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Abstract: Intrusion Detection Systems (IDS) are responsible for monitoring and analyzing host
or network activity to detect intrusions in order to protect information from unauthorized ac-
cess or manipulation. There are two main approaches for intrusion detection: signature-based
and anomaly-based. Signature-based detection employs pattern matching to match attack sig-
natures with observed data making it ideal for detecting known attacks. However, it cannot de-
tect unknown attacks for which there is no signature available. Anomaly-based detection uses
machine-learning techniques to create a profile of normal system behavior and uses this profile
to detect deviations from the normal behavior. Although this technique is effective in detecting
unknown attacks, it has a drawback of a high false alarm rate. In this paper, we describe our
anomaly-based IDS designed for detecting malicious use of cryptographic and application-level
protocols. Our system has several unique characteristics and benefits, such as the ability to mon-
itor cryptographic protocols and application-level protocols embedded in encrypted sessions, a
very lightweight monitoring process, and the ability to react to protocol misuse by modifying
protocol response directly.
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1 Introduction

Cryptographic protocols are communication protocols that rely upon cryptography to
provide security services across distributed systems. Applications are increasingly rely-
ing on encryption services provided by cryptographic protocols to ensure confidential-
ity, integrity, and authentication during secure transactions over the network. However,
the security provided by these encryption services might be undermined if the underly-
ing security protocol1 has design or implementation flaws. In fact, research has revealed
numerous weaknesses in security protocols [Dolev and Yao 1983, Millen et al. 1987,
Meadows 1992, Lowe 1996, Mitchell et al. 1997, Song 1999] with results ranging from
the misuse of encryption [Syverson 1994] to compromising the private encryption key
[Brumley and Boneh 2003]. Much research in this area has focused on applying formal
methods for analysis and verification of security protocols, and although much of this
research was successful in detecting flaws in and improving the protocols, it remains a

1 The terms cryptographic protocol and security protocol are used interchangeably throughout
this paper.
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fact that complete security of cryptographic protocols is still a work in progress. Given
the imperfect nature of security protocol design, it can be concluded that in order to
improve the confidence in security protocols, detecting intrusions in those protocols is
important.

Intrusion detection is a well-studied field, and two main detection approaches have
been in use for several years: signature-based and anomaly-based. The signature-based
approach is effective for detecting known attacks, since it matches the monitored data
with a database of known attack signatures to detect suspicious activities. However,
due to its reliance on attack signatures, it is ineffective against previously unknown
attacks and modified versions of known attacks. In addition, available but imprecise
signatures may cause increased false positives. Anomaly-based detection tries to ame-
liorate these problems by focusing on modeling normal system behavior in order to be
able to detect behavioral deviations. A normal system behavior profile is created by ob-
serving data over a period of time, and then intrusions are detected as deviations in the
monitored behavior, enabling anomaly-based detection systems to detect novel attacks.
Although this is a distinct advantage over signature-based systems, anomaly-based sys-
tems have demonstrated difficulty in selecting system features in order to characterize
normal behavior in such a way that any subtle deviation caused by malicious activities
is not missed, and at the same time expected deviations do not generate alerts. Fur-
ther, imprecise normal behavior profiles may increase false alerts, limiting the applica-
tions of anomaly-based systems in practice. However, recent research has introduced
a new approach, specification-based detection, which has been applied to address the
problem of high false positives. The specification-based intrusion detection approach
uses manually developed specifications to characterize the legitimate system behavior,
rather than relying on machine-learning techniques to learn the normal behavior, thus
eliminating false positives caused by legitimate but previously unseen behavior. The
advantages of specification-based and anomaly-based approaches were combined by
[Sekar et al. 2002] in their specification-based anomaly detection system, which greatly
simplifies feature selection while being able to detect novel attacks.

Given the success of current intrusion detection technology, applying it to detecting
intrusions in cryptographic protocols seems to be an attractive choice. However, most
network intrusion detection systems inspect network packet fields in order to match
them with attack signatures or to generate a high-level model of interactions between
communicating principals to detect suspicious activity. These activities are infeasible
at the network level when protocol sessions are encrypted, which suggests that appli-
cation level techniques must be employed in such a setting. Indeed, recently, Yasin-
sac [Yasinsac 2000] demonstrated that dynamic analysis of security protocols, rather
than a static analysis as in the case of formal methods, enables detection of certain
class of attacks on cryptographic protocols. Yasinsac’s technique is based on protocol-
oriented state-based attack detection, which reconstructs protocol sessions in terms of
state models and matches these with previously generated attack state models to de-
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tect attacks. However, the attack behavior is modeled as state-machine representations
of execution traces of known protocol attacks, which is essentially a signature-based
technique, and hence has a drawback of not being able to detect novel attacks.

1.1 ProtoMon

Our technique derives inspiration from the specification-based anomaly detection sys-
tem of [Sekar et al. 2002] and inherits its benefits, such as reduced false alarm rate, sim-
plified feature selection and unsupervised learning. In this paper, we propose a novel ap-
proach of instrumenting shared libraries for cryptographic and application-level proto-
cols to be able to detect and prevent intrusions in those protocols. Our approach detects
attacks on protocols embedded in encrypted sessions since we integrate the monitoring
into processes taking part in the protocols. Monitoring at a gateway or even another pro-
cess on the same machine will not be able to detect these attacks. The framework that we
propose has the ability to move data collection and analysis off the host to make the per-
formance impact minimal. Also, moving the analysis from the hosts to a central protocol
monitor process makes it possible to correlate alerts in order to further reduce the false
alarm rate and to detect network-wide attack patterns, but we did not explore this in our
research prototype, and we leave this possibility for future work. In addition to describ-
ing the system design, we present experimental results to demonstrate the effectiveness
of our approach in detecting some of the recent attacks on OpenSSL, such as timing
attacks and password interception [Brumley and Boneh 2003, Canvel et al. 2003].

2 Related Work

Intrusion detection is a heavily studied topic, and so in this section we only highlight
the work that is most directly related to the techniques we propose in this paper.

The most important characteristic of an anomaly-based IDS is its technique for
learning “normal behavior.” One of the most common approaches is to use probabilis-
tic techniques, learning models of particular features of normal network traffic (as is
done in the SPADE [Staniford et al. 2002], an anomaly detection plugin for Snort) or
of other measurable characteristics such as system calls (such as the work of Forrest and
Somayaji [Forrest et al. 1996, Somayaji and Forrest 2000]). Our approach is somewhat
like a combination of these techniques, where we model normal network protocol char-
acteristics, but do so in a host-based system so that we can peer into encrypted packets.

More advanced modeling techniques have been applied to anomaly detection as
well, including cluster analysis and data mining. Both NATE [Taylor and Alves-Foss
2001] and CLAD [Arshad and Chan 2003] are anomaly detection systems based on
cluster analysis; however, both are based on sampling packet fields to determine pro-
tocol abuse, which is not possible for protocols wrapped in encrypted sessions. An
example of data mining for anomaly detection is the work of Lee and Stolfo, who pro-
pose a system in which normal usage patterns are formed by learning (mining) large
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amounts of audit data [Lee and Stolfo 1998]. While this is an interesting direction, the
complexity of such a system makes it currently unsuitable for real-time intrusion de-
tection unless a distributed detection framework is designed. It is possible for these
techniques to be applied indirectly in our setting, by incorporating them in the analysis
engine, but we leave this possibility to future work.

All of the approaches to anomaly-detection discussed above have one common
problem: choosing the correct features to be learned in order to create an accurate be-
havior profile of the system. Consequently, attacks that manifest themselves as anoma-
lies in the features not included in the normal behavior profile are likely to be missed.
This problem is ameliorated by a new variant of anomaly detection, specification-based
anomaly detection, which uses specifications of protocols given in standard documen-
tation like RFCs to select appropriate features. Use of protocol specifications enables
manual characterization of legitimate behavior rather than learning the normal behavior
by observing data over a period of time. As another advantage, this approach alleviates
the problem of high false positives evidenced in the anomaly detection, by eliminating
the false positives caused by behaviors that are legitimate but absent in the training data.

Sekar et al. proposed a method, specification-based anomaly detection, that uses
state-machine specifications of network protocols and statistical learning to map packet
sequence properties to properties of state-machine transitions for detecting network in-
trusions [Sekar et al. 2002]. The effectiveness of their approach is evidenced at a net-
work gateway by successful detection of most attacks by simply monitoring the distri-
bution of frequencies with which each state transition is taken. However, as noted by
Sekar et al., current intrusion detection techniques rely primarily on inspecting network
packet fields to gather information about the system behavior, which becomes infeasi-
ble when sessions are encrypted. With the advent of IPv6 and and wider use of IPSec
this problem will get worse, as there will be more end-to-end encrypted connections
making network-level detection techniques ineffective for detecting application-level
attacks. Our approach addresses this problem by embedding the monitoring into the
protocol process, thus eliminating the need for inspection at the network level.

The problem addressed by our work and others in detecting abuse of security proto-
cols is complementary to the problem of designing secure protocols. Extensive work has
been done to formally verify and test the security protocols to prove that they are secure.
Several works have been published on the topic after [Needham and Schroeder 1978]
expressed the need for techniques for cryptographic protocol analysis, and Dolev and
Yao [Dolev and Yao 1983] developed a polynomial-time algorithm for deciding the se-
curity of restricted class of protocols. Based on these foundations, several tools for for-
mally analyzing security protocols were developed including special-purpose model-
checkers such as the Interrogator [Millen et al. 1987] and the NRL Protocol Analyzer
[Meadows 1992], and general-purpose model-checkers such as FDR [Lowe 1996] and
Mur [Mitchell et al. 1997]. More recent work by Song has addressed the problem of
state space explosion experienced by model checkers, promising more efficient formal
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analysis tools [Song 1999]. However, given that the protocol security problem is unde-
cidable [Cervesato 1999, Heintze 1996], these techniques have limits to their complete-
ness, meaning that the analysis tools will not be successful all the time. In addition,
turning a protocol definition into a concrete implementation often introduces vulner-
abilities that are not present in the protocol specification. Therefore, supplemental to
the formal methods, a mechanism such as ours for detecting misuse of cryptographic
protocols is highly desirable in the production environment. This argument is further
strengthened by recent research results that continue to uncover serious flaws in cryp-
tographic protocols [Brumley and Boneh 2003, Canvel et al. 2003].

More recently, this issue was addressed by Yasinsac who applied classic knowledge-
based and behavior-based intrusion detection techniques for detecting intrusions in se-
curity protocols [Yasinsac 2000, Yasinsac 2002]. This technique develops signatures of
protocol attacks by gathering information from three sources:

– Known attacks identified in the literature.

– Attack taxonomies identified in the literature.

– Flaws and suspicious activity gathered during execution.

The attack signatures are developed from protocol execution traces modeled as state
machines, which are then used by the detection system for matching with the state ma-
chines that are dynamically built during actual protocol execution. Unlike our approach,
this approach requires explicit knowledge of attack signatures in terms of protocol ex-
ecution traces, making it a signature-based system. Our approach, using the anomaly-
based methodology, needs no prior knowledge of attack signatures, thus enabling it to
detect novel attacks as well as modifications of known attacks.

3 Overview of ProtoMon

Identifying protocol implementation libraries is our first step for instrumenting embed-
ded monitors in the protocol process. We implement the embedded monitors inside
shared libraries for security protocols, giving those libraries the capability of acting as
sensors within our monitoring framework. The benefit is that intrusion detection capa-
bilities are inherited by any application which uses the libraries. For example, multiple
applications on a Linux host may use libssl to protect communication, so instrumenting
this one library gives monitoring functionality to all these applications. While we found
one small problem in providing completely application-transparent intrusion detection
sensors (see the end of section 3.1.3 for a description), this design proved easy to im-
plement and very flexible. It should be noted that unlike traditional IDS sensors which
extract data from passive sources such as audit logs, our sensors are directly integrated
inside the process and generate signals as the process executes.
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Figure 1: Generic Protocol Monitoring Framework

3.1 Generic Protocol Monitoring Framework

[Fig. 1] shows the basic architecture of our system, which we describe more fully in the
remainder of this section. Our system is a generic protocol monitoring framework that
can be configured as a host-based intrusion detection system or as a central protocol
monitor for all hosts on a network, moving data collection and analysis off the hosts to
minimize the performance impact, as illustrated in [Fig. 1]. Our framework consists of
three main components: the protocol monitor, pluggable protocol behavior profiles, and
monitor stubs. We now briefly describe each of these components.

3.1.1 The Protocol Monitor.

The protocol monitor is primarily responsible for collecting and analyzing the protocol
state transition notifications sent by the stubs and detecting anomalies in the protocol
behavior. The anomalies are detected by building a short-term profile of the protocol
usage and comparing it with the normal behavior profile built during the learning phase.
We show in section 4 that most of the attacks that are within the scope of our system
are detected by monitoring the state change notifications. The protocol monitor can be
operated in three modes, learn, detect, and prevent, which are described next.

Learn mode. In the learn mode, the protocol monitor creates normal behavior pro-
files for target protocols by taking manually developed protocol state-machine speci-
fications and then observing training data for a period of time to be able to perform
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statistical analysis of state transitions reported by monitor stubs. It is important that
the training data reflects the expected usage pattern of the protocol so that the resul-
tant normal behavior profile captures the correct expected behavior, thus reducing the
false positives. However, it should be noted that since we use the specification-based
approach, the scope of the learning phase is limited to statistical analysis of legitimate
protocol use, rather than learning the legitimate use itself, so this system is less suscep-
tible to false alarms generated by legitimate behavior that is unseen in the training data.
Further, the usage statistics of the network services, and hence the use of the protocols,
can vary significantly depending on day and time, so ProtoMon can gather statistics
specifically for different time periods. In our experiments we use 6 different time slots
for each day, but this is of course easily adaptable to other usage patterns. The statistics
collected by the monitor in learn mode are:

– Maximum number of protocol sessions for each time slot.

– Maximum number of broken protocol sessions for each time slot.

– State transition statistics. These include the average of the number of times each
state transition is taken. The averages are calculated per second, per minute, and
per hour to be able to detect attacks that create sudden and short-term anomalies as
well as attacks that cause slow and relatively long-term anomalies.

At the end of the learning phase the protocol monitor creates a normal behavior profile
for each monitored protocol by recording and averaging the statistics mentioned above.

Detect mode. The normal protocol behavior profiles created in the learning phase
are subsequently used by the protocol monitor in the detect mode as a protocol usage
baseline, both in terms of legitimate protocol use and expected protocol usage statistics.
We define a tolerance limit for the deviation of protocol behavior as the maximum
deviation from the normal behavior that is acceptable and is not flagged as anomalous.
The protocol monitor creates a short-term protocol usage profile at regular intervals by
observing the data and comparing it with tolerance limits of the baseline provided by
the normal behavior profile to be able to detect specification violations and statistical
anomalies. To be able to successfully execute an undetected attack, the attack must
not create any protocol behavior anomalies and must strictly follow the protocol state
transition specifications. Any attempts that cause specification violations or behavior
anomalies are immediately detectable.

Prevent mode. Intrusion response is an active field of research and various ap-
proaches are currently in use, with the most common using techniques such as blocking
traffic from offending IP addresses and forcefully resetting connections (e.g., as done
by PortSentry [Psionic Technologies]). However, these techniques could be used by an
adversary to make an IDS block the traffic from non-offending IP addresses causing a
denial of service. We address this issue, as it pertains to responding to protocol misuse,
by using the prevent mode of operation. In prevent mode, upon detecting a protocol
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behavior that rises above the upper tolerance limit, the protocol monitor coordinates
with the monitor stub and slows down the protocol response. This is possible because
of our positioning the monitor stubs inside the protocol process, which allows the mon-
itor stub to introduce a delay in each protocol state transition as long as the protocol
monitor signals anomalous behavior. This is similar to some previous systems, includ-
ing pH’s technique of introducing system-call delays in processes that show abnormal
behavior [Somayaji and Forrest 2000], and LaBrea’s technique of deliberately slowing
the connection from suspected scanner machines [LaBrea]. Our embedded stubs force
the protocol behavior to remain within the upper tolerance limit, causing attacks that
need a large number of sessions to be slowed down to the point where they are no
longer effective. Further, elongating the time needed for the attack to be successful al-
lows for human intervention. Also, as a supplemental response to the detected attack,
alerts generated by the protocol monitor could be used to invoke other response mech-
anisms, such as at the router, to stop an attack. Since the stubs remove the delays once
the behavior returns back in the tolerance limit, the protocol is not completely halted
and our mechanism cannot be used by an attacker to cause an indefinite denial of ser-
vice. However, it should be noted that the prevent mode introduces increased network
traffic overhead due to the increased communication between the protocol monitor and
the monitor stub, as illustrated in Section 4.

Architecture of the Protocol Monitor. The protocol monitor process consists of four
threads: listener, validator, timer, and counter. [Fig. 1] shows the interaction between
these threads and the alerts that they generate. The listener collects the state change
notifications generated by the monitor stubs and inserts them into a notification queue.
The validator thread picks up the notifications from the notification queue and validates
them against the protocol specification to detect any specification violations. It also
generates statistics of protocol usage which are later used by the counter thread to create
a behavior profile. Valid state change notifications are inserted in the timer queue for
timing each state, which allows the protocol monitor to generate timeout alerts if the
protocol state machine is aborted before the final state is reached. Observing the number
and frequency of timeout alerts detects some of the side channel attacks described in
Section 4. The counter thread constantly compares the normal behavior profile with the
short term profile, referred to as “Runtime statistics”, that it generates using the state
transition statistics, collected by the validator thread. Significant difference between the
state transition statistics in the short term profile and the ones in the normal behavior
profile are detected as anomalies by the counter thread.

3.1.2 Pluggable Protocol Behavior Profiles.

At the end of the learning phase, protocol behavior profiles are generated for all target
protocols. A behavior profile has a specification component, which is manually devel-
oped in terms of a protocol state-machine by studying implementations of the protocol
and standard documents like RFCs. The specification component is complimented by a
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statistical component, which is built during the learning phase, in which training data
is used to learn normal protocol usage statistics. The specification component charac-
terizes legitimate protocol usage in terms of valid states, start states, final states, and all
valid state transitions. The rationale behind incorporating these two components is that
some of the attacks cause the protocol to directly violate the protocol specification and
are thus detected immediately by validations performed against the specification com-
ponent, whereas attacks that may not generate specification violations but merely are
manifested as traffic or usage anomalies are detected due to the usage baseline provided
by the statistical component. It is important that the training data resembles the use of
the protocol in the target environment to ensure increased precision of behavior profiles,
and, as stated earlier, we can use different profiles for different time periods. Profiles
generated in this way are then loaded in to the protocol monitor and are used to be able
to enforce legitimate and expected protocol usage and to detect attacks as anomalies.

The following is a sample simplified entry in the learned profile of OpenSSL for a
weekday afternoon. In this example we only show a subset of 13 states, rather than a
full specification of SSLv3, which would require 70 states (and a combined SSLv3 and
SSLv2 specification requires 108 states). However, even with the simplified example,
the basic structure can be seen.

Statistics weekday afternoon{

8464 {8496 1 64 3779}
8496 {8512 1 64 3779} {8656 0 0 0}

8512 {8528 1 64 3779}

8528 {8544 1 64 3779}
8544 {8560 1 64 3779}

8560 {8448 1 64 3779}
8448 {8576 1 64 3779} {8640 0 0 0} {3 1 64 3779}

8576 {8592 1 64 3779}

8592 {8608 1 64 3779}
8608 {8640 1 64 3779}

8640 {8656 1 64 3779} {3 0 0 0}
8656 {8672 1 64 3779}

8672 {8448 1 64 3779}
3

maxSessions=9983

maxBrokenSessions=57
}

Each line begins with a number of a current state followed by all states reachable from
that state and the statistics on that particular state transition for three different time
intervals: 1 second, 1 minute and 1 hour. This enables detection of attacks that create
short-term anomalies which might not get manifested as an anomaly in relatively long
term statistics, as well as attacks that create anomalies in the long-term statistics.
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3.1.3 Monitor Stubs.

Stubs provide a generic interface between the protocol process and the protocol moni-
tor and are integrated into shared libraries of the protocol implementation. Integrating
the stubs with the protocol libraries allows them to capture the protocol activity dy-
namically, rather than relying on passive methods such as audit logs, and to monitor
encrypted protocol sessions. Monitor stubs perform a handshake with the protocol mon-
itor to check network availability and to know the mode in which the protocol monitor
is running (learn, detect, or prevent). The stubs send protocol state change notifications
to either the local protocol monitor functioning as a host-based monitoring system, or
to a central protocol monitor for network-wide analysis and to reduce the performance
impact on the host. During the experiments, the process of integrating the stubs with
the protocol libraries required a very minimal change in the protocol implementation
files since the state transitions were clearly and directly implemented in the original
libraries, which we conjecture would be the case with any well-written protocol library.

We did experience one problem in creating completely application-independent
monitor stubs. Knowing the IP address of the source of packets is important for tracking
sessions, and for identifying the source of attacks, but this information is not necessar-
ily present in the protocol library. In our specific case, we inserted monitor stubs in the
OpenSSL library, which uses an abstraction for I/O handles. In our initial tests, using
sample OpenSSL applications, these I/O handles were sockets, and the source IP ad-
dress could be obtained by calling getpeername() on the socket (albeit at the cost
of a system call). However, when we experimented with the Apache web server using
the OpenSSL library, we discovered that the I/O handles in that case actually refer to
general memory buffers, and Apache itself handles the I/O, converting inputs through
a series of filters before actually reaching the OpenSSL library. Because of this, the
actual I/O socket is several levels removed from (and above) the OpenSSL library, and
it wasn’t clear how to access the socket to obtain the peer IP address. This reveals a
problem with our application-independent approach in situations where the application
hides the source of packets from the security protocol engine. We did not fully fix this
problem in our research prototype. Our OpenSSL modifications determine whether the
I/O handles refer to a socket, in which case the source IP address can be determined –
in other situations, we simply use a generic IP address for all sessions, losing the ability
to identify the attacker. We suggest that a production system would include a way for
an application to register a callback function with the IDS monitor for giving the source
IP information, so that if it handles I/O itself it can provide the appropriate information.
Unfortunately, this means a change must be made in the application as well as in the
protocol library, but there doesn’t seem to be any way to avoid this.

3.2 Benefits of Approach

The approach taken by ProtoMon has several distinct benefits and advantages, which
we discuss in this section.
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Detection of attacks on cryptographic protocols and application-level protocols em-
bedded in encrypted sessions. As a primary contribution of our work, our system is able
to detect attacks on the application protocols that use encryption to provide authen-
tication, key distribution, and other services necessary for secure communication be-
tween participating principals. Current intrusion detection systems which detect attacks
on application-level protocols primarily analyze the application-level payload in net-
work packets to match patterns of known attacks. Use of encryption by the application-
level protocol makes this analysis infeasible since the payload is encrypted and can
only be decrypted at the application-level. We have addressed this issue by position-
ing our sensors inside the application-level protocol process. Further, application of the
specification-based anomaly detection approach enables detection of known and un-
known attacks and should keep the false positive rate low.

Generic framework. Although we demonstrate the ability of our system to detect
attacks on application-level and cryptographic protocols, the design of our framework
is generic, meaning it could be applied to any arbitrary protocol with clearly defined
specifications. As noted earlier, this will allow our system to act as a central protocol
monitor for the entire network enabling correlation of alerts generated due to behavior
deviations in protocols running on different hosts.

Response ability. Intrusion response systems aim at preventing or minimizing the
damage caused by detected intrusions. Detection systems that are based on analyzing
information from passive sources such as audit logs rely on peripheral response actions
such as isolating the target host or changing network firewall rules to block traffic from
offending IP addresses. However, the response of the application which is under attack
does not change to defend itself. In our approach, due to their positioning inside the
protocol process, the monitor stubs enable changing the response of the protocol that is
being attacked.

Lightweight. Our system is lightweight meaning it adds minimal overhead to the
host that is running the monitored protocol. The prevent mode introduces increased
overhead, as compared to the detect mode, due to the increased communication between
the protocol monitor and the stub; however, in this case the entire purpose is to slow
down protocol response, so additional overhead doesn’t seem to be a particular burden.

4 Experimental Results

For evaluation purposes we used attacks against OpenSSL, and the OpenSSL version
0.9.6 library under Linux was our primary experimental target.

4.1 Experimental setup

We carried out the experiments on a private LAN with no significant background traf-
fic and with the configuration shown in [Fig. 2]. During the learning phase, normal
OpenSSL protocol usage was simulated by using a four week access log of a real web
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Figure 2: Experimental setup

site. Any instances of attacks in the access log were removed in order to exclude the
behavior of the protocol during the attack. Statistics collected during the learning phase
were then used in the detect phase to demonstrate the ability of the system to detect
attacks not observed during the learning phase.

4.2 Attack Prevention

We categorize attacks that are within the scope of our system into two general classes:
atomic, and non-atomic. We denote attacks which need to use the protocol once or for
very few times as atomic. On the other hand, attacks that are based on using the protocol
for a large number of times, such as timing attacks, are referred to as non-atomic. Non-
atomic attacks are preventable in the prevent mode of the protocol monitor, whereas
atomic attacks are only detectable. This follows from the fact that we use an approach
of slowing down the protocol response if the protocol monitor detects the protocol be-
havior going beyond the upper tolerance limit. Atomic attacks do not generate this type
of anomaly and hence cannot be prevented by the slow-down mechanism. However, our
results show that this mechanism is effective in considerably elongating the time taken
by an ongoing non-atomic attack to complete. The slow-down-factor can be tuned to a
value that practically prevents the attack from becoming successful.

4.3 Attack Detection

In this section, we consider 3 different specific attacks on OpenSSL. We emphasize that
our intrusion detection system is general-purpose and not designed or tuned specifically
for these attacks, which are chosen simply as representative attacks on SSL that can be
found in the literature.

Side-channel attacks. Side-channel attacks have been shown to be possible and prac-
tical on cryptographic protocols based on RSA encryption routines [Brumley and Boneh
2003, Canvel et al. 2003, Klima et al. 2003, Bleichenbacher 1998]. These attacks deduce
the private key, or invert the encryption with the help of information that is unintention-
ally leaked by the protocol. In the case of a particular timing attack against OpenSSL
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Figure 3: Detection of Timing Attack on OpenSSL

implementations, it takes around 350,000 accurately timed failed session negotiation
attempts to break a 1024-bit RSA private key [Brumley and Boneh 2003]. As a general
characteristic of these attacks, each failed attempt to negotiate a session results in abort-
ing the protocol state-machine before the final handshake state is reached. Our protocol
monitor times each state and observes the increased number of timeouts, which detects
these attacks. We simulated the timing attack by tweaking the OpenSSL client library
and using a dummy SSL client application to repeatedly abort the handshake at a par-
ticular state. [Fig. 3] demonstrates the increased number of timeouts during the time
when the attack is in progress. The attack simulation took approximately 6 hours to
complete in the detect mode, whereas in the prevent mode, with 1 second delay intro-
duced in the state transitions after the threshold number of sessions were aborted, the
stub slowed down the protocol and it took an average of 7 seconds per session. As seen,
this considerably elongates the time taken for the attack to be successful. While the
original attack simulation completed all 350,000 probes in approximately 6 hours, the
prevent mode protocol monitor allowed only about 15,420 probes in the first 30 hours.
Not only would the required 350,000 probes take 680 hours at this rate, but also note
that the main characteristic of this attack, the timing of protocol events, is disrupted by
the protocol delays, rendering the attack completely ineffective.

Rollback Attacks. Wagner and Schneier pointed out possible vulnerabilities in the
specification of SSL version 3 [Wagner and Schneier 1996], and we specifically demon-
strate detection of version rollback and cipher-suite rollback attacks. SSLv3 is suscep-
tible to a version rollback attack in which the client hello message sent by the client
during session resumption can be intercepted by an intruder to change the version num-
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ber to 2, thus forcing the server to downgrade the version used in the session with that
client. If the server finds the session id supplied in the client hello message in its cache,
it assumes resumption of a previous session, but with a lower SSL version and directly
proceeds to the finished message. Further, unlike SSLv3, the finished message in SSLv2
does not include the version number making this attack undetectable. The downgrading
of the SSL version by the server exposes the server to several vulnerabilities in SSLv2.
To be able to detect this attack, the protocol monitor maintains separate session caches
for SSLv2 and SSLv3 as suggested by Wagner and Schneier. This attack is detected by
simply observing a transition from the SSL2 ST SEND SERVER HELLO A state to the
SSL2 ST SERVER START ENCRYPTION state reported by a monitor stub embedded
in SSLv2 for a session id that was previously registered with the protocol monitor by a
stub in SSLv3.

The cipher-suite rollback attack exploits the fact that the change cipher spec mes-
sage is excluded from the calculation of a MAC on the previous handshake messages,
which is used as an authentication code for the finished message. The attacker can drop
the change cipher spec message causing the server and the client to never change the
pending cipher-suite to the current cipher-suite, potentially disabling encryption and
message authentication at the record layer. Although the SSLv3 protocol specification
documents the change cipher spec message as an optional message, it is most likely a
cipher-suite rollback attack if this message is excluded from the initial handshake since
the initial configuration provides no encryption or authentication, with the exception of
the session resumption scenario. The protocol monitor requires the change cipher spec
message during the initial handshake, and dropping this message by the attacker results
in a specification violation that is immediately detected.

Buffer overflow and denial of service attacks. Buffer overflow vulnerabilities that
exist in the implementations of SSL protocol routines [CERT 2002b, CERT 2002a]
could be exploited to execute arbitrary code on the server. For example, an Apache
mod ssl worm exploited a buffer overflow during the SSLv2 handshake process. Al-
though the attacker can gain full control of the server by executing this arbitrary code,
it should be noted that the attacks that fall in this category most likely result in aborting
the state-model of the protocol at an arbitrary state. The protocol monitor detects this
behavior by using the timeout mechanism described earlier. The timeout alert could then
be correlated with the anomaly in protocol statistics reported to the protocol monitor to
detect the exploit or denial of service that may be caused by the executed code.

4.4 Behavior comparison

[Fig. 4] demonstrates the behavior of OpenSSL during the two operating modes: detect
and prevent. As seen, alerts are generated in both modes when the protocol behavior
deviates from the normal behavior beyond the tolerance limit. However, in the prevent
mode, the protocol monitor signals the monitor stub to insert delays in the protocol
state transitions upon detection of significant deviation, effectively slowing down the
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Figure 4: Protocol behavior comparison

protocol and forcing the protocol behavior to be within the upper tolerance limit of
the normal behavior. If the protocol behavior deviates toward the lower tolerance limit,
alerts are generated in both the modes.

[Fig. 5] illustrates variation in the protocol response time caused by the delays in-
troduced by the stub as a result of the protocol monitor signaling the deviation of the
protocol behavior beyond the upper tolerance limit. The behavior is sampled every sec-
ond, every minute and every hour. [Fig. 4] shows the behavior sampled every minute
with the behavior crossing the upper tolerance limit at around 180 seconds into the
experiment. As a result the protocol response time plotted in [Fig. 5] shows the corre-
sponding increase for the period of 90 seconds.

In the preliminary report of these results [Joglekar and Tate 2004], the protocol mon-
itor slowed down all clients connecting to a particular service whenever an anomaly was
detected. Since that time, ProtoMon has been enhanced to slow down only particular
clients that seem to be causing problems. It is not entirely obvious how to do this for
statistical anomalies, since the statistics give a total picture of the system behavior, and
the connection that puts the statistics out of the acceptable range may in fact not be the
malicious client. Our approach was to use the following heuristic: any client responsible
for at least 30% of the recent requests would be slowed down. This heuristic may miss
a malicious client, and it may incorrectly slow down a non-malicious client, but worked
well in our tests. We leave the problem of more reliable identification of a malicious
client as an open problem.

To test this enhancement to ProtoMon, we simulated two clients simultaneously on
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Figure 5: Protocol response time variation

two separate machines, with one client providing malicious behavior and the other client
performing within the tolerance limits of the behavior profile. [Fig. 6] shows the result
of our tests. While the malicious client is slowed down to approximately 14 seconds per
SSL session when the behavior exceeded the defined tolerance limits, the good client
continued to operate at full speed.

4.5 Performance Overheads

Given that cryptographic computations based on public key algorithms such as RSA are
complex and resource intensive, it is desirable to minimize the overhead added by any
mechanism that aims at detecting intrusions in protocols based on these algorithms. This
section shows overheads in the performance of the OpenSSL protocol implementation
caused by our detection and prevention mechanism, as measured with our experimental
setup of [Fig. 2].

4.5.1 Network Bandwidth.

The monitor stub sends state transition notifications to the protocol monitor over the
network when they are running on different hosts, resulting in additional network traf-
fic. The following table shows the average network traffic overhead over 3409 SSL
protected HTTP requests, with requests sampled from a production web server. Mea-
sured sizes indicate the size of complete IP datagrams, including all IP and TCP or UDP
header information, and measurements were taking by analyzing a “tcpdump” sniffer
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Figure 6: Two client response time experiment

log of actual traffic during the entire experiment. The request sequence had an average
data response size of 7344 bytes, with an average of 2610 additional bytes in overhead
due to SSL messages, HTTP headers, and TCP/IP headers. The ProtoMon overhead,
including IP and UDP headers, was approximately 728 bytes per SSL session in detect
mode. In prevent mode, additional packets are required to notify the protocol engine
to slow down, giving a slightly higher overhead, but only when malicious behavior has
been detected. These results are summarized in the following table, where the percent-
ages reflect the percent of total traffic (SSL and ProtoMon) due to the ProtoMon traffic.

Detect mode Prevent mode
Network overhead 728 bytes 760 bytes
per SSL session (6.8%) (7.1%)

Reducing Network Overhead. Since our initial implementation and test results with Pro-
toMon were reported, we have implemented a “traffic aggregator” to reduce network
overhead. This is simply a process that sits on the monitored machine, and collects
multiple state change notifications into a single, larger UDP packet. Since the notifica-
tion data itself is quite small, much of the ProtoMon overhead reported above is actually
IP and UDP header information, and by accumulating several of these notifications into
a single packet, we can significantly reduce the amount of bandwidth required. In par-
ticular, the traffic aggregator collects state change notifications until one of two things
happens: either a long packet is filled up, or one second of time has elapsed. At this
point, the collected data is sent to the protocol monitor in a single packet. In addition,
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since much information is repeated between successive state change notifications (the
source and destination address information is repeated, and the destination state of one
transition is the source state of the next), additional space can be saved by carefully
coding the notifications. These two changes taken together significantly reduced the
amount of network overhead required by ProtoMon, as illustrated by the measurements
shown in the following table.

Detect mode Prevent mode
Network overhead 140 bytes 172 bytes
per SSL session (1.4%) (1.7%)

While this network overhead is very modest, we note that network impact can be ba-
sically eliminated by using a second network card and routing ProtoMon traffic over a
different network.

4.5.2 Protocol Response Time.

As described in Section 4.1, we used the normal behavior profile of OpenSSL to detect
anomalies in the detect and prevent modes of operation. The following table shows
average response time of the OpenSSL enabled web server per request after anomalies
have been detected.

Response time Percentage
per request (ms) slow-down-factor

OpenSSL 385.66 -
Learn mode 404.81 4.9%
Detect mode 406.02 5.2%
Prevent mode 2080.60 439.4%

Prevent mode slows down the protocol response by the factor of approximately 4.4 for
the purpose of this experiment. This slow-down-factor can be tuned to a desired value
by adjusting the delays introduced by the monitor stubs. Consequently, the time taken
by any attack that spans across multiple protocol sessions can be elongated when the
protocol monitor is running in the prevent mode.

4.5.3 Processor overhead.

When the protocol monitor is used as a host-based detection mechanism it uses proces-
sor time on the server. Our experiment involving measurements of processor overhead
were carried out by using the protocol monitor as a host-based detection system. We
used a host with a Pentium4 2GHz processor to run the protocol and the protocol mon-
itor. The results, in the following table, show the percentage increase in the processor
usage by the protocol process when the protocol monitor is used in learn, detect, and
prevent mode.
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Processor usage Percentage
per session (ms) overhead

Standard OpenSSL 22.2 -
Learn mode 25.5 14.8%
Detect mode 25.7 15.7%
Prevent mode 26.3 18.4%

This overhead can be minimized by placing the protocol monitor process on a separate,
central host, which has the added benefit of enabling network-wide alert analysis and
correlation.

5 Future Work

Although our results indicate that our approach of embedding monitors inside the ex-
ecuting protocol process detects and prevents attacks on those protocols, there remain
several open research issues that need further attention.

First, it is possible to apply more advanced learning techniques and models to build-
ing comprehensive behavior profiles. Further research is needed in applying such mod-
els to enhance the precision of the normal behavior profile. Adaptive learning strategies
could be employed to be able to continuously modify the normal behavior profile to
take into account legitimate and expected changes in the protocol usage patterns.

In addition, the high false alarm rate experienced by anomaly-based intrusion de-
tection systems is a current research topic. We believe that alerts caused by protocols
running on various nodes in the network could be correlated to reduce false alarms gen-
erated by a centralized protocol monitoring process. This argument is strengthened by
the fact that a successful attack performed by an active attacker often involves com-
promising various network services on the network to cause maximum damage. Con-
sequently, the protocols used by these network services, if monitored at a centralized
protocol monitor, should cause alerts that could be correlated for a more comprehensive
and correct attack detection.

As discussed in Section 4, our current system is able to prevent non-atomic attacks
on cryptographic protocols. Further research is needed in order to be able to include
atomic attacks in the scope of the response mechanism proposed in this paper. It could
be possible to implement the monitor stub as a wrapper around the protocol process,
synchronously validating all the state transitions before passing them on to the protocol
process. This should allow detection of atomic attacks: for example, the cipher suite
rollback attack could be prevented by first validating the state transition to detect the
dropping of the change cipher spec message and then aborting the session to prevent
the unprotected session from continuing. However, this process of complete mediation
of all state transitions would almost certainly slow down the protocol response signifi-
cantly, even under non-attack conditions.
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6 Conclusion

The main issue addressed by this paper is real-time detection of intrusion attempts in
application level protocols encapsulated inside encrypted sessions. The results shown in
this paper illustrate that embedding the monitor stubs inside the cryptographic protocol
process restricts the avenues available to the attacker to those attacks that create neither
protocol specification violations nor protocol usage behavior anomalies, both of which
are detectable by our proposed system. The impact on both the machine being moni-
tored and the network usage is minimal, if the protocol monitor analysis engine is on
a separate system. As another contribution, this paper demonstrates that slowing down
the protocol response is an effective way to prevent certain types of protocol attacks and
minimize the damage to the system.
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