. The implication list of (f, 0) contains (e, 1) and the OR gate e is unjustified 
with a specified output. Now justifying e = 1 by setting the fanin a = 1 yields XOR 
gate j = 0 and j = 0 → m = 0. On the other hand, justifying e = 1 by setting the fanin 
b = 1 results in NAND gate k = 0 and k = 0 → m = 0. Thus, if the OR gate e is 
justified by any of the fanins, we get a common implication m = 0. Therefore, f = 0 
→ m = 0 is an extended backward implication of (f, 0), and is appended to the list 
impl[f, 0]. These extended backward implications help to identify the hard-to-find 
implications, and hence are effective for various applications such as capturing 
additional untestable faults [Zhao 97, Zhao 01]. 

3 Application of Static Implications to SAT   

When a circuit netlist is converted into its equivalent CNF-form, the resulting formula 
is devoid of global structural information. Also, the topological ordering among the 
signals is lost. All the internal signals in the original circuit become primary inputs 
(variables) in the two-level OR-AND CNF formula. As a result, the SAT solver 
heuristically picks up a variable for decision, without having much information about 
its impact on future decisions. For example, successive decisions on two different 
variables might be correlated in some way, but due to absence of global relationships, 
these variables may be assigned values that may eventually lead to a conflict in the 
future. In our approach, we try to induce structural relationships into the CNF formula 
of the miter circuit under verification, such that conflicts are either completely 
avoided or can be deduced early in the decision process. We first compute the 
implications on the circuit netlist, and then convert these implications into clause 
form. These clauses when added to the original CNF formula induce signal 
correlations among the variables, which in turn accelerates the SAT solver 
performance. 

3.1 Enhanced Boolean Constraint Propagation  

Consider again the example circuit of Figure 1. Its CNF formula is shown below. The 
CNF formula derivation is straightforward and the reader is referred to [Tseitin 68, 
Larrabee 92] for all details. 
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In this CNF formula, the clauses (¬a ∨ e)( ¬b ∨ e)(¬e ∨ a ∨ b) represent the OR 
gate e,  (f ∨ e )(f ∨ c )(¬f ∨ ¬e ∨ ¬c ) represent the NAND gate f, (¬f ∨ ¬g )(f ∨ g ) 
correspond to NOT gate g, ( ¬j ∨ a ∨ i )(¬j ∨ ¬a ∨ ¬i )(j ∨ ¬a ∨ i )(j ∨ a ∨ ¬i ) 
correspond to XOR gate j and so on. 

Now, let us suppose that the SAT solver heuristically makes the first decision i = 
0. On assigning i = 0 and performing BCP, no unit clauses are obtained. However, 
from our implication engine, we know that f = 0 → i = 1, and by contrapositive law   
i = 0 → f = 1. The two-literal clause corresponding to this implication is (i ∨ f). If we 
add this clause beforehand to the original CNF formula, setting i = 0 will imply f = 1 
immediately, which in turn will imply g = 0. Therefore, learning the information i = 0 
→ f = 1, helps us to satisfy a total of 10 clauses instead of satisfying only 4. This is 
illustrated in Figure 3. 

3.2 Identification of Equivalent/Complement Literals 

The basis of Combinational Equivalence Checking (CEC) is to identify equivalent 
signals in the two circuits incrementally, proceeding from the primary inputs towards 
the primary outputs. In SAT-based CEC, identification of such equivalent signals 
helps to reduce the problem complexity; a decision on one of the signals in the 
equivalent pair implies a value on the other corresponding signal, which in turn 
enhances the BCP and reduces the number of decisions required to prove the 
satisfiabilty/unsatisfiabilty of the CNF formula. The implication graph that we build 
(as a preprocessing step) for the miter circuit under verification helps us to identify 
these equivalent signals, which are in turn added as binary clauses to the existing CNF 
database. 

(¬a ∨ e) ( ¬b ∨ e) (¬e ∨ a ∨ b) (f  ∨ e ) (f  ∨ c ) 
(¬f ∨ ¬e ∨ ¬c ) (¬f  ∨ ¬g ) (f  ∨ g ) (¬f  ∨ ¬d  ∨ ¬h) (f ∨ h) 
(d  ∨ h) (g ∨ ¬i) (h ∨ ¬i) (¬g  ∨ ¬h ∨ i ) ( ¬j ∨ a ∨ i ) 
(¬j ∨ ¬a ∨ ¬i ) (j ∨ ¬a ∨ i ) (j ∨ a ∨ ¬i ) (h ∨ k ) ( b ∨ k) 
(¬h  ∨ ¬b  ∨ ¬k) (j  ∨ ¬m) ( k  ∨ ¬m) ( m  ∨ ¬j  ∨ ¬ k) 
 

  {NULL}        Implied Values 

(g ∨ ¬i)(h ∨¬i) (¬j ∨ ¬a ∨ ¬i)  
( j ∨ a  ∨ ¬i )(f ∨ g)(f ∨ e)(f ∨c)   
(f  ∨ h)(¬f  ∨ ¬g )(¬g  ∨ ¬h ∨ i) 

(b) After (a) Before 

0 

i 

       {f=1, g=0} 

0 

i 

(g  ∨ ¬i)(h  ∨¬i) 
(¬j  ∨ ¬a  ∨ ¬i ) 
( j  ∨ a  ∨ ¬i ) 

Satisfied clauses 
Decision variable 

Figure 3: Implied values and satisfied clauses in the CNF formula, before and after 
adding the clause (i ∨ f) 
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Consider below the CNF formula for the circuit shown in Figure 4: 
 
 
 

 
We can see that the decision p = 0 on unit propagation implies x = 1, y = 1, and 
finally q = 0. Similarly, the decision q = 0 implies x = 1, y = 1, and finally p = 0. But 
p = 1 implies nothing on q; likewise, q = 1 implies nothing on p. Hence, we cannot 
deduce that the two signals p and q are equivalent. However, our implication engine 
can deduce this relation: impl[p, 0] = {(p, 0), (x, 1), (y, 1), (q, 0)}, where (p, 0) →    
(q, 0) is an indirect implication. By the contrapostive law, (q, 1) → (p, 1). Similarly, 
impl[q, 0] = {(q, 0), (x, 1), (y, 1), (p, 0)}, such that (q, 0) → (p, 0) is an indirect 
implication. Again, using the contrapositive law, (p, 1) → (q, 1). Thus, p ↔ q. 
Therefore, for the two indirect implications, (p, 0) → (q, 0) and (q, 0) → (p, 0), we 
add up the clauses (p ∨ ¬q) and (q ∨ ¬p), respectively. The addition of such two 
clauses proves the equivalence of two variables p and q. It should be noted that every 
two-literal clause we add embeds in itself both the indirect implication as well as its 
contrapostive. Similar to equivalent literals, our approach can also identify 
complementary signals in the circuit. These relations between intermediate points of 
the circuit are propagated in the forward direction and help to identify additional 
relations and implications throughout the circuit.  

3.3 Identification of Constant/Impossible Nodes 

In order to prove the equivalence of two circuits, the corresponding primary outputs 
of the two circuits are XOR-ed (i.e., a miter circuit is created), and the XOR outputs 
are checked if they are at constant 0 value. In our approach, building the implication 
graph for the miter circuit under verification may deduce a few XOR outputs to be 
constant at logic 0. This happens whenever implications of the following type are 
obtained: 

a. (Z, 1) → (Y, 0) and (Z, 1) → (Y, 1) or 
b. (Z, 1) → (Z, 0),  

Here Y and Z can be any pair of signals in the miter circuit. The implication of type a 
suggests that when Z is set to logic value 1, Y must take on both 0 and 1 as logic 
values. This is impossible since Y cannot be both 0 and 1 simultaneously. Hence, Z = 
1 must be impossible, indicating that Z should always be a constant with logic value 
0. Similarly, the implication of type b suggests that Z = 1 implies Z = 0, i.e., a conflict 
on itself. This again suggests that Z = 1 is impossible and Z has to be a constant with 
logic value 0. After the implication graph for the miter circuit under verification has 
been built, all the nodes identified as constants are added as unit clauses (pure literals) 

p 

q 

x 

y 

Figure 4: Equivalent/Complement literal identification 

NAND gate 

(x ∨ p)(y ∨ p)(¬x ∨ ¬y ∨ ¬p)(x ∨ q)(y ∨ q)(¬x ∨ ¬y ∨¬q) 
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to the original CNF database. This in turn prunes the search space of the SAT solver 
engine, thereby enhancing its performance. 

3.4 Significance of Extended Backward Implications 

The concept of extended backward implications helps us to learn some very useful, 
non-trivial two-node implications. When added as two-literal clauses to the original 
CNF formula, they play a significant role. We will illustrate this by means of the 
example circuit in Figure 1. The corresponding CNF formula for this circuit has been 
given earlier. Now, suppose our objective is to satisfy m = 1. Let us assume that the 
SAT solver makes the following decisions: m = 1 (given objective), followed by f = 
0, and then a = 0. (Note that different SAT solvers make decisions based on different 
heuristics, and hence the set of decisions may vary from one SAT solver to another. 
We assume these decisions just to explain the efficacy of our technique.) However, 
we can see that assigning a = 0 results in a conflict. Also, on backtracking a = 1 
yields a conflict. The SAT solver again backtracks and sets f = 1, and finally the 
decisions d = 0, b = 0 make the formula satisfiable. The resulting decision tree is 
shown in Figure 5. 

 
 

 
Now, we use our implication engine as a preprocessing step. From extended 

backward implications, we learned that f = 0 → m = 0. Applying the contrapostive 
law, we obtain m = 1 → f = 1. Hence, we statically insert the clause (f ∨ ¬m) in the 
original CNF formula. Now, if we ask the SAT solver to satisfy the objective m = 1, 
then f = 1 will be implied immediately, and our decision tree will be as shown in 
Figure 6. We see that adding the two-literal clause results in fewer decisions with no 
backtracks, and at the same time improves the BCP. 

Figure 5: Decision tree without adding any clauses 

m

d 

f 

a 

b 

{j=1, k=1} 

{e=1, c=1, 
g=1, h=1, i=1} 

 {g=0, i=0, a=1, 
       e=1, c=0} 

{h=1} 
{j=0} 

Conflict at j Conflict at k 

Formula satisfiable 

1

0

0

1

0

0

1

Decision Variables 

{b=1, k=0} 

Implied Values 
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3.5 Comparison of our method with Hypre 

We compared our preprocessing technique with the Hyper-Resolution technique 
introduced in [Bacchus 03]. We observed that their tool Hypre can only deduce a 
subset of the clauses deduced by our method. This was experimentally verified by 
running Hypre [Bacchus 03] on the example circuit of   Figure 1. It was observed that 
Hypre was not able to deduce the two-literal clause (f ∨ ¬m). We then ran Hypre on 
another example circuit shown in Figure 7. In this case, our preprocessing tool 
deduced six additional non-trivial clauses. On the other hand, Hypre deduced only 
three clauses. All clauses deduced by our method are listed below, in which only half 
of them (3 clauses) were obtained by Hypre:  
• (¬c ∨ g), (f ∨ i), (¬f ∨ k) were deduced by Hypre as well 
• (f ∨ ¬m), (p ∨ ¬k), (p ∨ ¬a) were deduced only by our preprocessing tool. 
Here, the clause (f ∨ i) is obtained by computing indirect implications for node (f, 0), 
the clauses (¬c ∨ g), (¬f ∨ k) and (f ∨ ¬m) are deduced by computing extended 
backward implications for nodes (g, 0), (k, 0) and (f, 0), respectively. And finally the 
above implication relations help to deduce the non-trivial clauses (p ∨ ¬k) and (p ∨ 
¬a), by performing extended backward implications on (p, 0). This corroborates the 
fact that our technique is more powerful than Hypre, since more implications can be 
obtained by our method. In Section 6, we give more experimental results, which 
further underpin the superiority of our technique. 
 
 
 
 
 
 
 
 

m

d 

b 

Formula satisfiable 

0

0

1

{j=1, k=1, f=1, g=0, i=0, 
 a=1, e=1, c=0} 

{h=1} 
Implied Values 

Figure 6: Decision-tree after adding the two-literal clause (f  ∨ ¬m), derived using extended 
backward implication. 
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Figure 7: Second example circuit 

 

3.6 Related Work 

In [Silva 99b, Silva 99c], the Recursive Learning technique [Kunz 92, Kunz 93] was 
incorporated into SAT solvers and applied to combinational equivalence checking. 
The Recursive Learning technique is guaranteed to find all possible necessary 
assignments in the circuit, given enough levels of recursion. However, as the depth of 
recursion increases, the time to compute the implications increases exponentially. As 
a result, in [Silva 99b, Silva 99c], the authors preprocessed the CNF formula using 
only depth one in Recursive Learning [Kunz 92, Kunz 93]. The depth one Recursive 
Learning is different from extended backward implications [Zhao 97] used in our 
approach. Recursive Learning of depth one is equivalent to performing only direct 
backward implications on each of the fanins of the unjustified output specified gates, 
and determining the common set of implications. On the other hand, extended 
backward implications make use of the following: 

• the implication list of the target gate (this implication list includes the 
unjustified output specified gates and their corresponding implications), and 

• the implication list of the fanins of the unjustified output specified gates  
It then performs logic simulation on both implication lists to determine the common 
set of assignments. Extended backward implications help to quickly identify the 
powerful non-trivial implications which may require more than one level of recursion 
by the Recursive Learning procedure [Kunz 92, Kunz 93]. 

4 Formalizing Static Implications in the CNF Formula 

In this section, we provide a suite of lemmas and theorems that help us to formalize 
static implications consisting of direct, indirect and extended backward implications 
in the CNF formula. These lemmas and theorems infer additional clauses that are a 
superset of the clauses deduced using static implications. Thus, we show that these 
implications when added as two-literal clauses to the existing CNF database will 
preserve the satisfiability of the CNF formula. The CNF formula Φ for the example 
circuit of Figure 1 is shown below.  

b 

k 

m i 
c

d

j 

n 
p 

g

f 

a
e

h
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ω1 = (¬a ∨ e) ω2 = ( ¬b ∨ e) ω3 = (¬e ∨ a ∨ b) ω4 = (f ∨ e)  
 ω5 = (f ∨ c) ω6 = (¬f ∨ ¬e ∨ ¬c) ω7 = (¬f ∨ ¬g) ω8 = (f ∨ g) 

ω9 = (¬f ∨ ¬d ∨ ¬h) 
 

ω10 = (f ∨ h) ω11 = (d ∨ h) ω12 = (g ∨ ¬i) 
ω13 = (h ∨ ¬i) ω14 = (¬g ∨ ¬h ∨ i) ω15= ( ¬j ∨ a ∨ i) ω16 = (¬j ∨ ¬a ∨ ¬i) 
ω17 = (j ∨ ¬a ∨ i) ω18 = (j ∨ a ∨ ¬i) 

 
ω19 = (h ∨ k) ω20 = (b ∨ k) 

 ω21 = (¬h ∨ ¬b ∨ ¬k) ω22 = (j ∨ ¬m) ω23 = (k ∨ ¬m) 
 

ω24 = (m ∨ ¬j ∨ ¬ k) 
  

Note that each of the gates in the example circuit of Figure 1 corresponds to the 
propositional variables in the CNF formula shown above. 

4.1 Direct implications in the CNF formula 

As described in Section 2.1.1, direct implications of a gate x consist of implications 
associated with the gates directly connected to x. For the propositional variable x in 
the CNF formula Φ, these directly connected gates can be interpreted as all the 
propositional variables which occur with x in all the clauses. We call these 
propositional variables propositional variables directly affected by x. Unlike the 
circuit netlist there is no notion of direct forward or direct backward implications in 
the CNF formula, since there is no circuit structure. Here, direct implications of a 
variable x can be interpreted as the implications obtained on propositional variables 
directly affected by x. The direct implications of the variable x set to logic value 1 or 
0 are the values implied after single application of the unit-clause rule to the CNF 
formula Φ after setting x to 1 or 0. This in turn will mean the implications obtained on 
propositional variables directly affected by x. For example in the CNF formula Φ, for 
the propositional variable f, the directly affected propositional variables are {e, c, g, d, 
h}. Now when f is set to logic value 0, the values implied by application of unit-clause 
rule to clauses ω4, ω5, ω8, ω10 are (e, 1), (c, 1), (g, 1) and (h, 1). These values are in 
immediate compliance with the direct forward and direct backward implications 
obtained when the gate f is set to logic value 0 in Section 2.1.1. Note that these 
implications are already embedded in the original CNF formula, and no new clauses 
need to be added. 

4.2 Formalizing indirect implications in the CNF formula 

We firstly give a lemma and a theorem which helps us to infer additional clauses in 
the CNF formula, and then finally through an observation we show how these inferred 
clauses form a superset of the clauses obtained using indirect implications.  
 
Lemma 1 [Lynce 03]: Given a CNF formula Φ, if (y, 1) ∈ BCP(x, 1), then the clause      
(¬x ∨ y) is an implicate of Φ. 
 
Proof: The clause (¬x ∨ y) results in two cases: 

1. (x, 1) → (y, 1): This has been given to us since (y, 1) ∈ BCP(x, 1) 
2. (y, 0) → (x, 0): This is obtained by applying contrapositive law to the first 

case   (x, 1) → (y, 1) 
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Hence, the clause (¬x ∨ y) can be safely added to the CNF formula Φ under the 
condition (y, 1) ∈ BCP(x, 1). The added clause will always preserve the satisfiability 
of the CNF formula.                    □ 
 
Theorem 1 [Lynce 03]: Given a CNF formula Φ, if (yi , 1) ∈ BCP (x, 1), i = 1, 2, …, 
n, then each clause of the form (¬x ∨ yi), i= 1, 2, …, n, is an implicate of Φ. 
Proof: The theorem directly follows from Lemma 1. If a single clause (¬x ∨ y) is an 
implicate of Φ under the condition (y, 1) ∈ BCP (x, 1), then all the clauses (¬x ∨ yi) 
where i = 1, 2, …, n are implicates of Φ.                 □ 
 
Observation 1: The set of clauses obtained by Theorem 1 fully subsumes all the 
clauses obtained using indirect implications.  

Indirect implications of a gate G set to value v are obtained by performing logic 
simulation with direct implications of (G, v) applied to the circuit. This is similar to 
doing BCP (i.e., repeated application of the unit-clause rule to the CNF formula) 
when the CNF variable G is set to value v. For example, when f is set to logic value 0 
in Φ, BCP(f, 0) = {(f, 0), (e, 1), (c, 1), (g, 1), (h, 1), (i, 1)}, where (e, 1), (c, 1), (g, 1), 
(h, 1), and (i, 1), are obtained from clauses ω4, ω5, ω8, ω10 and ω14, respectively. Using 
Theorem 1, we can add up the clause (f ∨ i) to Φ. Now, we see that the above values 
and hence the clause (f ∨ i) are in immediate compliance with the values and the 
clause obtained using indirect implications when the gate f is set to logic value 0 in 
Section 2.1.2. However, it must be noted that LogicSimulate(impl[x, v]) is a proper 
subset of BCP(x, v), since we can only imply new values in the forward direction 
using logic simulation. On the other hand, in BCP we don’t have any notion of 
forward/backward directions and the logic reasoning using BCP might lead to some 
more implications that logic simulation cannot yield. An example is a 2-input AND 
gate with its output and one of its inputs set to 1. In such a case, BCP will deduce that 
the other input is also 1, whereas LogicSimulate() cannot figure that out. Thus, all the 
clauses obtained by BCP(G, v) using Theorem 1 will subsume the indirect 
implications obtained with (G, v). Thus, the above observation will always hold.       □ 

4.3 Formalizing extended backward implications in the CNF formula 

We firstly give two lemmas and a theorem which helps us to infer additional clauses 
in the CNF formula, and then finally through an observation we show how these 
inferred clauses form a superset of the clauses obtained using extended backward 
implications.  
 
Lemma 2 [Lynce 03]: Given a CNF formula Φ, for any clause ω = (l1 ∨ l2 ∨ ... ∨ ln) ∈ 
Φ, if (y, 1) ∈ [∩n

i = 1(BCP (lk, 1)) ], then (y, 1 ) will be a necessary assignment of Φ. 
 
Proof: We are given the following: 
• Clause ω has n literals, i.e. ω = (l1 ∨ l2 ∨ … ∨ ln ), and 
• BCP (l1, 1) implies (y, 1),                (1) 
• BCP (l2, 1) implies (y, 1),                (2) 
• . . .  
• BCP (ln, 1) implies (y, 1)                (n) 
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We prove this Lemma by contradiction.  
Suppose that (y, 1) is not an implicate of Φ. In other words, there exists a satisfying 
assignment to the CNF formula with (y, 0). However, using equations (1) to (n) by the 
contrapositive law we obtain (y, 0) → (l1, 0), (y, 0) → (l2, 0), …, (y, 0) → (ln, 0). 
Since, (y, 0) implies each of the literals l1, l2, …, ln to logic 0, the clause ω would 
evaluate to 0, causing the CNF formula to become unsatisfiable. Hence, our 
assumption is wrong and the assignment (y, 0) is not possible. Therefore, (y, 1) is an 
implicate of Φ.                     □ 
 
Lemma 3: Given a CNF formula Φ, for any clause ω = (l1 ∨ l2 ∨ ... ∨ ln) ∈ Φ, if under 
the assignment (x, 0), the literals l1, l2, …, lj (j < n ) are implied to 0, and if (y, 1) ∈  
[∩n

k = j + 1BCP (lk =1 and x=0) ], then (x ∨ y ) will be an implicate of Φ. 
 
Proof: We know that for the original CNF formula Φ to be satisfied, every clause ω ∈ 
Φ needs to be satisfied. If the current assignment (x, 0) causes the literals l1, l2, ..., lj (j 
< n )  of ω to evaluate to 0, the clause ω can only be satisfied if any of its remaining 
literals evaluates to logic 1. Therefore, the lemma states that the common assignment 
obtained by setting each of the remaining literals to logic 1 will be a necessary 
assignment under the condition (x, 0). In other words, (x, 0) → (y, 1) in Φ, or (x ∨ y) 
is an implicate of Φ. 

We continue the proof by contradiction. It is given that the assignment (x, 0) 
results in the following:  
• l1, l2, …, lj are implied to 0, and  
• BCP (lj+1 = 1 and x = 0) implies (y, 1)             (1)  
• BCP (lj+2 = 1 and x = 0) implies (y, 1)             (2) 
• . . . 
• BCP (ln= 1 and x = 0) implies (y, 1)                (n –j) 
 
Applying contrapositive law to equations (1) to (n – j) will yield the following 
constraints: 
• (y ∨ x ∨ ¬lj+1 )  
• (y ∨ x ∨ ¬lj+2 ) 
• . . . 
• (y ∨ x ∨ ¬ln )  
Suppose, (x ∨ y) is not an implicate of Φ. This means that x and y can be 0 
simultaneously. Now, when (x, 0) and (y, 0) hold together, the above constraints will 
cause the literals lj+1, lj+2, …, ln to be implied to logic 0. Also, the assignment (x, 0) 
already implies l1, l2, …, lj to logic 0 (given). Thus, the clause ω would evaluate to 0 
and the CNF formula will become unsatisfiable. Hence, our contradiction statement is 
false and x and y cannot be 0 simultaneously. Therefore, (x ∨ y) is an implicate of Φ.□ 

The Lemma 3 is an extension of Lemma 2 and states that if the current 
assignment (x, 0) implies the literals l1, l2, …, lj (j < n) of ω to logic 0, then the 
common assignment (y, 1) obtained by setting each of the remaining literals of ω to 1, 
together with the current assignment (x, 0) will result in an implicate (x ∨ y) of Φ. 
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Theorem 2: Given a CNF formula Φ, for any clause ω = (l1 ∨ l2 ∨ … ∨ ln) ∈ Φ, if 
under the assignment (x, 0), the literals l1, l2, …, lj (j < n ) are implied to 0, then for 
every (yi, 1) ∈ [∩n

k = j + 1BCP (lk =1 and x =0) ], i = 1, 2, …, m, (x ∨ yi) is an implicate 
of Φ. 
 
Proof: The theorem directly follows Lemma 3. If a single clause (x ∨ y) is an 
implicate of Φ when (y, 1) ∈ [∩n

k = j + 1BCP (lk =1 and x=0) ], then all the clauses (x ∨ 
yi) where i = 1, 2, …, m are implicates of Φ.               □ 
 
Observation 2: The set of clauses obtained by Theorem 2 is a superset of all the 
clauses obtained through extended backward implications. 

Consider the CNF formula Φ for the example circuit of Figure 1. We assign (f, 
0), perform BCP (f, 0) and get the following implications: {(e, 1), (c, 1), (g, 1), (h, 1), 
(i, 1)}. Using Theorem 2, we see that along with other clauses, the clause ω3 = (¬e ∨ 
a ∨ b) is one of the affected clauses under the assignment (f, 0), since the literal ¬e of 
ω3 evaluates to 0 and the propositional variables a and b are still unassigned. The 
clause ω3 can be satisfied by setting (a, 1) or (b, 1). Hence, the implied values 
common to BCP(a, 1) and BCP(b, 1) will be the inferred assignments under (f, 0). In 
other words, the set {BCP(a=1 and f=0) ∩ BCP(b=1 and f=0)} will yield the inferred 
assignments. In this case (m, 0) is the common assignment, and hence we can derive 
the clause (f ∨ ¬m) from Theorem 2 and add it to the existing CNF database. Now let 
us see how this logic reasoning in clauses is in exact compliance with the logic 
reasoning utilized for extended backward implications in the gate level circuit netlist. 
As described in Section 2.1.3, extended backward implications are computed by 
considering the target gate and the unjustified output specified gates in the 
implication list of the target gate. The unassigned fanins of the unjustified output 
specified gate are set to a logic value v one by one, such that the unjustified gate 
becomes justified and the resulting common set of implications become the new 
implications of the target gate. Recalling the example in Section 2.1.3, f is the target 
gate, e is the unjustified output specified gate, a and b are the unassigned fanins of the 
gate e, and the consequent logic reasoning on unjustified output specified gate e 
yields the implication f = 0 → m = 0 or the clause (f ∨ ¬m). Thus the logic reasoning 
in the CNF formula and the circuit netlist yields the same clause. However, the set of 
clauses obtained through extended backward implications is a subset of all the clauses 
obtained by Theorem 2. The reason is that we work on the circuit netlist, and while 
computing extended backward implications we consider only the unjustified output 
specified gates in the implication list of the target gate. Hence, not all the affected 
clauses ω ∈ Φ are checked for satisfiability under the current assignment. For 
example, under the assignment (f, 0), Theorem 2 will cause the clauses ω3, ω15, ω16, 
ω17, ω18 and ω21 to be checked for satisfiability, whereas extended backward 
implications only checks the clause ω3 for satisfiability. This reduces the 
computational complexity, although at a cost of loosing some highly non-trivial 
implications which could otherwise be obtained by the implementation of Theorem 2 
on to the CNF formula.                   □ 
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5 Implementation Algorithm 

The flow of our algorithm is described below. 
Algorithm: 

Step 1. Generate the CNF formula for the miter circuit under verification. 
Step 2.  Compute the direct and indirect implications for each of the nodes in a 

levelized fashion (from the primary inputs towards the primary outputs). 
Step 3.  (a) Convert the indirect implications obtained in Step 2 into two-literal 

clauses. (b) Append these new clauses to the CNF database. (c) Add the 
nodes identified as constants, as unit clauses. 

Step 4.  If more than n % of the mitered XOR outputs have been identified as 
constant 0’s, go to Step 7, else go to Step 5. 

Step 5. For each gate N, compute its extended backward implications. 
Step 6.  Convert the extended backward implications obtained in Step 5 into 

binary clauses, and append them to the existing CNF formula.  
Step 7. Give the modified CNF formula to a SAT solver for processing. 
Step 8. Stop. 

6 Experimental Results 

The algorithm presented in Section 5 was implemented in C++ in a preprocessing 
engine called IMP2C (Implications to Clauses). IMP2C builds the Implication Graph 
for the miter circuit under verification, and formulates the two-literal clauses 
corresponding to indirect and extended backward implications learned. The 
experiments were run on a Pentium 4, 1.8-GHz machine, with 512 MB of RAM and 
Mandrake Linux 7.2 as the operating system. The efficacy of our technique is 
corroborated by using the large and difficult ISCAS’85 benchmark circuits [Brglez 
85], the ISCAS’89 full-scan circuits [Brglez 89], the ITC’99 full-scan circuits [Corno 
00] and some cascaded ITC’99 benchmarks. Two different types of miter circuits 
were verified for equivalence: circuit_eqv represents an equivalence checking circuit 
model where two identical copies of the same circuit are mitered, circuit_opt 
represents mitering of the original copy of the circuit and an optimized version 
(obtained by using Synopsys tool). For both miter circuits, we OR all the mitered 
outputs, and ask the SAT solver to satisfy the OR gate output to logic 1.  

6.1 Comparison with state-of-the-art SAT solvers 

We used two different state-of-the-art SAT solvers, namely, BerkMin561 [Goldberg 
02b] and Siege_v4 [Ryan 03] to check the satisfiability of each of the Combinational 
Equivalence Checking (CEC) instances. All the experiments with BerkMin were run 
using strategy 1 which is known to be a special strategy for equivalence checking. 
Also, we added levels of variables to the CNF formula given to BerkMin, such that 
offered the choice of variables to be used in decision making, the variables closer to 
the inputs will be preferred [Goldberg 03]. Experiments were also run with ZChaff 
2001.2.17 [ZhangL 01], but the results have not been reported since for most of the 
instances ZChaff [ZhangL 01] was found to be 2-10 times slower than BerkMin 
[Goldberg 02b] and Siege [Ryan 03]. 
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In Table 2, for each miter circuit, we report the execution time taken by our 
preprocessing engine IMP2C, the time taken by the SAT solver alone, and the time 
taken by IMP2C + SAT solver together. We also report the speedup ratio of IMP2C + 
SAT solver over SAT solver alone. The results are reported with n = 25% in Step 4 of 
the implementation algorithm described in Section 5. However, it should be noted that 
our preprocessor can be tuned to handle any threshold given at run time. 
         

*cascade_1 = b17_opt_b14_eqv, cascade_2 = b14_b22_1_opt_eqv, cascade_3 = b18_opt_b15_opt_eqv, 
cascade_4=b17_opt_b15_opt_eqv, cascade_5 = b20_1_b21_1_eqv 

 
Table 2: Results with SAT solver alone and (IMP2C + SAT solver) 

 
From Table 2, we see that considerable speedup is achieved for almost all the 

instances. In some cases, once the implication relations are computed, the SAT solver 
can determine the formula to be unsatisfiable almost immediately. For instance, in the 
miter circuits c7552_eqv and c3540_opt, without any added clauses, Siege spent 
34.52 seconds and 30.34 seconds, respectively. When we augment the CNF formula 
with the global implication relations (derived by IMP2C), the complexity of the CNF 
instance is notably reduced, with IMP2C + Siege taking (1.71 + 0.05) 1.76 seconds 
and (0.82 + 0.34) 1.16 seconds, respectively. Note that the SAT solver Siege takes 
only a fraction of a second. For the instance b18_opt_eqv, BerkMin alone could not 
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c3540_eqv 0.94 22.21 0.97 22.89 1.33 0.97 1.37 

c5315_eqv 0.68 12.04 0.69 17.44 1.60 0.80 2.00 

c7552_eqv 1.71 34.52 1.76 19.61 11.88 2.10 5.65 

c3540_opt 0.82 30.34 1.16 26.15 1.45 1.15 1.26 

c5315_opt 16.24 16.23 16.25 0.99 2.32 16.29 0.14 

c7552_opt 30.47 39.61 30.48 1.29 12.34 30.49 0.40 

s38417_fs_eqv 62.77 336.02 88.60 3.79 163.22 112.24 1.45 

s38584.1_fs_eqv 240.02 131.76 267.47 0.49 150.22 300.19 0.50 

s35932_fs_eqv 66.28 97.27 81.58 1.19 134.16 69.76 1.92 

b14_eqv 26.05 417.13 27.67 15.07 112.67 30.72 3.66 

b14_1_eqv 14.50 284.20 15.77 18.02 39.20 17.44 2.24 

b15_opt_eqv 57.72 73.90 69.38 1.06 104.67 89.78 1.16 

b17_opt_eqv 245.02 458.04 316.08 1.44 846.84 344.78 2.45 

b18_opt_eqv 2132.50 5780.29 2557.29 2.26 >14400.0 2497.48 5.76 
b20_1_eqv 27.88 396.96 36.73 10.80 145.88 36.58 3.98 

b21_1_eqv 29.61 427.63 37.37 11.44 142.67 39.75 3.58 

b22_1_opt_eqv 43.11 507.00 61.33 8.26 299.72 57.54 5.20 

cascade_1* 380.72 2785.30 440.26 6.32 1231.76 520.67 2.36 

cascade_2 124.32 1892.65 140.62 13.45 502.62 120.45 4.17 

cascade_3 2584.20 6217.78 2947.12 2.10 >14400.0 3078.53 4.67 

cascade_4 428.67 8842.92 470.23 18.80 1623.67 404.43 4.01 

cascade_5 102.23 1654.41 129.65 12.76 496.42 107.78 4.60 
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finish even after 4 hours or 14,400 seconds, but after IMP2C clauses are added the 
instance is solved in (2,132.50 + 364.98) 2,497.48 seconds; the time taken by 
BerkMin being 364.98 seconds and the time taken by IMP2C being 2,132.50 seconds.  

Unlike Siege, BerkMin uses special equivalence checking strategy (strategy 1 and 
levels of variables), and hence for most of the cases the speedups with BerkMin are 
somewhat smaller than with Siege. For some of the relatively easier CEC instances 
(e.g., c5315_opt, c7552_opt, s38584.1_fs_eqv), the preprocessing due to indirect and 
extended backward implications was a bit of an overhead, and thus not much speedup 
was obtained. However, it should be noted that after our preprocessing has been 
applied, the time taken by the SAT solver alone reduces significantly for all the 
instances. This suggests that the clauses added are extremely powerful and cause 
considerable search space pruning, reducing the SAT instance complexity immensely. 
Overall, the results for IMP2C + SAT solver are very encouraging, with the maximum 
speedup for IMP2C + BerkMin being 5.76× in b18_opt_eqv and for IMP2C + Siege 
being 22.89× in c3540_eqv. Since considerable speedup is achieved with each of the 
SAT solvers, our approach is orthogonal to the two SAT solvers used. 

The ISCAS’85 benchmark c6288 is a 16-bit multiplier circuit and its 
corresponding miter instances are known to be very difficult for SAT solvers. Hence, 
we have treated c6288_eqv and c6288_opt instances separately. Table 3 shows the 
performance of each of the SAT solvers for these instances without and with our 
preprocessing technique. The results as we see are very encouraging. For example, the 
Siege SAT solver could solve the c6288_eqv and c6288_opt miters in 4,852.30  
seconds  and  5,214.50 seconds, respectively.  However, after our preprocessing 
technique (IMP2C) was applied, the two instances were quickly solved by the SAT 
solver in less than one-tenth of the second; the preprocessing time being 0.35 seconds 
and 3.88 seconds for c6288_eqv and c6288_opt, respectively. BerkMin with its 
special equivalence checking strategy and levels of variables also gave very good 
results.  

 

 
 
 
In Table 4 we give the number of clauses in the original CNF formula, the time 

taken by our preprocessing technique (IMP2C), the number of clauses added using 
IMP2C, and finally the ratio of added clauses to original clauses. We observe from 
Table 4 that as the size of the circuit (# original clauses) increases, the time for 
IMP2C increases in proportion, since many circuit nodes need to be processed for 
static implications. Also, some circuit structures are such that there are a lot of 
implication relations among the nodes and hence IMP2C takes a long time. One such 
case is b15_opt_eqv for which IMP2C deduced more than twice the number of 

Miter 
Circuit 

IMP2C 
(secs) 

 
 

Siege 
(secs) 

IMP2C 
+ 

Siege 
(secs) 

Sp
ee

du
p 

(c
ol

 3
 / 

co
l 4

) 

 
 

BerkMin 
(secs) 

IMP2C 
+ 

BerkMin 
(secs) 

Sp
ee

du
p 

(c
ol

 6
 / 

co
l 7

) 

c6288_eqv 0.35 4,852.30 0.36 13,478.60 145.30 0.39 372.56 

c6288_opt 3.88 5,214.50 3.90 1,337.05 177.73 3.92 45.33 

Table 3: Results for c6288 with SAT solver alone and IMP2C+SAT solver 
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clauses that were in the original CNF formula. It must be noted that even though 
many clauses were added, we achieved noteworthy speedup for almost all cases, 
suggesting that the clauses deduced were extremely helpful in pruning the SAT solver 
search space. Overall, the ratio of added clauses to original clauses varied from 0.29 
for s38417_eqv to 2.37 for b15_eqv, with the mean being 0.95.  

 

 
Table 4: Number of original and added clauses for different CEC instances 

 
In Table 5, we compare our results with those obtained with C-SAT-Jnode [Lu 

03a], P_EQ + Berkmin [Novikov 03] and Hypre [Bacchus 03] for ISCAS’85 ckt_eqv 
versions. In [Lu 03a], the authors introduced incremental learn-from-conflict strategy. 
Their algorithm divides the problem at hand into unsatisfiable sub-problems and adds 
the conflict-induced clauses resulting from solving these sub-problems to the original 
CNF formula. In [Bacchus 03], the authors utilize hyper binary resolution and 
equality reduction to simplify the CNF formula. Their tool Hypre can either prove the 
unsatisfiability of the given CNF formula or yield a simplified CNF formula with 
fewer variables and clauses. The ckt_eqv versions in Table 5 were all proved 
unsatisfiable by Hypre. According to Table 5, our results are mostly on the same 

Miter Circuit 
Original 
#Clauses 

IMP2C 
(secs) 

Added 
#Clauses 
(IMP2C) 

Added #Clauses/ 
Original #Clauses 

c3540_eqv 9,462 0.94 4,116 0.44 

c5315_eqv 15,743 0.68 6,123 0.39 

c6288_eqv 14,788 0.35 6,956 0.47 

c7552_eqv 20,504 1.71 13,080 0.64 

c3540_opt 9,262 0.82 3,780 0.40 

c5315_opt 14,151 16.24 7,261 0.51 

c6288_opt 14,719 3.88 8,700 0.59 

c7552_opt 20,111 30.47 11,800 0.59 

s38417_eqv 127,580 62.77 38,029 0.29 

s38584.1_eqv 123,052 240.02 51,894 0.42 

s35932_fs_eqv 111,200 66.28 39,977 0.35 

b14_eqv 60,661 26.05 75,980 1.25 

b14_1_eqv 42,203 14.50 45,968 1.09 

b15_opt_eqv 51,329 57.72 121,928 2.37 

b17_opt_eqv 165,189 245.02 361,882 2.19 

b18_opt_eqv 486,717 2,132.50 866,832 1.78 

b20_1_eqv 87,582 27.88 73,379 0.83 

b21_1_eqv 87,760 29.61 80,483 0.93 

b22_1_opt_eqv 103,173 43.11 84,789 0.82 

cascade_1 226,143 380.72 405,874 1.79 

cascade_2 164,043 124.32 220,174 1.34 

cascade_3 537,289 2,584.20 1,006,745 1.87 

cascade_4 217,054 428.67 462,183 2.12 

cascade_5 175,985 102.23 168,143 0.95 
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order of computational effort, and in a few cases better than [Lu 03a, Bacchus 03]. In 
[Novikov 03], the author gave a theoretical framework for deducing multi-literal 
relationships. However, a restricted version of the technique was implemented, which 
deduced only pure and equivalent literals. In our approach, in addition to deducing 
pure and equivalent literals we deduce non-trivial implication relationships as well. 
These relationships, when added to the CNF database, are very helpful in reducing the 
SAT instance complexity as has been shown in the experimental results. 

 
 

 
 

6.2 Comparison with the preprocessor Hypre 

We performed another set of experiments to show that the clauses obtained using our 
preprocessing technique are more powerful and non-trivial than those obtained using 
Hypre [Bacchus 03]. The results substantiating this are shown in Table 6. The ckt_opt 
CNF instances shown here could not be proved unsatisfiable by Hypre alone and the 
resulting simplified CNF formula was given to Siege for processing. The CNF 
instance c7552_1_opt used here is much more optimized than c7552_opt used in 
Table 2; c7552_opt was proved unsatisfiable by Hypre alone and did not yield any 
simplified formula. For the ckt_eqv versions in Table 6, Hypre did not yield any 
simplified formula and proved the unsatisfiability immediately. Therefore, for these 
instances in columns 2 and 5 we take the Siege time to be 0.0 seconds. For each of the 
circuits we give the time taken by Hyper + Siege together, followed by the total time 
taken by IMP2C + Siege. In column 4 we give the speedup of IMP2C + Siege relative 
to Hyper + Siege. It was observed that when the augmented CNF formula (with 
IMP2C clauses) was given to Hypre for preprocessing and the resulting simplified 
formula to Siege, the time to prove unsatisfiability further reduced. The results for this 
are given in column 5. In column 6 we give the speedup of (IMP2C + Hypre + Siege) 
over (Hypre + Siege). For a few of the larger instances s38417_fs_eqv, 
s38584.1_fs_eqv, s35932_fs_eqv, b18_opt_eqv, b17_opt_eqv, cascade_1, cascade_3 
and cascade_5, Hypre gave segmentation fault since it has a limit on the number of 
literals it can handle in a clause (maximum clause length allowed being 
approximately 1000). The results for these instances have therefore not been reported 
with Hypre.  

We observe from Table 6 that for most of the instances our technique is more 
superior than Hypre. As evident from column 4, we consistently get a speed up of 
close to 2×, with the maximum speedup being 5.76× for the instance b15_opt_eqv. It 

Miter 
Circuit 

C-SAT-Jnode 
[Lu 03a] 

(secs) 

P_EQ + Berkmin 
[Novikov 03]† 

(secs) 

Hypre 
[Bacchus 03] 

(secs) 

IMP2C + 
BerkMin 

(secs) 

IMP2C + 
Siege 
(secs) 

c1355_eqv 0.07 0.05 0.15 0.06 0.07 
c1908_eqv 0.11 0.27 0.14 0.07 0.08 
c2670_eqv 0.13 0.17 0.13 0.42 0.30 
c3540_eqv 1.21 0.83 0.86 0.96 0.97 
c5315_eqv 0.28 0.61 0.68 0.88 0.69 
c6288_eqv 4.14 0.17 0.98 0.35 0.36 
c7552_eqv 1.62 0.87 1.48 2.00 1.76 

Table 5: Comparison of IMP2C with [Lu 03a], [Novikov 03] and [Bacchus 03] 
for ISCAS’ 85 ckt_eqv benchmarks 

           † Expts. were run on Pentium-III, 700 MHz with 640 MB RAM [Novikov 03] 
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has been shown earlier by means of examples (see Section 3.3) that the non-trivial cl 
auses obtained using our approach cannot be obtained using Hypre. We achieved 
speedups ranging from 1.36× to 5.76×. For example, with b14_eqv Hypre + Siege 
spent 74.2 seconds whereas IMP2C + Siege spent 27.67 seconds to prove the 
unsatisfiability, yielding a speedup of 2.68×. For six cases, the speedup in column 6 
is slightly greater than that in column 4; the reason is that in our approach (IMP2C + 
Siege), we just augment the original CNF formula with non-trivial two-literal clauses, 
but do not involve in any equality reduction as is done in Hypre (see Section 1). On 
the other hand, the CNF formula in column 5 after preprocessing with IMP2C 
undergoes equality reduction by Hypre, thereby yielding a much simplified and 
smaller CNF instance. As a result, slightly better execution times are obtained in 
column 5 than in column 3. One prominent instance where IMP2C + Siege 
outperforms IMP2C + Hypre + Siege is b15_opt_eqv. For this instance, IMP2C + 
Siege took just (57.72 + 11.66) 69.38 seconds, while IMP2C + Hypre + Siege spent 
(57.72 + 196.78 + 0.0) 254.29 seconds for preprocessing. Here the preprocessing due 
to Hypre was an overhead and did not help in reducing the overall execution time. 

 

 

 
Table 6: Comparison of IMP2C with Hypre [Bacchus 03] 

6.3 Comparison with the preprocessor NIVER 

To further underpin the superiority of our technique we conducted some experiments 
with a very recent preprocessor NIVER [Subbarayan 04]. The results are shown in 
Table 7. As can be observed from column 4 of Table 7, except for a few easy cases, 

Miter Circuit 

Hypre 
+ 

Siege 
(secs) 

    IMP2C 
+ 

Siege 
(secs) 

Speedup 
(col 2 / col 3) 

IMP2C+ 
Hypre+ 
Siege 
(secs) 

Speedup 
(col 2 / col 5) 

c3540_opt 1.58 1.16 1.36 1.44 1.09 

c7552_1_opt 8.68 12.24 0.70 7.24 1.20 

s38417_fs_eqv     SF* 88.60 —— SF —— 

s38584.1_fs_eqv SF 267.47 —— SF —— 

s35932_fs_eqv SF 81.58 —— SF —— 

b14_eqv 74.20 27.67 2.68 30.07 2.46 
b14_1_eqv 24.50 15.77 1.55 15.97 1.53 

b15_opt_eqv 400.12 69.38 5.76 254.29 1.57 

b17_opt_eqv SF 316.08 —— SF —— 

b18_opt_eqv SF 2557.29 —— SF —— 

b21_1_eqv 71.29 37.37 1.90 34.57 2.06 

b20_1_eqv 65.33 36.73 1.77 33.60 1.94 

b22_1_opt_eqv 105.81 61.33 1.72 46.36 2.28 

cascade_1 SF 440.26 —— SF —— 

cascade_2 186.23 140.62 1.32 134.54 1.38 

cascade_3 SF 2,947.12 —— SF —— 

cascade_4 SF 470.23 —— SF —— 

cascade_5 265.67 129.65 2.04 117.41 2.26 

*SF – Segmentation Fault
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IMP2C + Siege outperforms NIVER + Siege by a large margin with the maximum 
speedup being more than 40,000× for the instance c6288_eqv. Similarly, with the 
other benchmarks such as b14_eqv, b21_1_eqv and b20_1_eqv we achieve more than 
50× speedup. Careful observations of the results show that NIVER may not be very 
effective for equivalence checking (EC) instances. In fact, NIVER destroys the 
structure of the EC problem in such a manner that it even becomes difficult for the 
SAT solver to solve it. This is very much evident from the instances c6288_eqv, 
c6288_opt and b18_opt_eqv which were all solved in less than 6,000 seconds by 
Siege alone. But after preprocessing with NIVER they all took more than 4 hours or 
14,400 seconds. 
 Another set of experiments were conducted to see the effect of the combined 
preprocessing of IMP2C + NIVER on the performance of the SAT solver. This time 
the results were very notable with IMP2C + NIVER + Siege, yielding the best 
speedup over NIVER + Siege. Comparing column 3 and column 5, we see that 
IMP2C + NIVER + Siege takes the least time for almost all the cases. The reason is 
that our preprocessing tool adds a large number of binary clauses which induces 
signal correlations into the original CNF formula in terms of equivalent literals, unit 
clauses and other implication relationships among the CNF variables. As a result, 
variable elimination by NIVER no longer destroys the problem structure because 
many relationships have already been deduced by IMP2C. Rather, variable 
elimination through NIVER reduces the CNF size with the learned relationships from 
IMP2C intact, and thus helps the SAT solver to prove unsatisfiability quickly. 
 

 
Table 7: Comparison of IMP2C with NIVER [Subbarayan 04] 

 

Miter Circuit 

NIVER 
+ 

Siege 
(secs) 

IMP2C 
+ 

Siege 
(secs) 

Speedup 
(col 2 / col 3) 

IMP2C+ 
NIVER+ 

Siege 
(secs) 

Speedup 
(col 2 / col 5) 

c3540_opt    12.56 1.16 10.82 1.19 10.55 

c7552_1_opt    13.54 12.24 1.10 10.58 1.24 

c6288_eqv >14,400.00 0.36 >40,000.00 0.38 >37,894.70 

c6288_opt >14,400.00 3.90 >3,962.30 3.91 >3,682.86 

s38417_fs_eqv    57.61 88.62 0.65 62.87 0.91 

s38584.1_fs_eqv    47.76 267.47 0.18 240.23 0.19 

s35932_fs_eqv   46.54 81.58 0.57 66.37 0.70 

b14_eqv   1,828.67 27.67 66.08 26.14 69.95 

b14_1_eqv   468.52 15.77 29.70 14.50 32.31 

b15_opt_eqv   70.64 69.38 1.01 63.25 1.11 

b17_opt_eqv 472.34 316.08 1.49 260.15 1.81 

b18_opt_eqv >14,400.00 2557.29 >5.63 2142.87 >6.71 

b21_1_eqv 2,132.51 37.37 57.06 29.52 72.23 

b20_1_eqv 3,150.42 36.73 85.77 31.48 100.07 

b22_1_opt_eqv 1,688.45 61.33 27.53 43.51 38.80 
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6.4 Comparison with the propositional formula checker HeerHugo 

In Section 1 we mentioned a propositional formula checker HeerHugo [Groote 00] 
which adopted a branch/merge rule to prove the satisfiability/unsatisfiability of CNF 
instances. While the Boolean reasoning utilized in HeerHugo is similar to the 
extended backward implications that we use, there are several differences. We 
observed in Section 4.3 that the logic reasoning utilized in extended backward 
implications is in immediate compliance with Theorem 2, and consequently the set of 
clauses obtained through extended backward implications is a proper subset of clauses 
obtained by Theorem 2. Hence, we will use Theorem 2 as the reference to show the 
differences between extended backward implications and HeerHugo.  

Our Boolean reasoning in Theorem 2 involves assigning a logic value 0 or 1 to 
each of the propositional variables one at a time, and finding the common set of 
implications required to satisfy the clauses affected under the given assignment. 
These affected clauses are those where at least one literal evaluates to 0 and where 
several literals are unassigned under the given assignment. For example, if ω = (l1 ∨ l2 
∨ l3) and we make an assignment x = 0 such that the literal l1 evaluates to 0, then the 
common set of implications obtained by setting l2 = 1 and l3 = 1 independently, will 
result in binary clauses with x as one of the literals. Here l2 and l3 will be pertaining to 
different propositional variables. Considering the branch/merge rule of level 1 in 
HeerHugo (see Section 1), after the assignment x = 0 is made, another assignment is 
made on a propositional variable y, no matter even if it appears or does not appear in 
the clause ω. The common set of implications obtained by setting y = 0 and y = 1 
independently under the assignment x = 0 yields binary clauses with x as one of the 
literals. Note that in HeerHugo the intersection is under the same variable y, whereas 
in our technique it is under different variables (pertaining to l2 and l3 here). The 
clauses deduced using our technique might require application of the branch/merge 
rule at higher levels (greater than 2 or 3), and hence the computational complexity of 
HeerHugo will increase exponentially, since the length of proof to refute the CNF 
formula Φ in HeerHugo is Ο(mh+1), where m is the total number of clauses and h is 
the maximum branch/merge level required for proof refutation (please refer to 
[Groote 00] for details). In our case, if we analyze Theorem 2, the worst case 
complexity is Ο(n.m.p), where n is the total number of propositional variables, m is 
the total number of clauses, and p is the maximum number of literals in a clause in Φ. 
This is because Theorem 2 operates on each of the n propositional variables in Φ. 
When any of these propositional variables is assigned to a logic value v, where v ∈ 
{0, 1} the number of clauses that can get affected in the worst case are m. For every 
affected clause we need to set each of its unassigned literals to a logic value v, and in 
the worst case the number of unassigned literals in each of the affected clauses would 
be p – 1 (since at least 1 literal of an affected clause evaluates to 0). Thus the worst 
case complexity would be Ο(n.m.p). However, from Observation 2 since we perform 
our Boolean learning only on a selected set of clauses/variables, based on domain 
knowledge (the circuit netlist, and not part of the CNF formula), the complexity is 
significantly lower than Ο(n.m.p). We believe that the choice of variables on which 
learning needs to be performed is really important, and selecting these variables 
judiciously leads to significant gains in terms of inferring new clauses as well as the 
preprocessor complexity. We use the circuit knowledge to select such variables and 
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try to deduce non-trivial relations among variables that considerably simplify the 
equivalence checking instance. The complexity of our preprocessing algorithm is far 
less than that of a brute force approach involving unstructured reasoning on all the 
variables. In Table 8 we report the performance of the HeerHugo tool (a complete 
SAT solver) without and with our preprocessing technique for some of the 
benchmarks. 
 

 
Table 8: Comparison of HeerHugo[Groote 00] with IMP2C + HeerHugo 

 
In Table 8, we report the time taken by our preprocessing engine IMP2C, the 

time taken by the propositional formula checker HeerHugo, and the total time taken 
by IMP2C + HeerHugo. We also give the speedup ratio of IMP2C + HeerHugo over 
HeerHugo alone. From Table 8, it is evident that using our preprocessing technique 
IMP2C boosts up the performance of HeerHugo significantly. For example, 
HeerHugo alone took 1308.0 seconds to prove the unsatisfiability of the CNF instance 
c3540_opt, whereas after preprocessing with IMP2C the total time reduced to only 
60.10 seconds (with IMP2C taking 18.10 seconds and HeerHugo taking 42.0 seconds, 
respectively). Similarly, for other instances such as c1908_opt, c2670_eqv, 
c3540_eqv, c5315_eqv, c7552_eqv etc. the time taken by HeerHugo reduces from 
several seconds to 1.0 second. The ITC benchmarks like b14_eqv, b14_1_eqv, 
b15_opt_eqv etc. could not be solved by HeerHugo even after 4 hours (14,400 

Miter Circuit 
IMP2C 
(secs.) 

HeerHugo 
(secs.) 

IMP2C 
+ 

HeerHugo 
(secs.) 

Speedup 
(col 3 / 
col 4) 

c1908_opt 0.20 24.00 1.20     (0.20 +   1.00) 20.00 

c2670_eqv 0.35 16.00 1.35     (0.35 +   1.00) 11.85 

c3540_eqv 0.94 763.00 1.94     (0.94 +   1.00) 393.29 

c3540_opt 18.10 1308.00 60.10   (18.10 + 42.00) 21.76 

c5315_eqv 0.68 1902.00 1.68     (0.68 +   1.00) 1132.14 

c5315_opt 12.25 1843.00 50.25   (12.25 + 38.00) 36.67 

c7552_eqv 1.71 3443.00 2.71     (1.71 +   1.00) 1270.47 

c6288_eqv 0.35 1.00 1.35     (0.35 +   1.00) 0.74 

c6288_opt 3.88 1.00 4.88     (3.88 +   1.00) 0.20 

s38417_fs_eqv 62.77 >14,400.00 67.77   (62.77 +   5.00) >212.48 

s38584.1_fs_eqv 240.02 >14,400.00 246.02 (240.02 +   6.00) >58.53 

s35932_fs_eqv 66.28 >14,400.00 71.28   (66.28 +   5.00) >202.02 

b14_eqv 26.05 >14,400.00 74.05   (26.05 + 48.00) >194.46 

b14_1_eqv 14.50 >14,400.00 19.50   (14.50 +   5.00) >738.46 

b15_opt_eqv 57.72 >14,400.00 69.72   (57.72 + 12.00) >206.54 

b17_opt_eqv 245.02 Memory Out 

b18_opt_eqv 2,132.50 Memory Out 

b22_1_opt_eqv 43.11 >14,400.00 50.11   (43.11 + 7.00) >287.36 
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seconds), whereas after preprocessing with IMP2C, these instances became easily 
tractable. Overall, we achieve speedups ranging from 20.0× for c1908_opt to 
1270.47× for c7552_eqv, which is very impressive. 

7 Conclusion 

We presented a new method of augmenting the original CNF formula with static logic 
implications. Two-literal clauses resulting from indirect and extended backward 
implications were quickly computed and added to the existing CNF database. These 
added clauses served as constraints and helped the SAT solver in the search process. 
Experimental results for combinational circuit equivalence checking showed that 
irrespective of the state-of-the-art SAT solver used, we achieved more than one order 
of magnitude speedup for most of the instances, with the actual speedup ranging up to 
22.89×. Comparison with the propositional formula checker HeerHugo [Groote 00] 
and the recently developed preprocessing techniques such as Hypre [Bacchus 03] and 
NIVER [Subbarayan 04] showed that our technique exploited the circuit structure very 
effectively, and significantly reduced the SAT instance complexity achieving orders of 
magnitude speedup over these methods. 
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