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Abstract: We propose two heuristics, implicit learning and explicit learning, that utilize circuit
topological information and signal correlations to derive conflict clauses that could efficiently
prune the search space for solving circuit-based SAT problem instances. We implemented a
circuit-SAT solver SC-C-SAT based on the proposed heuristics and the concepts used in other
state-of-the-art SAT solvers. For solving unsatisfiable circuit examples and for solving difficult
circuit-based problems at Intel, our solver is able to achieve speedup of one order of magnitude
over other state-of-the-art SAT solvers that do not use the heuristics.
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1 Introduction

Boolean Satisfiability (SAT) has attracted tremendous research effort in recent years,
resulting in the development of various efficient SAT solver packages. Popular SAT
solvers are designed based upon the Conjunctive Normal Form (CNF) [Zhang 1997,
Zhang et al. 2001, Moskewicz et al. 2001, Marques-Silva and Sakallah 1999]. For ap-
plications in computer-aided design automation of integrated circuits (CAD), applying
SAT to solve a circuit-oriented problem often requires transformation of the circuit gate-
level netlist into its corresponding CNF format [Tseitin 1968, Larrabee 1992]. In this
circuit-to-CNF transformation, the topological ordering among the internal signals can
be obscured. All signals become (input) variables in the CNF format.

For solving circuit-oriented problem instances, circuit structural information has
proved to be very useful. The authors in [Tafertshofer et al. 1997] developed a structural
graph model called an implication graph for efficient implication and learning in SAT.
Methods were also provided in [Silva et al. 1999, Silva et al. 2003] to utilize structural
information in SAT algorithms, which required minor modifications to the existing SAT
algorithms. The authors in [Gupta et al. 2001] implemented a circuit-based SAT-solver
that used structural information to identify unobservable gates and to remove the clauses
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for those gates. The work in [Kuehlmann et al. 2001] represented Boolean circuits in
terms of 2-input AND gates and inverters. Based on this circuit model a circuit SAT
solver could be integrated with BDD sweeping [Kuehlmann and Krohm 1997].

The authors in [Ganai et al. 2002] developed a circuit-based SAT solver that adopted
the techniques used in the CNF-based SAT solver zChaff [Moskewicz et al. 2001], e.g.,
the watched literal technique for efficient implication. In [Thiffault et al. 2004], tech-
niques such as watched literals used in CNF-based SAT solvers were adopted in the
SAT solver for non-clausal formulas.

The work in [Ostrowski et al. 2002] tried to recover the structural information from
CNF formulas, and utilized the structural information to eliminate clauses and variables.

The relation between the number of backtracks in DPLL [Davis et al. 1962] SAT-
solving procedure and the number of paths in a BDD [Bryant 1986] of the same func-
tion was studied in [Reda et al. 2002] where BDD-variable ordering heuristics were
used to derive a CNF-variable decision ordering. The work in [Novikov 2003] ex-
ploited variable observability by branching on CNF variables and by analyzing the
resulting binary values for other variables to derive new implications. The authors in
[Cabodi et al. 2003] combined BDD and SAT in the application of Bounded Model
Checking [Biere et al. 1999]. In their method, conflict clauses derived from BDD-based
approximate traversals were used to prune the search space of SAT-based Bounded
Model Checking. Theoretical results about circuit-based SAT algorithms were pre-
sented in [Broering et al. 2003].

In this paper, we present a circuit-based SAT solver that utilizes circuit structural
information. This paper is an extension of our previous work in [Lu et al. 2003]. The
major difference between our approach and other approaches discussed above is in how
the circuit structural information is utilized. Our approach includes three new ideas:

1. Our heuristic relies on identifying signal correlations before applying SAT. A group
of signals s1,s2, . . . ,si (where i > 1) are said to be possibly correlated if their val-
ues satisfy a certain Boolean function f (s1,s2, . . . ,si) during random simulation,
e.g., the values of s1 and s2 satisfy s1 = s2 during random simulation. In this pa-
per, we only consider three types of signal correlations: equivalence correlation,
inverted equivalence correlation, and constant correlation, since they are easy to
extract from the results of random simulation. Two signals s 1 and s2 have an equiv-
alence correlation (inverted equivalence correlation) if and only if the values of the
two signals satisfy s1 = s2 (s1 = s2) during random simulation. We use s1 ∼ s2 to
denote an equivalence correlation between two signals s 1 and s2, and use s1 ∼ s′2
to denote an inverted equivalence correlation. If s 2 is replaced by constant 0 or 1 in
the notation, then that is a constant correlation.

2. When making a decision in SAT solving, it might be more effective to select a
variable and assign it a value that is more likely to cause a conflict, so that the
conflict could be detected and recorded earlier. Therefore, if we know in advance

1630 Lu F., Wang L.-C., Cheng K.-T., Moondanos J., Hanna Z.:  A Signal Correlation ...



how circuit signals are possibly correlated, then that information can be used to
guide the decision making in the solver for early conflict detection. We call this
procedure that uses signal correlations to affect decision making implicit learning.

3. When solving a large complex circuit SAT problem, it might be more efficient to
apply incremental solving before solving the problem of the entire circuit. That is,
we can first try to solve some subproblems in order to learn useful information,
e.g., conflict clauses. This information can then be used to guide the search and
prune the search space when solving the original problem. The subproblems can be
solved by following the circuit topological structure from inputs to outputs, so that
the learned information in solving a smaller subproblem can be used in the solving
of a larger subproblem containing the smaller one. This procedure that learns from
solving subproblems is called explicit learning. The subproblems can be generated
from signal correlations, e.g., if s1 ∼ s2, two subproblems ”(s1 = 0 and s2 = 1)”
and ”(s1 = 1 and s2 = 0),” which are likely to be unsatisfiable, can be generated
and treated as the subproblems to be solved.

Based on the three ideas above, we implemented a circuit-based SAT solver SC-
C-SAT with the two types of the signal correlation (SC) learning: implicit learning
and explicit learning. For some test cases, SC-C-SAT can perform better than zChaff,
BerkMin561 and siege v4, tools that use no SC learning heuristics. In contrast, our
baseline solver without using the SC heuristics does not necessarily outperform these
state-of-the-art SAT solvers.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the
DPLL SAT algorithm, explain the key ideas in SC learning, and present the implicit
and explicit learning heuristics. In Section 3, we describe the implementation details of
our solver. Section 4 describes the SC heuristics used in the experiments. In Section 5
we present experimental results and summarize our findings. In Section 6, we focus on
specific experimental results obtained by applying our solver to difficult combinational
equivalence problems at Intel. Section 7 concludes the paper.

2 The DPLL Algorithm and Our Signal-Correlation Learning Heuristic

Given a finite set of variables, V , over the set of Boolean values B ∈ {0,1}, a literal,
l or l is an instance of a variable v or its complement ¬v, respectively where v ∈ V . A
clause ci is a disjunction of literals (l1 ∨ l2 ∨ . . .∨ ln). A formula f , is a conjunction of
clauses c1 ∧ c2 ∧ . . .∧ cn. A clause is a set of literals, and a formula is a set of clauses.
An assignment A satisfies a formula f if f (A) = 1. In a Boolean Satisfiability (SAT)
problem, a formula f is given and the problem is to find an assignment A to satisfy f or
prove that no such assignment exists.

Current complete SAT solvers are almost exclusively based on the DPLL search
algorithm proposed in [Davis et al. 1962]. Algorithm 2.1 describes the basic DPLL al-
gorithm.
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Algorithm 2.1: DPLL()

while (true)

do

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if (!decide())
then return (SATISFIABLE)

while (!bcp())

do
{

if (!resolveCon f lict())
then return (UNSATSFIABLE)

In the algorithm, function decide() selects an unassigned variable and assigns it a
value. This variable assignment is referred to as a decision. If no unassigned variable
exists, decide() will return false which means a solution has been found. Otherwise
decide() will return true. A decision level is associated with each decision. The first
decision has decision level 1, and the decision level increases by one for each new
decision.

The purpose of bcp(), which performs Boolean constraint propagation (BCP), is to
identify any variable assignments required by the current variable state for satisfying
the formula f. In order to satisfy f, every clause of it has to be satisfied. Therefore, if a
clause has only one unassigned literal and all the other literals are assigned 0, then the
unassigned literal must be assigned value 1 in order to satisfy f (a clause in this state is
said to be unit). This mandatory assignment is referred to as an implication. In bcp(),
BCP is performed transitively, until there are no more implications (in which case bcp()
returns true) or a conflict is produced (in which case bcp() returns false). A conflict
occurs when a variable is assigned with both 1 and 0 by implication.

The purpose of resolveConflict() is to analyze the reason that causes the conflict
(the reason can be recorded as a conflict clause), and try to backtrack to a previous de-
cision level to resolve the conflict. If the conflict could be resolved, the resolveConflict()
returns true. Otherwise, it returns false.

In modern SAT solver, one of the key concepts is conflict-driven learning. Conflict-
driven learning is to analyze the reason that causes a conflict and record the reason as
a conflict clause to prevent the algorithm from entering the same search space. How
to derive conflict clauses that could efficiently prune the search space has been a hot
research topic since the introduction of conflict-driven learning.

In this paper, we propose methods that use circuit structural information and signal
correlations to guide the SAT solving procedure, so that learned conflict clauses can be
used to efficiently prune the search space for circuit SAT problems.

Consider the circuit in Figure 1 where shaded area B contains shaded area A and
area C contains shaded area B. Suppose we want to solve a circuit SAT problem with
the output objective c = 1. When we apply a SAT solver to prove that c = 1, potentially
the search space for the solver is the entire circuit. Now suppose we can identify, in
advance, two internal signals a and b, such that a = 1 and b = 0 individually are very
unlikely to happen when random inputs are supplied to the circuit. Then, we can divide
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Figure 1: An example for incremental SAT solving

the original problem into three subproblems: (1) solving a = 1, (2) solving b = 0, and
then (3) solving c = 1.

Since a = 1 is unlikely to happen, when a SAT-solver makes decisions to satisfy
a = 1, it is likely to generate conflicts. As a result, conflict-driven information can be
learned. In a SAT solver, this information is stored in the learned clauses (or learned
gates), each of which represents a functional sub-space containing no solution. ¿From
another point of view, each learned clause specifies a constraint on a set of circuit signals
that has to be satisfied.
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Figure 2: Example learned gates accumulated by solving a = 1

If we assume that solving a = 1 is done only based upon the cone of influence headed
by the signal a (the shaded area A in Figure 1) then the learned clauses will be based
upon the signals contained in the area A only. Figure 2 illustrates the results of applying
SAT for solving a = 1. Regardless of whether the problem is satisfiable or not, a set of
learned clauses can be collected. For illustration, in Figure 2 they are represented as the
learned OR gates whose outputs are 1.

As the solver finishes solving a = 1 and starts solving b = 0, all the learned infor-
mation regarding the circuit area A can be used to help solving b = 0. In addition, if
a = 1 is indeed unsatisfiable, then signal a can be assigned 0 when the solver is solving
b = 0. Similarly, learned information from solving a = 1 and b = 0 can be reused to
help solving c = 1.

1633Lu F., Wang L.-C., Cheng K.-T., Moondanos J., Hanna Z.:  A Signal Correlation ...



Intuitively, solving the three subproblems could be much faster than solving the
original problem. This is because when solving b = 0, hopefully fewer (or no) decisions
are required to go into area A. Hence, the search space is more restricted within the
portion of area B that is not part of area A. Similarly, solving c = 1 requires most
decision making to be done only within the portion of area C that is not part of area
B. Moreover, the learned clauses accumulated by solving a = 1 could be shorter than
the conflict clauses accumulated by solving b = 0 directly, because the former are based
upon the signals in area A only. Similarly, the learned clauses accumulated during the
solving of b = 0 could be shorter than the conflict clauses accumulated by solving c = 1
directly. Conceptually, this strategy allows us to solve a complex problem incrementally.

We make two observations: (1) The incremental process suggests that we can guide
a solver to solve a sequence of pre-selected subproblems following their topological
order. (2) The selection of the subproblems such as a = 1 and b = 0 should be those
most likely to be unsatisfiable. Intuitively, solving a likely unsatisfiable subproblem
instance can accumulate learning information more effectively.

If few or no conflicts arise in solving a = 1 and solving b = 0, then there may be
no much information to be learned from solving these two problems. In this case, the
above strategy may incur overhead. Usually, this may indicate the ineffectiveness of
the method used to guess that a = 1 and b = 0 are unlikely to happen. Moreover, if
solving c = 1 does not depend much on signals a and b, then the above incremental
strategy cannot be effective either. For example, if c is the output signal of a 2-input
AND gate with two inputs as a function g and its complement g, then c = 1 can be
directly proved to be unsatisfiable without knowing the actual function g. To reduce the
potential overhead, one can use the signal correlation information such as a = 1 and
b = 0 implicitly rather than explicitly as described above. In an implicit approach, the
assignments a = 1 and b = 0 would be tried before the assignments a = 0 and b = 1
when the SAT algorithm is required to make a decision to assign values to these two
signals.

Intuitively, the above incremental strategy would not be effective for solving a cir-
cuit SAT problem whose input is given in CNF form. This is because by treating the
CNF form as a 2-level OR-AND circuit structure, the topological ordering among the
signals is lost. With a 2-level structure, the incremental strategy has little room to pro-
ceed. In the example discussed above, both a and b become primary inputs in the 2-level
OR-AND CNF circuit. Then, the ordering for solving the subproblems may become
solving b = 0 followed by solving a = 1.

Another key issue is how to identify in advance the subproblems that are most likely
to be unsatisfiable. One straightforward approach to identify signal correlations is based
on simulation with random input assignments.
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2.1 Identifying Signal Correlations

Let {s1, . . . ,sn} be n signals on a given circuit. We denote si ∼ s j for i �= j if si = s j is
true during one run of random simulation (a possible equivalence correlation identified
through the simulation). Similarly, si ∼ s′j denotes the case where si = s j is true during
one run of random simulation. Moreover, we also include s i ∼ 0 (and si ∼ 1) as a signal
correlating to the logic constant 0 (and 1).

Suppose that we have identified a signal correlation between s i and s j as si ∼ s j.
Then, intuitively assigning si = 1 and s j = 0 (or vice versa) will likely cause the SAT
process to produce a conflict. Similarly, if we have s i ∼ 0, assigning si = 1 will likely
cause a conflict.

In Algorithm 2.2, we demonstrate a simple procedure to compute the set of equiv-
alence and inverted equivalence correlations based on random simulation. Suppose we
define the relation si ↔ s j as si ∼ s j ∨si ∼ s′j for two signals si and s j, i.e., si ↔ s j means
that signals si and s j have equivalence or inverted equivalence correlation. It is not diffi-
cult to see that the relation ↔ is an equivalence relation. i.e., s i ↔ si, si ↔ s j ⇒ s j ↔ si,
and si ↔ s j ∧ s j ↔ sk ⇒ si ↔ sk. This equivalence relation can be used to partition
signals into equivalence classes.

Algorithm 2.2: RANDOM SIMULATION (Circuit)

comment: C is the initial equivalence class.

i ← 0; count ← 0; C ← the set of all signals; S ← {C};
while (i < 4)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′ ← /0;
Produce 32 random input assignments;
Perform parallel logic simulation [Abramovici et al. 1990];
for each equivalence class P of S

do
{

N ← Compute New Equivalence Class(Circuit, P, count);
S′ ← S′ ∪N;

if (S �= S′)
then i ← 0;
else i ← i+1;

count ← count +1;
return (S)

In the algorithm, S ′ is used to store the equivalence classes derived by the previous
simulation iterations, and an equivalence class is a subset of signals mutually having
the equivalence relationship. Variable count is used to count the number of iterations.
When computing new equivalence classes, count is used to indicate whether the while-
loop is in the first iteration. The usage of count is shown in Algorithm 2.3, which will
be explained in more detail below.

During each iteration, 32 random input assignments are grouped together using a
word (32 bits) in parallel logic simulation [Abramovici et al. 1990]. If repeating the
simulation step several times (such as four times) does not lead to identifying additional
equivalence classes, then the simulation stops, and the equivalence classes are reported.
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We note that deriving new equivalence classes from a previous equivalence class
based on the current simulation results can be achieved efficiently with a hash table.
Algorithm 2.3 illustrates this procedure.

Algorithm 2.3: COMPUTE NEW EQUIVALENCE CLASS (Circuit, P, count)

comment: P is the previous equivalence class.

comment: count is the iteration count as in Algorithm 2.2.

N ← /0;
if (count = 0)

then for each signal s of P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if (LOOKUP(h, K(s), V ))

then
{

V ←V ∪{s};
FLAG(s) ← 1;

else if (LOOKUP(h, ˜K(s), V )
{

V ←V ∪{s};
FLAG(s) ← 0;

else

⎧⎪⎨
⎪⎩

V ←{s};
INSERT(h, K(s), V );
N ← N ∪{V};
FLAG(s) ← 1;

else for each signal s of P

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if (FLAG(s) = 1)
then key ← K(s);
else key ← ˜K(s);

if (LOOKUP(h, key, V ))
then V ←V ∪{s};

else

{
V ←{s};
INSERT(h, K(s), V );
N ← N ∪{V};

return (N)

In the algorithm, h is a hash table of which the hash key is a 32-bit word, and
the hash value is a set of signals. V is a set of signals and N is the set to store new
derived equivalence classes. The simulation results of a signal s in the current iteration
are grouped as a 32-bit word denoted as K(s), and ˜K(s) is the complement of K(s).
FLAG(s) is the flag of a signal s. Function LOOKUP(h, k, v) is to search the hash table
h with the key k. If k is found in h, LOOKUP(h, k, v) returns true and the hash value
associated with the key k is returned by v. Otherwise, LOOKUP(h, k, v) returns f alse.
Function INSERT(h, k, v) inserts the key k and its associated value into the hash table
h.

When equivalence classes are derived, two signals si and s j in an equivalence class
have an equivalence correlation if FLAG(si) = FLAG(s j). Otherwise they have an in-
verted equivalence correlation. Other correlations s i ∼ 0, and si ∼ 1 can be identified
by checking if si always has the value 0 (or 1) during the entire run of the random
simulation.

In all experiments presented in this paper, random simulation stops after repeating
four times and identifying no additional correlation. In general, setting this number
below four would not be effective for identifying signal correlations in all the test cases
considered in this work. However, we note that increasing this number to a large number
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such as ten or twenty does not affect the performance trends reported in this work. For
all the run-time results in this paper, simulation times are included (if SC learning is
involved) and they are usually much smaller than the actual solver run times.

2.2 Implicit Learning by Signal Grouping

The implicit learning strategy utilizes signal correlations to influence the decision vari-
able selection. For example, our SAT solver may employ the VSIDS heuristic in the
decision variable selection [Moskewicz et al. 2001]. When VSIDS is combined with
implicit learning, the implicit learning has a higher priority in selecting the next deci-
sion variable.

With implicit learning, we use signal correlations to group variables in the decision
variable selection. For example, suppose that a signal s i is possibly correlated with
signal s j as si ∼ s′j. During the solving process, whenever si is assigned with a constant
value (0 or 1), we immediately make the decision to assign the same value to s j . In other
words, we group the two signals together in the solver’s value-assignment process, and
value assignments are done in such a way that they are most likely to cause a conflict.
Algorithm 2.4 shows our signal correlation guided implicit learning.

Algorithm 2.4: SELECT DECISION VARIABLE - IMPLICIT LEARNING (variables)

Suppose s is just being assigned a value v by implication (BCP)
if (∃s′,s′ is possibly correlated with s) and (s′ has not yet been assigned a value)

then

⎧⎪⎨
⎪⎩

select s′ as the next decision signal
if (it is equivalence correlation)

then s′ ← v
else s′ ← v

else

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

use VSIDS (or other heuristics) to select a signal s′
if (s′ is possibly correlated with 0 or 1)

then
{

s′ ← 1 if the correlation is “s′ = 0”, or
s′ ← 0 otherwise

else s′ ← value based on VSIDS heuristic;
return (s′)

When selecting a decision variable, the algorithm first checks the last signal im-
plied by the last decision. If the signal has an unassigned possibly correlated signal, the
possibly correlated signal will be selected as the next decision variable. Otherwise, the
VSIDS (or other heuristics) is used to select the next decision variable.

2.3 Explicit Learning

In explicit learning, a sequence of likely unsatisfiable subproblems are created based
upon the signal correlations identified by the random simulation. Internally, the solver
tries to solve each subproblem one by one, following their topological order. The learned
clauses obtained in solving a subproblem are kept and used in solving other subprob-
lems and the original problem.
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When solving each subproblem, we need to decide when to stop the solving. To
limit the subproblem solving process, one can count the number of learned gates accu-
mulated. For example, the solver can move on to the next subproblem whenever i new
learned gates are generated. The default i value in SC-C-SAT is set at 10, but the user
can specify a different number as input to the solver. We note that the optimal value of
this number is problem-dependent. In all experiments shown in this paper, we use the
default value 10.

Algorithm 2.5 shows our signal correlation guided explicit learning. In this algo-
rithm, V G is an array of all signals of the circuit, sorted based on the topological order
from inputs to outputs. The topological levels of signals in the circuit are computed in
a way that the primary inputs are all with level 0, and the level of every other signal is
the maximum level of its fanins increased by 1. The signals are then arranged in VG in
ascending order of their topological levels. VC(s) is an array of signals possibly corre-
lated with the signal s. Moreover, VC(s) only stores signals whose indexes in VG are
smaller than the index of s in V G. VC(s) is also sorted based on the topological order
from inputs to outputs.

Algorithm 2.5: EXPLICIT LEARNING ()

numvg ← the number of elements of VG
for i ← 0 to (numvg−1)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ←V G[i]
if (s ∼ 0)

then solve the subproblem (s = 1)
else if (s ∼ 1)
then solve the subproblem (s = 0)

else

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

numvc ← the number of elements of VC(s)
for j ← 0 to (numvc−1)

do

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t ←VC(s)[ j]
if (s ∼ t)

then
{

solve the subproblem (s = 0, t = 1)
solve the subproblem (s = 1, t = 0)

else
{

solve the subproblem (s = 0, t = 0)
solve the subproblem (s = 1, t = 1)

We will use IND(s) to designate the index of signal s in the signal array VG. Given
two possibly correlated signal pairs (s1, t1) and (s2, t2), where s1 is possibly correlated
with t1, and s2 is possibly correlated with t2, suppose we have IND(s1) > IND(t1) and
IND(s2) > IND(t2). The subproblem of (s1, t1) will be solved prior to the subproblem
of (s2, t2) if (IND(s1) < IND(s2))∨ ((IND(s1) = IND(s2))∧ (IND(t1) < IND(t2))).
Since the signal array VG is sorted based on the topological order from primary inputs
to primary outputs, the subproblems are solved following the same ordering.

3 Implementation Details

The input to our solver is in a circuit format (“.bench” format [Brglez et al. 1985]).
After the circuit is read in, we transform it into a netlist based upon only the 2-input
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AND primitive. In the netlist, we allow inverters to be associated with the inputs of
AND gates as their attributes.

We apply circuit optimization techniques [Kuehlmann and Krohm 1997] to the
netlist to merge structure-equivalent gates. This simple check can be done as the fol-
lowing. Two gates g1(i1, i2) and g2( j1, j2) are merged if the gate input i1 is the same
signal as gate input j1 and gate input i2 is the same signal as gate input j2. After the
merge, the netlist is modified. Suppose we remove g2. Then, all the gates receiving
their inputs from g2 will now receive their inputs from g1. The check is performed fol-
lowing the topological ordering. This feature is not turned on for circuit equivalence
verification test cases, which are described as “C-” test cases in Section 5 and Intel cir-
cuits in Section 6. This is because some “C-” test cases can be verified simply by the
circuit structural optimization just described. If a test case is constructed based on two
structurally identical circuits, then applying the structural equivalence gate merging just
described above, following the circuit topological order, can result in a circuit test case
that is trivial to be verified for equivalence.

The techniques used in zChaff, BerkMin and the SAT solver in [Ganai et al. 2002]
are combined to implement our baseline solver. For Boolean constraint propagation,
lookup tables are used for fast implications on the AND primitive [Ganai et al. 2002],
and watched literal technique is used on conflict clauses [Moskewicz et al. 2001].

For decision variable selection, our baseline solver first tries to select a decision
variable from the most recently produced conflict clause that is left to be unsatis-
fied [Goldberg and Novikov 2002]. If all conflict clauses are satisfied, the solver in-
cludes the justification nodes (J-node) for consideration in decision variable selection
[Abramovici et al. 1990, Ganai et al. 2002].

In ATPG terminology, a J-node is a gate whose output has received a value, and
some of its inputs need further decision(s) to justify the value [Abramovici et al. 1990].
In our implementation, when all the conflict clauses are satisfied, the decisions are then
made to satisfy J-nodes of the highest topological order. That is, finding the J-node with
the largest index in VG and selecting the variable from its inputs, which has the highest
VSIDS [Moskewicz et al. 2001] score as the decision variable.

UIP based conflict analysis [Zhang et al. 2001] is adopted in our baseline solver.
The conflict clause database of our solver is organized as a stack, and each new conflict
clause is added to the top of the stack [Goldberg and Novikov 2002]. Every time when
2048 conflict clauses are added to the conflict clause database, a clause removal pro-
cedure is invoked. The conflict clauses obtained in solving a subproblem are kept until
they are removed by the clause removal procedure.

The clause removal procedure is similar to the one in [Goldberg and Novikov 2002].
Here the conflict clause database is viewed as a queue where newly-generated conflict
clauses are always added to the tail of the queue. For the first 1/16 of the total conflict
clauses starting from the head of the queue, clauses with more than 8 literals are con-
sidered to be removed based on their activities. For the rest 15/16 of the total conflict
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clauses, clauses with more than 42 literals are considered to be removed based on their
activities.

For every 2048 backtracks, our solver restarts if at least one conflict clause with less
than 9 literals is added to the conflict clause database during this period.

4 Heuristics for the Experiments

Suppose that two signals have the correlations s1 ∼ 0 and s2 ∼ 1 and topologically, s2

is on a path from s1 to a primary output. Then, it is possible that s1 ∼ 0 is the cause
for s2 ∼ 1. Hence, when the subproblem s1 ∼ 0 is aborted, solving s2 ∼ 1 may not
provide much useful information. To reduce the overhead of explicit learning, when
the subproblem s1 ∼ 0 is aborted, the subproblem s2 ∼ 1 can be ignored. Based on the
above argument, we designed a cut-based heuristic: when a subproblem derived from
a constant-correlated signal s is aborted, all the subproblems derived from constant-
correlated signals which are on a path from s to a primary output are ignored. When the
cut-based heuristic is applied, it only affects the signals that possibly correlate to 0 or
1. Pair-wise signal correlations are not affected.

Combining implicit learning, explicit learning and cut-based heuristics, we derive
more heuristics to experiment with. These experiments show how the degree of learning
affects the performance of the solver for different sets of benchmarks. In our experi-
ments, we apply our solver in six different ways as described below.

– Baseline: This is the baseline solver without using any SC heuristic.

– Implicit: Only implicit learning heuristic is applied to our baseline solver.

– ecut: Explicit learning and cut-based heuristics are applied to our baseline solver.

– eicut: Explicit learning, implicit learning, and cut-based heuristics are applied to
our baseline solver.

– e: Only explicit learning heuristic is applied to our baseline solver.

– ei: Explicit learning and implicit learning heuristics are applied to our baseline
solver.

5 Experimental Results

We use three groups of examples. A “C-” test case is constructed based on a benchmark
circuit in the ISCAS85 or ISCAS89 suites [Brglez et al. 1985, Brglez et al. 1989]. If it
is an ISCAS89 benchmark, the inputs of flip-flops are treated as primary outputs and the
outputs of flip-flops are treated as primary inputs. In other words, an ISCAS89 circuit
is converted to a combinational circuit.

In the case denoted as “-.eq” we constructed an equivalence checking circuit model
by taking two copies of the same circuit. Each pair of corresponding primary outputs
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is XORed and all the outputs of the XOR go to an OR gate. The SAT problem is to
prove whether the output of the OR gate can become 1, which indicates that the two
circuits are not equivalent. In each of our experiments, the output of that OR gate is
unsatisfiable. In the case denoted as “-.opt” the two copies are structurally different
where one copy is logically optimized with a commercial synthesis tool.

A “V-” example is a satisfiable test case taken from [Velev 2000]. A “P-” example
is an unsatisfiable test case taken from [Velev 2000]. The CNF formulas for the ”C-”
examples used in the experiments for CNF-based solvers are generated based on the
netlist model using 2-input AND gates with inverter attributes as described previously.

For comparison purpose, we conducted experiments with three other SAT solvers,
zChaff [Moskewicz et al. 2001], BerkMin561 [Goldberg and Novikov 2002] and the
solver siege v4 [Ryan 2004]. All experiments were run on a Pentium-4 2.4-GHz ma-
chine with 1.5 GB RAM under Linux Mandrake 2.4.3.

5.1 Results on “C-” test cases

SC-C-SAT
Cases zChaff BerkMin siege v4 Baseline Implicit ecut eicut e ei
c3540.opt 26 2 17 40 3.3 0.1 0.1 0.1 0.1
c5315.opt 84 3 7 9 2.3 0.1 0.1 0.1 0.1
c7552.opt 299 6.5 21 34 5.6 0.5 0.6 0.7 0.7
c3540.eq 35 2.8 12 23 4.3 0.1 0.1 0.1 0.1
c5315.eq 39 3.4 6 6 2.2 0.1 0.1 0.1 0.1
c7552.eq 190 7 17 26 5.1 0.7 0.7 0.7 0.7
s38417.eq 420 116 64 79 69 3.7 3.9 1.8 1.8
s38584.eq 316 145 61 125 121 36 36 35 35
Total 1409 285.7 205 342 212.8 41.3 41.6 38.6 38.6
c6288.eq * * * * * 0.1 0.1 0.1 0.1
*Aborted after 1 hour.

Table 1: Results (secs) for UNSAT “C-” test cases

Table 1 summarizes the results of CPU time on “C-” test cases. We observe that
explicit learning (column e) is more effective than implicit learning in these test cases.
Comparing to the baseline solver, using implicit learning achieves on average a 1.6×
speedup and using explicit learning achieves on average an 8.8× speedup. Our base-
line solver is faster than zChaff, comparable to BerkMin, but is slower than siege v4.
The circuit c6288.eq represents a special case where only explicit learning heuristics
can solve it within a limited time. And when the right heuristics (explicit learning) are
applied, the run times are only less than a second.

Tables 2 and 3 give the number of decisions and the number of conflict clauses
on “C-” test cases respectively. It can be seen that the performance of the solvers are
not reflected by the number of decisions or the number of conflict clauses. Consider
zChaff, BerkMin, siege v4 and our baseline solver on these test cases, the number of
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SC-C-SAT
Cases zChaff BerkMin siege v4 Baseline Implicit ecut eicut e ei
c3540.opt 92102 79130 79743 111783 19911 3597 3597 3597 3597
c5315.opt 276510 165827 97633 91926 31836 5933 5933 5933 5933
c7552.opt 799650 239938 185097 202630 42482 12009 11948 12623 12623
c3540.eq 98691 103780 65875 79531 21854 3402 3402 3402 3402
c5315.eq 217414 179516 84801 81570 31470 6326 6326 6326 6326
c7552.eq 571394 256607 176060 170403 41996 14288 13895 13993 13993
s38417.eq 2090072 4359689 2750160 1413476 956124 99028 87922 37852 37852
s38584.eq 5186352 4332569 3328875 2018729 1569106 84069 63823 44097 44097
Total 9332185 9717056 6768244 4170048 2714779 228652 96846 127823 127823
c6288.eq * * * * * 9070 9070 9070 9070
*Aborted after 1 hours.

Table 2: Number of decisions for UNSAT “C-” test cases

SC-C-SAT
Cases zChaff BerkMin siege v4 Baseline Implicit ecut eicut e ei
c3540.opt 61966 13207 58533 68553 13930 1532 1532 1532 1532
c5315.opt 139937 14315 37301 24196 8617 2751 2751 2751 2751
c7552.opt 340660 22410 69714 63442 16954 4067 4479 4019 4019
c3540.eq 66819 14455 47037 47786 15421 1509 1509 1509 1509
c5315.eq 91899 15302 31517 18125 8122 2893 2893 2893 2893
c7552.eq 252491 23777 65678 51202 15055 4153 4882 3988 3988
s38417.eq 455242 57394 73142 42349 32684 14940 15223 14760 14760
s38584.eq 66023 19640 25928 28428 22476 18143 18637 18113 18113
Total 1475037 180500 408850 344081 133259 49988 51906 49565 49565
c6288.eq * * * * * 4454 4454 4454 4454
*Aborted after 1 hours.

Table 3: Number of conflict clauses for UNSAT “C-” test cases

total decisions of BerkMin is the largest but its total number of conflict clauses is the
smallest, and for our baseline solver, the total number of decisions and total number of
conflict clauses are both smaller than those of siege v4.

5.2 The ordering of explicit learning

In the above experiments, the ordering of the explicit learning follows the topological
order of the signals. In this section, we consider not following the topological order in
explicit learning. Results are shown in Table 4.

The Ordering in Explicit Learning (based on ei)
Circuit Topological Reverse Random
c3540.eq 0.1 2 1.3
c5315.eq 0.1 1.1 0.7
c7552.eq 0.7 3.3 2.7
c6288.eq 0.1 * *
*Aborted after 1 hour

Table 4: Effects of changing the ordering in explicit learning for SC-C-SAT
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It can be seen that if the topological order is not followed, the effectiveness of ex-
plicit learning degrades. As we can observe, random ordering is better than reverse
ordering, and both are inferior to topological ordering. One noticeable result is that if
we do not follow the topological order, then the solver would not be able to complete
the run for c6288.eq.

The results in Table 4 demonstrate the importance of following the topological order
in the incremental learning process. For this reason, we suspect that for those “V-” and
“P-” examples, where the resulting circuits fed to our solver are in two-level OR-AND
structure (directly translated from their CNF forms), the proposed explicit learning may
produce inferior results. Without the topological ordering, the effectiveness of the incre-
mental learning is degraded, and the overhead associated with the incremental process
can out-weight the potential efficiency gain from explicit learning.

5.3 Results on “V-” and “P-” test cases

For the “V-” and “P-” examples, the circuits fed to our solver are 2-level circuits ob-
tained directly from their CNF formulas, where the structural information was lost, so
that explicit and implicit learning could not help much.

SC-C-SAT
Cases zChaff BerkMin siege v4 Baseline Implicit ecut eicut e ei
Vliw001 356 165 47 73 72 169 128 218 222
Vliw002 336 117 5 69 147 130 262 153 152
Vliw003 381 213 70 16 100 181 216 262 210
Vliw005 1088 96 37 134 99 191 136 176 158
Vliw006 308 150 41 53 251 186 252 194 206
Vliw008 550 103 45 93 187 115 181 163 214
Vliw011 305 68 7 95 58 152 126 152 172
Total 3324 912 252 533 914 1124 1301 1318 1334

Table 5: Results (secs) for SAT “V-” test cases

Table 5 summarizes the results on the “V-” test cases. It is interesting to observe that
explicit learning performs worse than implicit learning and implicit learning performs
worse than the baseline. We conclude that SC heuristics are not effective for these ex-
amples. Hence, the more we depend on the SC learning, the worse the results would
be. Our baseline solver is on average five times faster than zChaff, slightly faster than
BerkMin, but is two times slower than siege v4 for these test cases.

Table 6 summarizes the results for “P-” test cases. In this table, no clear trend can
be concluded. Our baseline solver achieves a 1.68× average speedup over siege v4 and
2× average speedup over BerkMin.
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SC-C-SAT
Cases zChaff BerkMin siege v4 Baseline Implicit ecut eicut e ei
3Pipe1 62 17 25 10 8 11 11 10 11
3Pipe2 87 28 19 14 10 16 11 16 11
4Pipe1 753 155 102 104 115 102 159 102 162
4Pipe2 2505 285 229 130 128 134 161 134 161
4Pipe3 * 254 266 123 127 155 134 150 157
Total * 739 641 381 388 418 476 412 502
*Aborted after 1 hours.

Table 6: Results (secs) for UNSAT “P-” test cases

6 Solving Hard Equivalence Checking Cases

In this section, we report our experience with difficult test cases from an Intel Pentium
III class microprocessor. These test cases come from hard Combinational Equivalence
Checking (CEC) problems where HDL specifications are compared against their gate
level implementations. The heuristic eicut of SC-C-SAT is used for evaluation since it
is the default heuristic and also performs well for the “C-” examples.

Circuit Characteristics: With advancements in the area of CEC, one does not ex-
pect to see many difficult signals in a microprocessor [Kuehlmann and Krohm 1997,
Moondanos et al. 2001]. The number of logic levels that can exist within a pipe stage
of modern microprocessor designs is limited, and therefore sophisticated CEC tech-
niques prove highly efficient. However with increased market segmentation for micro-
processors, our experience has been that a few specific signals can prove particularly
hard for certain CEC technologies. Here, we studied the performance of our solver on
test cases coming from four units of an Intel microprocessor design. These test cases
were derived from combinational equivalence checking of RTL against gate level im-
plementations of signals in these four units that belong to the memory cluster. Circuit
Ca performs memory command stream control. Circuit Cm is a memory address gen-
eration circuit which contains multiple arithmetic units such as adders and multipliers.
Circuit Cn performs memory address translation based on operand type, while circuit
Co implements a read-only interface to memory.

Why They Are Difficult: These combinational equivalence problems have proved
particularly difficult for BDD-based techniques. Traditional monolithic BDD compari-
son does not work regardless of complicated variable ordering schemes, including dy-
namic re-ordering. This is reasonable given the arithmetic logic that is included in these
circuits. In addition, divide-and-conquer techniques based on BDDs which incorporate
key point matching have also failed on many signals in these circuits. Intuitively, this
is due to the fact that these circuits contain many re-convergent signals which create
false negatives for cut-point techniques that do not offer false negative elimination. On
the other hand, employing cut-point [Kuehlmann and Krohm 1997] based techniques
that offer false-negative elimination by employing parametric representations for func-
tions, such as normalized BBDs [Moondanos et al. 2001], does not work because of
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the degree of re-convergence. However, the existence of significant re-convergence is
a clear indication that signals in the netlists are highly correlated and this is something
that should be exploited to speed up the process of a decision procedure. Also there
is no significant structural similarity between the two netlists being compared because
one is coming from the RTL compilation process and the other is from the optimized
gate-level netlist.

Results Comparison: In the figures from Figure 3 to Figure 14, the horizontal axis
corresponds to numerical indices that were assigned to the various CEC problems in
Ca,Cm,Cn and Co. These indices were ordered according to the run times given by SC-
C-SAT. Figures 3, 4, 5 and 6 show the time performance comparison for circuit signals
in Ca,Cm,Cn and Co respectively. For BerkMin561, option ”s 1” was adopted which
determined the decision-making strategy for equivalence checking problems. A missing
point in these figures (resulting in a discontinuous curve) indicates that the particular
solver did not finish the run for the test case within the time limit. The run time limit
was set at 10000 seconds.

Figure 3 gives the time performance comparison for problems of circuit C a. Our
solver could finish any of the problems within 10 seconds. BerkMin561 is faster than
Siege v4 on these problems and could finish any of the problems within 1000 seconds.
Some of the problems couldn’t be solved by zChaff within 10000 seconds.

Figure 4 shows the time performance comparison for problems of circuit C m. Our
solver performs well on most of the problems, and only for a few problems, Siege v4
is better than our solver. BerkMin561 and Siege v4 each have problems on which it
performs better than the other, but Siege v4 could finish more signals than BerkMin561.

Figure 5 shows the time performance comparison for problems of circuit C n. On
these problems, our solver is about 100 times faster than BerkMin561, the performance
of BerkMin561 and Siege v4 are quite similar, and zChaff is about 100 times slower
than BerkMin561.

Figure 6 shows the time performance comparison for problems of circuit C o. On
these problems, our solver is the fastest and BerkMin561 is slightly better than Siege v4.

Figures 7, 8, 9 and 10 present the decision number comparison for circuit signals in
Ca,Cm,Cn and Co respectively. Note that the signal IDs of the horizontal axis of these
figures are the same as the signal IDs of Figures 3, 4, 5 and 6 respectively.

Figure 7 shows the decision number comparison for problems of circuit C a. On
these problems, the number of decisions is greatly reduced by our solver compared
with the other three solvers, zChaff, BerkMin and Siege v4. The number of decisions
of Siege v4 is smaller than that of BerkMin. For some cases that zChaff could finish in
10000 seconds, the number of decisions of zChaff is smaller than that of BerkMin.

Figure 8 shows the decision number comparison for problems of circuit C m. On
most of the problems, the number of decisions of our solver is the smallest. BerkMin
and Siege v4 each have some cases that need fewer decisions than the other. For cases
that zChaff could finish in 10000 seconds, the number of decisions of zChaff is close to
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that of BerkMin.
Figure 9 shows the decision number comparison for problems of circuit C n. On

most of the problems, the number of decisions of our solver is at most 1/10th of that of
Siege v4, the number of decisions of Siege v4 is smaller than that of BerkMin and the
number of decisions of BerkMin is smaller than that of zChaff.

Figure 10 shows the decision number comparison for problems of circuit C o. On all
of the problems, our solver has the smallest decision number. Siege v4 has the second
smallest decision number. BerkMin has the third one and the decision number of zChaff
is the largest.

Figures 11, 12, 13 and 14 show the number of conflict clauses comparison for circuit
signals in Ca,Cm,Cn and Co respectively. Note that the signal IDs of the horizontal axis
of these figures are the same as the signal IDs of Figures 3, 4, 5 and 6 respectively.

Figure 11 shows the conflict clause number comparison for problems of circuit C a.
On these problems, the number of conflict clauses is greatly reduced by our solver
compared with the other three solvers, zChaff, BerkMin and Siege v4. The number of
conflict clauses of Siege v4 is smaller than that of BerkMin. The number of conflict
clauses of zChaff is the largest.

Figure 12 shows the conflict clause number comparison for problems of circuit C m.
On most of the problems, the number of conflict clauses of our solver is the smallest.
BerkMin and Siege v4 each have some cases that generate fewer conflict clauses than
the other. zChaff has the largest conflict clause number on most cases.

Figure 13 shows the conflict clause number comparison for problems of circuit C n.
On most of the problems, the number of conflict clauses of our solver is at most 1/10th
of that of BerkMin, the number of conflict clauses of BerkMin is smaller than that of
Siege v4 and the number of conflict clauses of Siege v4 is smaller than that of zChaff.

Figure 14 shows the conflict clause number comparison for problems of circuit C o.
On all of the problems, our solver has the smallest conflict clause number. BerkMin has
the second smallest conflict clause number. Siege v4 has the third one and the conflict
clause number of zChaff is the largest.

The comparisons take into account only those pairs of signals that gave rise to ex-
tremely difficult combinational equivalence problems. The experiments were conducted
using Pentium III workstations running Red Hat Linux 6.2 with 4 GB of RAM.

¿From the figures one can conclude that the performance of SC-C-SAT (eicut) is
at least one order-of-magnitude more efficient than the performance of the other three
solvers, in terms of run time, number of decisions, and number of conflict clauses. We
also note that SC-C-SAT could finish in total 40% more signals than zChaff and 8%
more signals than BerkMin for all the signals shown in these figures.
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Figure 3: SC-C-SAT (eicut) vs. zChaff vs. BerkMin vs. Siege v4 CPU time comparison
on hard signals form circuit Ca
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Figure 4: SC-C-SAT (eicut) vs. zChaff vs. BerkMin vs. Siege v4 CPU time comparison
on hard signals form circuit Cm
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Figure 7: SC-C-SAT (eicut) vs. zChaff vs. BerkMin vs. Siege v4 decision number com-
parison on hard signals form circuit Ca
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Figure 11: SC-C-SAT (eicut) vs. zChaff vs. BerkMin vs. Siege v4 conflict clause number
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Figure 12: SC-C-SAT (eicut) vs. zChaff vs. BerkMin vs. Siege v4 conflict clause number
comparison on hard signals form circuit Cm
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Figure 13: SC-C-SAT (eicut) vs. zChaff vs. BerkMin vs. Siege v4 conflict clause number
comparison on hard signals form circuit Cn
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Figure 14: SC-C-SAT (eicut) vs. zChaff vs. BerkMin vs. Siege v4 conflict clause number
comparison on hard signals form circuit Co
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7 Conclusions

This paper described two heuristics, implicit learning and explicit learning that are
circuit-based. Our heuristics utilize signal correlations and circuit topological informa-
tion to improve the performance of a circuit-based SAT solver for circuit-oriented prob-
lems. We discussed the strengths and weaknesses of the proposed two heuristics, and
compare their performance to other state-of-the-art SAT solvers. Although we do not
consider that our SC-C-SAT solver is always superior to zChaff, BerkMin, and seige v4
when solving all problem instances (especially if the input format is CNF-based), for
some examples shown in this paper, our solver is able to take advantage of the circuit
structural information and achieve significant performance improvements. SC-C-SAT
can be downloaded from our web site http://cadlab.ece.ucsb.edu.
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