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Abstract: An important problem in digital forensics is to record a checkpoint of a disk drive
mounted as a file system on a host machine without disrupting the disk’s normal operations.
We present a checkpointing methodology for a disk that has a Unix-like file system. While our
algorithm is built around the Unix file system, it can be used to checkpoint disks formatted for
other file systems such as NTFS, etc. Our algorithm satisfies several correctness conditions.
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1 Introduction

Digital forensics involves collection and analysis of digital data within an investiga-
tive process [Civie and Civie 1998, Casey 2000]. An important problem is collecting
evidence in the least intrusive manner. In this paper, we consider the problem of check-
pointing the contents of a disk drive, which contains a Unix-like file system, without
disrupting the machine’s normal operations and present a low-intrusive disk checkpoint-
ing method. The checkpointing process involves recursively traversing the file system
tree in the source disk starting from the root inode. Every time a file is encountered for
the first time, its inode and contents are copied to the destination disk. The checkpointed
disk can be mounted as a file system in a different computer system and the contents
can be examined. For the checkpoint to be of use in cyber courts and to be of practical
value, the checkpoint must satisfy several correctness conditions.

Assume that the checkpointing operation begins at time T I and ends at time TΦ.
Consider a file f whose complete pathname is “/pn/pn−1/. . ./p2/p1/f ” where p1 is the

1 A preliminary version of this paper appears in the Proceedings of International Conference on
Information Technology: Coding and Computing (ITCC’04), Volume 1, April 5-7, 2004, Las
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parent of f, p2 is the parent of p1, etc. We call file f a static path file with respect to
the checkpointing process (that executes between T I and TΦ) if neither file f ’s path
nor f ’s contents are modified while checkpointing is in progress. Note that any of the
directories pn, . . . p1 can be renamed (without changing the associated inode), and f is
still a static path file.

Our checkpointing method satisfies the following properties:

1. The duration from TI to TΦ can be stretched so that the disk throughput for normal
system operation is not brought down drastically because of excessive disk accesses
by the checkpointing operation. We allow the checkpointing algorithm to choose a
parameter so that the additional load on the disk can be changed.

2. Checkpointing must be low-intrusive

– No file in the disk can be created, modified, or deleted by the checkpointing
process.

– Access to the files by the processes of the computer system cannot be delayed
indefinitely.

– File attributes (ownership, time of modification, etc.) cannot be changed by the
checkpointing algorithm.

3. If file f is a static path file with respect to the duration of checkpointing, [T I , TΦ],
then f is checkpointed.

4. Every directory d that is a static path file during the time interval [T I , TΦ] must
be checkpointed. In addition, each file f of a checkpointed directory d must also be
checkpointed (even if f is deleted before time TΦ by an application).

5. The checkpointed disk must be consistent, and it must be possible to mount it as a
file system.

The paper is organized as follows: In [Section 2], we present the model under con-
sideration. In [Section 3], we describe the checkpointing algorithm in detail. The cor-
rectness of the checkpointing algorithm is presented in [Section 4] and the properties of
the checkpointing method are explained in [Section 5]. [Section 6] compares our work
with related work and concludes the paper.

2 System Model

Consider a typical Unix computer system with disk partitions formatted with the second
extended file system (Ext2). Each file or directory is represented by two entities: an
inode and a set of data blocks [Bach 1986]. The inode contains vital information about
the file such as the owner, access permissions, disk addresses of data blocks which
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store file contents, etc. Data blocks contain file data or block addresses. Throughout the
paper, the term data block of a file system refers to either (i) a (direct) block that contains
file contents or (ii) an indirect block that contains addresses of direct blocks. Starting
from the inode, we can obtain the entire file contents by systematically accessing all
the data blocks using the addresses found in the inode. The addresses in inode may be
direct block addresses or indirect (single, double or triple) block addresses. All of these
blocks are said to belong to the inode. The file system is organized as a tree with “/” as
the root and inode number 2 is assigned to the root in most systems.

Unix file system consistency requires the following conditions:

1. Each data block must belong to an inode (thereby storing file contents) or must
belong to the free list. No two inodes can address the same block, and all blocks
must appear somewhere (allocated to an inode or in the free list).

2. An allocated inode must be associated with a file or directory in the file system and
must not appear as free.

3. An inode’s link count must be equal to the number of directory entries pointing to
it.

4. The number of free data blocks and the number of free inodes in the super block
must conform to the numbers that exist on disk.

3 Checkpointing Algorithm

We explain the checkpointing algorithm in steps; initially we assume that there are no
modifications to the file system when checkpointing is in progress; subsequently we
explain how the algorithm copes with file modification, deletion, etc.

3.1 Outline

The checkpointing process starts from the root inode of the source file system, and
checkpoints all the files by traversing the file system tree recursively in a preorder man-
ner. When a file is visited for the first time, it is checkpointed. Checkpointing a file
involves copying the inode and the contents (the data blocks of the file) to the destina-
tion disk. We use a set, SIC (Set of Inodes to be Checkpointed), to represent the list of
inodes of the files to be checkpointed. When checkpointing a directory d, all the inodes
of the files appearing in d are added to SIC.

Consider the example in [Fig. 1] showing the state of checkpointing procedure at
an intermediate point in its execution. In the figure, the labels represent inodes (and not
file/directory names). The nodes shown black (a, b, e and g) represent checkpointed
files (directories in this case). The others (c, d, f, h and j) are in SIC, to be checkpointed.
For example, inodes c, d, and b are added to SIC at the time of checkpointing a.
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Figure 1: File system tree traversal by the Checkpointing algorithm.

When checkpointing a file, its inode is locked to prevent modification of the inode
and file contents by other processes. This ensures consistency of the files at the sys-
tem call level in the checkpointed copy. SIC is accessed by more than one entity and
hence the access to SIC is controlled. In addition to the checkpointing process, some
external entities such as user or kernel processes access SIC. A separate thread called In-
ode List Manager manages SIC and synchronizes access to SIC by different processes.
The Inode List Manager presents a single interface for exclusive access to SIC to the
various entities and does not allow more than one entity to modify SIC at the same time.

Note that the disk checkpointing process places an additional load on the system.
The components of the system used by the checkpointing algorithm include (1) main
memory, (2) disk drive, (3) system bus, and (4) CPU (for initiating DMA and executing
parts of the checkpointing code). If the system is operating under a certain load such
that the utilization of these four components is under 100%, then disk checkpointing
can be done without any appreciable reduction in system performance as perceived by
the executing applications. The disk checkpointing rate can be increased gradually (by
decreasing the time between successive disk reads/writes or the time between a batch
of disk operations). The appropriate value of the disk checkpointing rate so that these
four components are near 100% utilization can be found by doing a bottleneck analysis
with techniques similar to that of Denning and Buzen [Denning 1978].

The disk checkpointing process uses a number of data structures in order to to keep
track of checkpointing information of the source disk and the destination disk. These
data structures are local to the checkpointing process and are maintained till the check-
pointing process terminates. These arrays are not stored on the disk. The data structures
used by the checkpointing process include:
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SIC: Set of Inodes to be Checkpointed
inode copied[]: keeps track of checkpointed inodes; initially all 0
src blk copied[]: track checkpointed data blocks in the source disk; i th element = 1 if
block i of source disk has been copied; initially all 0
dest blk copied[]: track checkpointed data blocks in the destination disk; i th element
= 1 if block i of destination disk has checkpointed contents; initially all 0
src blk in dest[]: array used to keep track of destination block into which the given
source block is copied; has one element for each block in source disk; initially all 0
reused inode[]: keeps track of inodes that were checkpointed and then freed; ini-
tially all 0

Procedure 1. LOW-INTRUSIVE-CHECKPOINT

/* only concurrent reads to file system are assumed; no writes */
/* choose parameters x and y */
spawn Inode List Manager; /* initializing SIC ← root inode */
request Inode List Manager for an inode i from SIC
while (inode i is valid and not already checkpointed) {

lock i
copy i to destination disk
while (there are more data blocks of file (with inode i) to be copied to destination) {

copy x blocks (direct and indirect data blocks) using addresses found in i
sleep for y seconds

}
if (i.type = directory)

/* files in i must be checkpointed; add their inodes to SIC */
for each child inode, c, in directory i {

request Inode List Manager to add c to SIC
}

request Inode List Manager to remove i from SIC
unlock i
inode copied[i] ← 1
request Inode List Manager for next inode i

}
The algorithm in [Procedure 1] successfully checkpoints the entire file system if no

other entity modifies the file system.

3.2 Write operations by users while checkpointing

Here we assume that user processes can concurrently modify contents of existing files
while checkpointing is in progress. Assume, for now, that files are not deleted. Locking
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Figure 2: Checkpointing a file that shrinks in size.

an inode when the corresponding file is being checkpointed gives a consistent snapshot
of the file. The data blocks must be carefully checkpointed since the data blocks of
a shrinking file, which was already checkpointed, may be subsequently allocated to a
growing file that is not yet checkpointed. This is illustrated in [Fig. 2]. When check-
pointing file f1 [see Step 2], the contents of data block b in the source disk are copied to
block b in the destination disk. In Step 3, a process deletes parts of f 1 which results in
the release of block b to the free blocks list. In Step 4, this free block b is subsequently
allocated to a newly created file f2. While checkpointing file f2 at a later time [see Step
5], if the contents of block b of the source disk are copied to block b in the destination
disk, then an inconsistency is created for file f1 in the destination disk. In order to avoid
inconsistency of the destination file system, we track the data blocks that have been
checkpointed.

When we encounter a data block that needs to be checkpointed for the second or
subsequent time, we copy its contents to a free block b ′ (�= b) on the destination disk,
assuming that the destination disk has larger capacity. We record the mapping of block b
(in source disk) to b′ (in destination disk) in array src blk in dest[]. This mapping may
be used for reconstructing the inode and disk address association during the forensic
analysis of the checkpoint that is obtained.
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Procedure 2. CONCURRENT-WRITES

/* executed when checkpointing contents of file whose inode is i */
for each block b of inode i {

if (dest blk copied[b] = 1) {
find a free block b′ in destination disk
copy b in source disk to b′ in destination disk
replace disk address b to b′ in the appropriate part of the file

(either inode or indirect block) in the destination disk
dest blk copied[b′] ← 1;
src blk in dest[b] ← b′; /* mapping */

}
else {

copy b in source disk to b in destination disk
dest blk copied[b] ← 1;
src blk in dest[b] ← b; /* mapping */

}
src blk copied[b] ← 1;

}

3.3 Hard links and Symbolic links

Hard links and symbolic links will be preserved during checkpointing. Assume there
are n hard links to an inode i. Contents of inode i and the associated data blocks are
copied to the destination disk only when we encounter i for the first time. For this
purpose we keep track of those inodes that have already been checkpointed, using the
boolean array inode copied[]. Assume that directory d contains file c (file c’s inode is
i) and we are checkpointing d. If inode i of c has already been checkpointed, there are
two cases: File c may be a hard link or inode i was released to the free inode list after
i was checkpointed and later assigned to file c. In the former case that c is a hard link,
we keep the entry for c in its directory i only if c was created before T I . In the latter
case, inode i in the source disk and inode i in the checkpoint disk are different. In this
case, the reused inode is not checkpointed and c’s directory entry from its parent d is
removed (in the checkpoint of d) to avoid inconsistency.

Symbolic links are checkpointed like a regular file.

Procedure 3. CHECKPOINT-HARD-LINKS()

/* executed when checkpointing the inode i */
if (d.type = directory)

/* add inodes of files in this directory to SIC */
for each child file, c, with inode ic in directory d

if (inode copied[ic] = 0)
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/* c is not already checkpointed */
request Inode List Manager to add ic to SIC

else
if ( reused inode[ic] = 1 )

remove entry for c in the checkpointed copy of d
else

/* c is a hard link */
if (c was created after checkpointing started, TI )

remove entry for c in the checkpointed copy of d
else

/* c existed before TI , so c has to be checkpointed,
we have already preserved the directory entry for c
in d but it is not required to update contents of c */

3.4 Mount points and device special files

During the traversal of the file system tree, if we visit an inode that is a mount point for
another file system, then we do not traverse and checkpoint the mounted file system.
Instead, we checkpoint the mount point as an empty directory. Similarly, when block
and character special files are encountered, only the inodes are checkpointed and not
their contents.

3.5 File Deletion

Assume that file f (inode if ) in directory d (inode id) is being deleted. Two cases are
possible:

Case i: Parent inode id is already checkpointed. In this case if if is not yet check-
pointed, then if ∈ SIC. Hence one occurrence of if is removed from SIC and the direc-
tory entry for f in the checkpointed copy of d is removed. Multiple entries for the same
inode may be found in SIC because the checkpointing process may visit multiple hard
links associated with the same inode before the inode is checkpointed to the destination
disk. If if has been checkpointed, then if is not in SIC and unlink() can remove the link
without any changes to the checkpoint.

Case ii: Parent inode id is not yet checkpointed. If if is already checkpointed, then
it must have been done because of a link to if in another directory i′d. Hence, no addi-
tional processing is necessary. If if has not been checkpointed, no additional processing
is required in this case also since its parent has not been checkpointed. The unlink() sys-
tem call removes the link from the file system.
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We next show the modifications to the unlink() system call. Access to SIC by
different processes and threads is synchronized by Inode List Manager.

Procedure 4. UNLINK (f, d) /* f, the file that is unlinked, d, its parent */

/* this code is to be added to the Unix system call unlink() */
if ((inode copied[if ] = 1) && (if .linkcount = 1))

/* this inode is going to be freed */
reused inode[if] ← 1;

if (inode copied[id] = 1)
/* parent has been checkpointed */
if (inode copied[if ] = 0) {

/* if is not checkpointed */
request Inode List Manager to remove {if} from SIC
remove entry for if in checkpointed copy of id

}
unlink(f ) /* execute unlink() system call on file f */

3.6 File Creation

A small modification to the ln() system call is required to keep track of hard links
that are created while checkpointing is in progress, i.e., after T I . This is used by the
checkpointing process when it encounters a hard link, as explained in [Section 3.3].

3.7 Preserving inconsistencies of source file system

Any inconsistencies (with respect to sharing of data blocks by two files) that exist in
the source file system before checkpointing starts, must be preserved in the destination
file system. For this purpose, we use boolean array blk copied then deleted[] (initially
all false) to identify the blocks that were checkpointed and then released when an entity
outside the checkpointing process executes the unlink() system call. This information
can be used later to determine if a block was reallocated to another file, or an inconsis-
tency existed in the source file system. If the source file system has an inconsistency, it
is preserved in the checkpoint.

3.8 Initializing the destination file system

After the checkpointing algorithm terminates, the super block, the block bitmap, the
inode bitmap, etc. of the destination disk must be set correctly. The link count of an
inode i in the destination file system may not properly reflect the number of hard links
(directory entries) pointing to i.
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4 Correctness

Assume that the algorithm begins at time TI and terminates at time TΦ. We assume
that the number of files and size of each file in the source file system is finite. Consider
a file f with a pathname “/pn/pn−1/. . ./p2/p1/f ” where p1 is the parent of f, p2 is the
parent of p1, etc. File f is a static path file with respect to the checkpointing process
(that executes between TI and TΦ) if f satisfies the following conditions:

(i) The pathname of f is preserved between TI and TΦ, i.e., neither f nor any of its
ancestors (p1, p2, . . . pn) in this file system tree have been moved or deleted.

(ii) File f or any of its ancestors (p1, p2, . . . pn) in the file system tree may be
renamed between TI and TΦ without changing the associated inode. In other words, one
of f ’s ancestors, say p2, that was associated with an inode number 5, may be renamed as
q2, where q2 also refers to the same inode 5 (as it existed before the rename operation).

We shall now show that the checkpointing algorithm will correctly checkpoint a
static path file.

Theorem 1. If f is a static path file during the time interval of checkpointing [T I , TΦ],
then f is part of the final checkpoint under the same hierarchy and its contents are copied
correctly.

Proof. We prove this by induction on the height h, of f, in the file system.
Basis (h = 0): In this case, the root directory, “/” , is the file under consideration.

Locking inodes ensures that a consistent copy of the root directory is checkpointed.
Hypothesis: Each file fh at height h is checkpointed.
Induction Step: To prove: Each file fh+1 at height h+1 is checkpointed. Let fh be

an arbitrary file at height h. Let fh+1 be a file which is a child of fh. Since fh+1 is
not deleted or moved, the inode for fh+1 is added to SIC when fh is checkpointed.
By the induction hypothesis, fh is checkpointed. After checkpointing a file, its inode is
removed from SIC. Since the number of files in the file system is finite and the size of
each file is finite, the algorithm terminates. Thus, fh+1 is guaranteed to be checkpointed
and removed.

To show that the contents of a static path file f (with respect to [T I , TΦ]) are pre-
served in the checkpoint, we observe that the inode of file f is locked when it is being
checkpointed. We need to consider the following 2 cases:

Case 1: Each block of f in the source disk is copied to the same block in the des-
tination disk (no translation of disk blocks is needed). In this case, all the data blocks
corresponding to block addresses in inode of f, including those blocks pointed by ad-
dresses in indirect blocks, are copied to the destination disk and no block is missed.
Also, all disk addresses are preserved. Hence the file content is preserved.

Case 2: Translation of blocks is needed. In this case, if there is translation of some
block from b to b′, then the corresponding disk address in the inode, or an indirect
block, is also updated. Hence, file content remains intact.

The proof of [Theorem 1] follows. �
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Theorem 2. If the source file system is consistent [see Section 2], then the destination
file system is also consistent.

Proof. For the destination file system, we prove the following assertions.

Assertion 1. Free blocks of the destination file system do not contain file contents.

Proof. The array, dest blk copied is initialized to 0. For each block i on the desti-
nation that has been copied from the source file system during the checkpointing,
dest blk copied[i] = 1. Since all files are checkpointed, their contents are also copied.
If dest blk copied[i] = 0, for some block i, then i is a free block.

Assertion 2. If the source disk is consistent, a data block in the destination file system
belongs to only one inode.

Proof. Since the source file system is consistent, every data block in the source file
system belongs to one inode only. A data block in the source file system, b, is copied
to destination block b, only if dest blk copied[b] = 0. After copying, dest blk copied[b]
is set to 1. If a reused data block is encountered [see Section 3.2], then its contents are
copied to another block b ′ that is free on the destination disk and dest blk copied[b ′] is
set to 1. Since there is no data block in the source file system such that it is referenced
by two inodes, a data block can belong to one inode only.

Assertion 3. All file attributes except the link count of the file’s inode are preserved.

Proof. Locking the contents of the entire inode while copying it ensures that all the file
attributes (excepting the link count) are preserved. The link count is an inode attribute
and depends on the number of files pointing to the inode. The inode link count in the
destination file system is same as that in the source file system if hard links are not
created or deleted. In all other cases, the link count may be different.

Assertion 4. All symbolic links are preserved.

Proof. A symbolic link is similar to a regular file with its own inode number having the
path name of its target as its content. Each symbolic link is checkpointed like a regular
file. Thus the semantics of symbolic link are preserved.

Assertion 5. Hard links which are static path files with respect to the checkpointing
process are preserved as long as the hard links are not created or deleted between T I

and TΦ.

Proof. When an inode i is checkpointed, inode copied[i] is set to 1. If a file f, which
has the same inode number i, is encountered subsequently when its parent directory d
is being checkpointed, there are only two cases: f may be a hard link to inode i or the
inode might have been released and subsequently reassigned to a newly created file as
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Figure 3: Files missed by the Checkpointing algorithm.

explained in [Section 3.3]. The latter case is identified by checking if reused inode[i] is
set to 1 (during the unlink() system call as shown in [Section 3.5]). If reused inode[i]
was 0 then the file f is a hard link to inode i. In this case, we preserve the entry for f in
its directory d in the destination disk only if f was created before T I . If f was created
after TI , then it is not necessary to checkpoint f as explained in [Property 2].

The proof of [Theorem 2] directly follows from the above assertions. �

Theorem 3. A data block whose contents never existed in the source file system, is
never found in the checkpointed copy.

Proof. Assume for contradiction that such a data block x exists in the checkpoint. Thus,
dest blk copied[x] should be 1 because if it was 0 it would have been marked as free in
the block bitmap. But by [Assertion 1], only the blocks that contain contents of a file
in the source file system will have dest blk copied[] set to 1. This contradicts our claim
that block x is part of the checkpoint. �

5 Properties of the Algorithm

Consider a file f with pathname “/p5/p4/p3/p2/p1/f ” where p1 is the parent of f, p2 is
the parent of p1, etc. Files may be moved around in the file system tree in such a way
that the checkpointing algorithm may terminate without copying the content of a file
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that existed from TI to TΦ. An example of this case is illustrated in [Fig. 3], where file
f exists from TI to TΦ but is not being copied to the destination disk.

The example of [Fig. 3] shows that the checkpointing algorithm does not encounter
file f during its execution because of the move operation that happened between T I

and TΦ. Such a file f is not a static path file with respect to [TI , TΦ]. When p2 is
checkpointed subsequent to the move operation, file p 1 is not found in p2, and hence
the inode of p1 is not added to SIC. File p1 cannot be accessed by the checkpointing
algorithm through p4 because the algorithm had already checkpointed p 4 and does not
visit p4 again.

We now describe some properties that the checkpointing algorithm satisfies.

Property 1. For a directory d and files f1 and f2, if file f1 is deleted (unlink()ed) from
d, and subsequently f2 is created in d, then both f1 and f2 will not appear in the
checkpoint of directory d.

Proof. Assume, for contradiction, that both f1 and f2 are part of the checkpoint of
directory d. Since inode of d is locked when its children are added to SIC, only the
following sequences of events may occur because of the atomic execution of the system
calls.

Case 1: unlink f1; create f2; checkpoint d (add children of d to SIC)
In this case, f1 is not in SIC but f2 is in SIC. Hence only f2 appears in the checkpoint.

Case 2: unlink f1; checkpoint d; create f2

Here, both f1, f2 are not in SIC. Hence both f1, f2 will not appear in the checkpoint.
Case 3: checkpoint d; unlink f1; create f2

In this case, f1 is in SIC, f2 is not in SIC. Hence only f1 appears in the checkpoint.
This suffices to show that [Property 1] is true for the checkpointing algorithm.

Property 2. Files created, deleted or moved between TI and TΦ may or may not be
part of the checkpoint.

We consider all possible cases of file deletion with respect to the checkpointing
process and show that the algorithm satisfies [Property 2] in all these cases:

Case 1: Suppose a file f is checkpointed at Ta and then deleted at time Tb (TI <

Ta < Tb < TΦ). In this case f exists in the checkpoint, as the inode of f, i, will not
be in SIC. Also, it is correct to include file f in the snapshot, as it existed before the
checkpointing process started at time TI , and we already have a consistent copy of the
file.

Case 2: The case where f is deleted while it is being checkpointed is similar to
Case 1, as the delete operation on f can be done only when the checkpointing process
releases the lock on i.

Case 3: If f is deleted when its parent was already checkpointed and f has not
yet been checkpointed, then i ∈ SIC. File f is not included in the snapshot as the unlink
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causes i to be removed from SIC, and the checkpointed copy of its parent is also updated
to reflect the deletion of f.

Case 4: If f is deleted at time Ta (TI < Ta < TΦ), when neither f nor its parent
has been checkpointed, then f will not appear in the checkpoint. This is because, when
the parent is checkpointed subsequently, the entry for file f will not be present and i is
never included in SIC.

In a similar manner, it can be shown that a file that is created while checkpointing
is in progress may or may not be checkpointed.

Property 3. Hard links created and deleted between TI and TΦ may or may not be
checkpointed.

[Assertion 5] proves that static path hard links will be preserved if they are not cre-
ated or deleted when checkpointing is in progress. When an entity external to the check-
pointing process removes a hard link f of an inode i which is not yet checkpointed and
is in SIC, as explained in [Section 3.5], f is removed from SIC and thus is not preserved
in the checkpoint. It will be preserved if f is removed after inode i was checkpointed.
A link f to inode i that is created in a checkpointed directory d is not checkpointed
and by [Property 2], it is acceptable to miss f from the checkpoint. In all these cases,
[Property 3] is satisfied.

Property 4. Let S0 be the state of a file f just before TI . Let seq = (ei: 0 ≤ i ≤ n) be
a sequence of events that modify the contents of file f (for example system calls such as
read(), write(), etc.). Sn+1 is the state of f just after TΦ. Then the state of the file in the
checkpoint is exactly Si for some i (0 ≤ i ≤ n).

This property is ensured since the inode is locked while it is being checkpointed.

Property 5. A file f existing in the destination disk has an inode i, only if that file had
an inode number i in the source disk.

When an inode i is checkpointed, inode copied[i] is set to 1. If a hard link to the
same inode is encountered subsequently, it is preserved in the checkpoint. But if the
checkpointed inode i is freed because all the files pointing to it are removed from the
file system and then reassigned to a new file created subsequently [see Section 3.3],
then i is recognized as a reused inode and hence i is not checkpointed. In both cases no
new inode number is assigned in the destination file system. Hence [Property 5] holds.
The association between inode numbers on the source and the destination disks may be
a valuable forensic evidence.

6 Related Work and Conclusion

Checkpointing process states has been successfully used for fault-tolerance and has
been studied extensively in distributed systems [Chandy 1985][Koo 1987] and mobile
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systems [Prakash and Singhal 1996]. File system checkpointing approaches presented
in [Pei et al. 2000] try to minimize the overhead of the checkpointing process, but do
not address the issue of reduction in system performance.

Traditional backup systems are built to recover files that are accidentally deleted.
Several projects (Coda at CMU and Echo at DEC/SRC) explored backup by replica-
tion [Hisgen 1990, Satyanarayanan et al. 1990]. The Unix file system does provide the
capability to take periodic backups [Preston 1999]. However, these are only taken with
the aim of protecting data and they require the entire file system to be quiescent.

File systems such as the Elephant file system [Santry 1999], Plan-9 [Presotto 1992],
AFS [Howard et al. 1988] and WAFL [Brown et al., Hitz et al. 1994] provide the capa-
bility to take periodic file system checkpoints of online file systems. WAFL is a file sys-
tem similar to Unix and has inherent snapshot capability allowing snapshots of the file
when users are modifying files. WAFL needs sizable free space for copying blocks and
locks the entire file system. Valuable forensic evidence may be lost as disk and inode
number associations between the source and destination disks are not maintained even
if only small parts of the files are changed, and file system inconsistencies of the source
are not maintained in the checkpoint.

In comparison, our work presents a low-intrusive disk checkpointing algorithm that
can be used in the digital forensic analysis of a hard disk. In addition, our algorithm
can be used to take periodic backups of the hard disk without locking the file system.
The algorithm satisfies several correctness conditions and its speed can be fine-tuned so
that other processes can access the disk without long waits. The algorithm attempts to
preserve disk address associations (when files are not modified) and some file system
inconsistencies that may be useful in digital forensic analysis. Our results can also be
integrated into a network operating system.

Usually remnants of deleted files are found in unallocated sections (inodes and data
blocks) of the storage medium. Our disk checkpointing algorithm, as described in this
paper, obtains a snapshot of only those data blocks or inodes that are associated with
the file system tree. In order to maximize the amount of digital evidence collected, we
can augment disk checkpointing with functionality that copies the contents of all unal-
located data blocks into a log file in a manner that can be easily analyzed by available
utilities.

Currently, we are implementing the checkpointing method as a tool built in the
Linux kernel (version 2.4). The details of the implementation, when complete, along
with performance measures will appear elsewhere.
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