
Structural Tendencies in Complex Systems Development
and their Implication for Software Systems

Andrzej Gecow
(temporary Institute of Paleobiology, Polish Academy of Science, Poland

gecow@op.pl)

Mariusz Nowostawski

(University of Otago, Dunedin, New Zealand
mnowostawski@infoscience.otago.ac.nz)

Martin Purvis

(University of Otago, Dunedin, New Zealand
mpurvis@infoscience.otago.ac.nz)

Abstract: Contemporary distributed software systems, exposed to highly unpredictable
environments, are reaching extremely high complexity levels. For example, open
heterogeneous multi-agent systems that may potentially be spread all around the globe are
interacting with different types of dynamically changing web-services and web-technologies.
Traditional control-based handling of adaptability may not be suitable anymore in such
systems. Therefore there is a tendency for exploring different adaptability models inspired by
biological phenomena. Biological systems inherently are faced with complexity and
unpredictable environments, and they exhibit high levels of adaptability. In this article, we
present a theoretical model of development of complex system, which was built originally by
Andrzej Gecow, as a computational model in evolutionary biology. This model represents a
generic complex system subjected to long sequences of adaptive changes. The model was used
for analysis of development processes and also structural tendencies. By tendencies we mean
some phenomena that should be expected in any complex system, subjected to a long
development process. Some of these tendencies are not desirable, for example bloat of the
system. Some of the phenomena, however, show characteristics of changes that improve the
system. These characteristics can be applied to optimisation of self-producing and self-adapting
algorithms of self-maintaining complex software systems. The main structural tendencies
described in this article are: terminal modifications, terminal majority of additions, and
covering (reconstructing within the system itself disappearing environmental signals).

Keywords: complex systems, adaptable architectures, software life cycle
Categories: H.1.1, C.1.3, D.2, K.4.m, G.m

1 Introduction

In plain English adaptation is the act of changing something to make it suitable for a
new purpose or situation. In software systems, the term adaptation is used mostly, if
not exclusively, with the second semantic meaning. What is usually meant by
software adaptation is that the system will continue to fulfil its original and the same
purpose in a different set of circumstances, situation or environment. The adaptability
in such software systems may be achieved by a set of feedback loops between the

Journal of Universal Computer Science, vol. 11, no. 2 (2005), 327-356
submitted: 31/7/04, accepted: 15/12/04, appeared: 28/2/05 © J.UCS

system, the controller monitoring and changing and adapting the system, and the
environment itself. The system purpose is pre-defined in advance as a set of
specifications, which are kept within the controller. The behaviour of the system is
automatically altered if the expected outputs are outside of these pre-defined
specifications. Such models are built analogously to a way automatic control systems
work [Kokar 99]. Most of them are based on top-down design and work well in
limited environments, where changes in environment can be predicted and
constrained in advance [Meng 00]. Such adaptive systems are tuned to particular
kinds and specific levels of change in the environment.

1.1 Traditional Methods of Adaptability

Most of the adaptability in software systems is achieved via control mechanism, as in
automatics. There is a central system, with set of sensors and actuators, a controller,
and an environment. Sensors sense an environment, the system and controller can be
connected via a set of feedback loops, and the controller tries to keep the system
within pre-defined boundaries. This model is be easily implemented; however it is
static and must be applied in situations where we can predict in advance all the
changes and variations in the environment.

To make things more robust and flexible, we could implement into the controller
an ability to learn, so the rules of changing the system become more dynamic,
therefore the whole ensemble can follow changes in more dynamic environments.
Yet it still suffers from some of the drawbacks of the simple model. Although in a
different scale, there is still usually a limit of environmental change the system can
cope with, which is predefined within the learning mechanism itself.

1.2 New Requirements for Adaptive Systems and Biological Inspirations

Contemporary software systems, especially open multi-agent distributed systems (eg.
[Purvis 00]) that may potentially be spread all around the globe, interacting with
different changing web-services and web-technologies are exposed to much more
demanding, dynamic and unpredictable environments and traditional handling of
adaptability may not be sufficient anymore in these circumstances.

To fully benefit from life-like adaptability in software systems, that (at least in
theory) might match the levels of complexity of biological organism, we need a
formal mathematical model of all the fundamental concepts like: life, organism,
evolvability and adaptation. In this work we will use a formal deductive model of
process of adaptation described in detail in [Gecow 86]. The major step in
understanding the process of evolution in natural life was done by Darwin [Darwin
1859], who proposed mechanisms by which purposeful adaptive changes take place
via processes of random mutation and natural selection. Darwinian mechanisms
postulate reproduction, statistical character of change processes, and the process of
elimination. After elimination the organism ceases to exist (is not alive anymore).
The formal deductive model we are going to use is just based on these rudimentary
Darwinian mechanisms, and adaptability in software is inspired by the mechanisms
which handle purposefulness in natural life.

In this work we use a theory of evolvable ensembles. Some of these ideas have
been developed over the last three decades [Gecow 75, 83, 86], with the roots of the

328 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

proposed model traceable to the work of John von Neumann [Neumann 63, 66]. Von
Neumann submitted that a precise mathematical definition must be given to basic
biological theories. The work of von Neumann has been, most noticeably, pursued
and extended by Gregory Chaitin [Chaitin 70, 79]. A slightly different approach in
formalizing process of life has been pursued by others (e.g. [Eigen 79]).

Similarly to von Neumann and Chaitin, our model is based on the discrete model
universe, an automata space, with a finite number of states. Note however, that the
formal definition of information, which is being used throughout this article, is
defined in the context of a static collection of bits (as it was originally proposed in
[Shannon, 49]) rather than an algorithmic settings (as in [Chaitin 79]).

1.3 Theoretical Foundations

The model we discuss here can be applied to different software architectures. It is
suited for object-oriented web technologies or multi-agent systems. It is not
constrained however to these paradigms, and it can be easily implemented in any
computing paradigm, for example the presented results were obtained on a simple
computing model based on finite-state automata without memory.

For the sake of uniformity we will use the term system to denote a coarse-grained
unit of processing within a given computing framework. A system can be
implemented within the object-oriented paradigm as an object; or it can be an
individual agent from agent-oriented paradigm, etc. The important part is that the
individual system is an ensemble of lower-level structures that can be manipulated at
runtime. That is, the system can be disassembled into its individual components, and
re-assembled again during the actual operation of the system. In other words a certain
level of reflection is needed within a computing paradigm for the proposed model to
be easily implemented.

It is believed by some that the information-centric approach to theoretical biology
is a correct (if not the only) possible path to pursue the research and make progress
[Orgel 73, Chaitin 79]. We believe that using an information-centric approach with
formal mathematical models can be more effective for research in the area of
adaptability and evolvability of software systems than using pure control theory.

1.4 Research Goals

The main aim of this work is to build a proper formal theoretical model to investigate
a wide range of statistical tendencies in the evolution of a complex system. The
presented model and obtained results represent a set of preliminary, yet useful, hints.
We are looking for structural tendencies that may be useful when developing new
methodologies and tools for a new generation adaptive software systems. The
structural tendencies discussed here may identify specific change mechanisms that
statistically increase the chances of improving the system (adapt it to new
requirements). All automatic change generators for our adaptive system must have all
the information necessary to optimally generate the changes to the system (generating
hypothesis to be tested). One of the potential benefits for such an automatic change
generator may be to exploit some of the statistical properties of a collection of
interacting and interdependent entities. This is what we concentrate on in this article.

329Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

2 Foundations for the Model

2.1 Intuitions and Semantics of Base Terms

Different authors use terms like development, complexity, system, and complex
systems with different semantic meaning. It is crucial for the reader to understand and
maintain the semantic meaning of the technical terms used in this article according to
the authors’ intentions. Some vocabulary will have the semantics as used
conventionally, but some other vocabulary will depart significantly from their
colloquial semantics.

In most of contemporary research, networks are modelled as graphs [Barabasi
03], or as directed graphs. Some use binary signals between nodes, as in case of
Boolean and Random Boolean networks [Kauffman 93, Stauffer 96, Albert 00]. For
us, a system is a directed network of interacting entities, and its description is
composed of conditional relationships between these entities. The signals between the
nodes are discrete, but not necessarily binary in nature. Complexity is a measure of the
relative number of entities and interdependencies in a given system [Weisbuch 88].

As will be shown in later sections, a complex system is characterised by a set of
qualitative differences from a system, and our aim is to identify these differences. One
of the characteristics of a system is the notion of its function. The function is the
mapping between system’s inputs and its output. One can define a set of requirements
on the system function. A system’s function can be compared to a predefined ideal
function. This measure of quality will indicate the degree to which the system’s
functional outputs match the ideal functional outputs for the same inputs – similar to
that predefined ideal function (or the measure of requirements fulfilment). The
measure of this similarity is called system’s aptness.

There are many possible different interpretations of the concept of “environment”
and “system response to a given environment”. In our simulations we provide the
signals from the environment to the input of the system. These are interpreted as
external conditions in which the system exists. We assume a constant environment.
This is required by our modelling purposes. The requirements of the system are
therefore reduced to a single output vector of the system.

The system can be subjected to change. A change can be expressed as an
alteration of the number of a system’s entities, or only a modification in system’s
configuration (the network of interdependencies). Any change to the system may (and
in most cases does) change the system’s function. A process that changes a given
system in a totally random fashion we will refer as a free process. Development is a
conditional change subject to the non-decrease of the system’s aptness. A process that
develops the system, that adapts the system to the predefined ideal system’s function,
or adapts the system to the requirements, we will call: development, adaptive process,
or adaptive evolution.

2.2 Basic Assumptions

As it was introduced above, the system is treated primarily as a network of
relationships created to fulfil a particular set of requirements. The system is tuned to
the requirements by a process of change. There are three basic mechanisms that can
alter the current configuration of a given system. There is a random change,

330 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

equivalent to the free process introduced in [Section 2.1]. There is an external
constructor that controls the system and is capable of changing its configuration. And
there are self-imposed (reflective) and self-maintaining processes within the system
itself capable of altering its current configuration.

In our model we assume that the random changes are truly random and can alter
the system in many possible ways. The other two change mechanisms are
characterized by the directional change, in a way that is not decreasing the system
aptness. Therefore, any change of the system performed by the constructor or internal
system’s processes by definition must be equivalent to the development of the system.
The adaptive evolution, i.e. development, as introduced in [Section 2.1], inherently
means that the systems` aptness is not decreasing. Adaptive evolution of a system
then consists of developmental stages, where the system is changing its configuration
or structure without the aptness decrease. One can say that the system is being
changed, or adaptively evolved, by its constructor or internal processes in order to
increase its aptness. The improvement changes are the result of the following
procedure: first, random changes to the system are conducted. This is similar to the
free process. Then, the changes are tested for the aptness. If the change leads to the
aptness increase, the change is accepted. If the change leads to the aptness decrease,
the change is not accepted. This method is similar to other evolutionary algorithms, in
a way that there is a selection procedure that accepts or rejects changes generated by a
random process. For example see Genetic Algorithms [Vose 99], and Genetic
Programming [Koza 92]. If requirements imposed on the system (the ideal system’s
function) or external conditions (system inputs) have changed, it is possible for the
system’s aptness to decrease. In fact, in most of the cases the aptness will decrease.
We require the system to compensate for such aptness decrease and adapt to new
requirements by changing itself in order to maintain its aptness level.

In a relatively short time free processes will tend to decrease a system’s aptness,
and will lead to the system’s disintegration. The probability distributions of different
characteristics of developing systems differ substantially from free processes. In short
this is exactly what we look for: differences between changes in a system caused by
free vs. developmental process. By analysing these characteristic tendencies we can
infer which changes of the system are more apt for system development and for
maintaining its aptness. We will investigate the statistical differences between free
and developmental process, and we will call these differences: tendencies.

We have discovered two basic types of tendencies. These two types have
different mechanisms of origin. The first one is based on the change propagation from
change initiation point to outputs of the system. The second one is based on additions
and removals of elements of a system, and the lack of balance between these two
processes in different parts of the system. It is intuitively easy to understand that
smaller changes of system output have more chance to be adaptive. The question is
what kind of change initiation place should be used, and what the relation of this
place to system structure is. To investigate this relationship, we obtained the statistical
dependency of size of change of the system’s outputs as a function of system aptness.

Each single change of the system is like a step, (generation or iteration) in the
development process. It is not a step typical to neural networks or cellular automata.
We will refer to a single change as a single generation. Due to simplification, our
model does not contain anything that would be equivalent to a step from these

331Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

constructions. A sequence of subsequent generations represents an evolution of the
system. This is in analogy to the physical understanding of the term evolution of the
system. Evolution of the system that does not decrease a system’s aptness is referred
as adaptive evolution, or development (as discussed above). From the fact that we are
interested only in statistical tendencies of the observed process, we sometimes do not
need to use an exact iteration count to observe a directional aspect of the process
under investigation. In other words we do not need to use t (iteration count, or time
of system evolution) as g (measure of progression of the process). Sometimes it is
sufficient to use a statistically significant variable, to measure g, in order to infer the
process direction. In a developing system, a stage with smaller aptness will always
precede a stage with higher aptness. Therefore, we can use the aptness itself (variable
b) as a measure of progression of the process (g), instead of an accurate iteration
count. There are other possible variables that can be used as a measure of progression
of the process, for example N, the number of trials to adaptively change the system.
The reader should keep this point in mind during the following discussion when the
variable g is referenced.

3 Simple Vector-based Model

3.1 Representation of a System

Let us assume that a system is represented by m entities, which will be modelled
simply by properties. Each of the properties, signals, has a number of possible
variants. We assume all the variants of a given signal to be of equal probability. We
also assume that all signals have the same number s of variants. Let us represent
variant values by an integer number from 0 to s-1. We then represent a system as a
vector y: y = (y1, y2, …, yi, …, ym), where each value yi ∈ [0,s-1]. In
our simulations the number s of variants of signal was s=2,4,8,16.

To obtain a free process we simply modify the system in a random fashion. To
obtain a development of the system, first we need to define an ideal system y*. In
other words we need to provide an ideal vector y*. It represents our ideal system.
Now after any modification, the system is compared to its ideal configuration and we
obtain a parameter b – number of signals that match to the ideal state. b is a measure
of similarity of y and its ideal y* and represents aptness of the system.

)b (b a t1t ≥≡ + 1

For development we require that b cannot decrease. This condition leads to
development of a system that improves its aptness. The condition a is the adaptive
condition, t is the iteration (change) counter. After each individual change to the
system t is incremented by a fixed value 1. It is equivalent to a simulated time.

3.2 Definition of Tendency

We try to capture the differences and characteristics between adaptive and free
processes. In particular, we try to estimate and analyse differences in a probability
distribution between random changes in the system occurring without and with the

332 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

improvement condition a. This simple model presented above is enough to
demonstrate one of the fundamental tendencies: small change tendency. Let X denotes
a parameter of change for the system. P(X|a) denotes a probability of accepting the
change with parameter X subject to adaptive condition a, and P(X) is the probability
of unconditional change of the system with parameter X. P(a|X) denotes a
probability of the adaptive change of the system for a given change parameter X. The
probability distributions may change during the progression of the process; therefore
we can generalize it to multiple generations, and we use the measure of progression of
the process g to denote a current stage of the process. In the general case then, we
have from Bayes:

g)|P(X g) X,|P(a g) a,|P(X g)|P(a ⋅=⋅ 2

For a single generation, when g is constant, P(a|g) is also constant. We can
calculate the tendency by the probability of acceptance change with parameter X:
P(a|X). Or in a general case: P(a|X,g). It is important to note that one does
not have to know actual distributions of P(X) or P(X|g) to estimate the tendency.
It is enough that for different parameters X, that distribution P(a|X) differs.

3.3 Aptness in Free and Adaptive Processes

During system evolution, thanks to adaptive condition bt+1 ≥bt parameters b and t
grow together (see right side of [Fig. 1]). If the ideal system y* is constant then the
level of aptness, b, may be used in place of g (measure of system progression). It was
described in [Section 2.2] that we can use the value of aptness itself as a measure of
progression of the process, instead of a precise generation count. As we are interested
only in the statistical effects of the process, this can simplify many of the experiments
and calculations.

In free processes, probability distribution of aptness b is given by Bernoulli’s
distribution:

()
m

bm

s

1-sm
b P(b)

−
⋅⎟

⎠
⎞⎜

⎝
⎛= 3

For s=4 and m=64 the aptness distribution is shown on the left side of [Fig. 1]. It
has maximum at point b =m/s.

Let L be a number of changed signals. We will call L a change size. To show the
history of aptness, we must assume some fixed P(L) distribution. For a simple case,
let each property of a system have a probability equal to 1/4 that it will be changed –
it gives the same distribution as shown on the left side of [Fig. 1]. With such an
assumption one can see (right side of [Fig. 1]) that average aptness in (function of
generation) grows.

333Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

0 120 240

t
0

16

32

48

64 b0.10

0.08

0.06

0.04

0.02

0.00
0 8 16 24 32 40 48 56 64=m

b

P

40 80 160 200

S=4

Figure 1: Probability of aptness b in free process and average aptness history in
adaptive (t < 200) and free (t > 200) processes (for fixed P(L))

We calculated the probabilities for 200 generations, and after the 200-th change
adaptive condition was removed. We started a free process of change instead. In a few
steps aptness drops down and it achieved a level of maximum probability (shown on
the left of [Fig. 1]). The departure from the maximum probability level and growing
aptness of the system is a simple consequence of the adaptive condition, and as such it
is a simple tendency. These effects are even more interesting when analysed from an
entropy and information point of view [Gecow 86].

20 241612841
0

0.2

0.4

L = m = 64max

P(a|L,b)

b=40

b=48

b=56

L

0 4 8 12 m=16
16

12

8

4

0
1.0

0.6
0.8

0.4
0.2
0

B

L

s = 4
small change large

Figure 2: Small change tendency for higher aptness b in probability of acceptance.
L – change size, m – number of signals (properties), s – number of signal variant.

[Fig. 2] shows P(a|L,b) for s=4 and m=16 (in 3D graph) and m=64 with
three highest b=40,48 and 56 (on 2D graph) that highlight the most interesting area.
In 3D graph in the grey area on the bottom right side, the probability of acceptance
P(a|L,b) equals zero. For the interesting upper values of b only very small L
(change size) is acceptable with significant probability (hard drawn area). For m=64
this area is smaller. This is the small change tendency. If s grows, the size L of
acceptable changes becomes even smaller. The small change tendency leads to other

334 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

more useful structural tendencies. It creates also a natural identity criterion that has
more philosophical implications and may be used for definitions of life processes.

4 Model of Automata Aggregate

4.1 System Structure

The previously described model is very simple, and it is enough to demonstrate the
small changes tendency. We will extend the previous model to show other tendencies
of the developing system. Previously, however our system had only a vector of
properties. It lacked any internal structure. Now we add a system structure in a form
of aggregate of one state automata without memory. Automaton is the smallest part
(entity, building block) of system. It is a node in a directed graph. It has a few inputs
and outputs. In our simulations the number of inputs and outputs of automata in the
network is set to 2, so each of our automata have, n=2 inputs and also n=2 outputs.
This is the smallest value that we can assume for useful simulation. The system
receives signals from environment x. These signals are transformed by a complex
network (which represent the actual system structure) of interconnected automata into
system output signals. This output signals are interpreted as properties of the system
and we compare them to the ideal in order check the improvement condition a. This
is similar to the previous model. This time outputs of the system (which means
outputs of some of the finite state automata) are forming the vector y.

We change the system by adding and removing automata to and from its
interconnected network of automata. In this model the small change tendency results
in a few other structural tendencies, and as such is useful for optimisation of system
development mechanisms.

output signals

outputs
automaton
 - function

inputs

input signals

y* ideal - requirements

x environment

aggeregate
 of automata
 - structure

n=2

n=2 m=64

m=64

signal - property
choice 1 variant
of s = 2; ; 8; 164 y properties - effect of function

Figure 3: Signal, automaton and aggregate of automata, and their elements
(see text for details).

All automata transform input signals into output signals. That is equivalent to
performing a simple function. Note, that an automaton gets 2 independent input
signals and after transformation it sends 2 usually different output signals, that then
become inputs for other automata. Note, that in our model each automaton has two

335Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

independent outputs. This is one of the differences between our model and Boolean
Random networks [Kauffman 93, Stauffer 96, Albert 00], where all outputs of a
single node are always the same (not independent).

Our network of automata grows randomly, and we enforce the aptness
improvement condition (adaptive condition a). One input of automaton may be
connected to only one output of one automaton and one output of an automaton can
send a signal only to one automaton input. Free automata inputs (not connected from
other automata) get signals from the environment and free automata outputs (not
connected to other automata) are system’s outputs. Such a network of automata we
call an aggregate of automata. This is our model of system structure.

This model was built and simulated before 1999 [Gecow 75, 83], when Albert-
Laszlo Barabasi showed that most naturally occurring phenomena and systems have
scale-free distribution of k-node degree [Barabasi 99]. Our aggregate of automata is a
regular network because the number of links of each node is constant, fixed n=2 for
output and input, i.e. the degree of node is precisely k=4. Taking into account the
recent advances in the field, we are preparing a new simulation based on a scale-free
network model [Barabasi 03].

The environment is constant (except covering experiments that will be discussed
later in detail). The environment represents external conditions of system function and
has a low relationship to requirements for system function (ideal system function). In
this simple model we do not research quick system answer for an environmental
stimulus – such an adequate answer is included in the requirements themselves.

4.2 Coefficient of Change Propagation

If one of the automaton input signals is changed, then it may cause this automaton
output to be changed. This in turn will lead to other automata to receive different
inputs and in turn produce different outputs, and so on. We are interested in how
many output signals are changed, on average, after a single change in the input to a
given single automaton. To answer this question we simply calculate it from the
formula below.

()
s

1s
nw

−⋅= 4

Above, w is a coefficient of change propagation, s – the number of variants of
signal; and n – the number of automaton outputs. Only for n=2, s=2, and not
bijective functions, can we obtain w<1 and then change in network will fade out. In
this case both parameters: n and s have absolute minimum values, and we should not
expect this in real complex systems. In all other cases, the change on average will
grow in an automata network. One of the important aspects of our model is the
parameter s. In our model it is more important to have a uniform distribution of
probability of each variant of a given signal than the actual number of signal variants.
The difference in probabilities of occurrence of different variants is much more
significant than the number of signal variants. In our model we assume that the
probabilities of all variants are the same. Therefore, for modelling a single variant
which can occur with probability, for example 1/8, we have to simulate it by having
8 variants, each with 1/8 probability. In that case 7 out of 8 signals will be treated as
noise. In some situations where some probabilities are very small, it may result in a

336 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

big number of signal variants. This is directly related to the information content of a
signal. The bigger the information content, the larger number of signal variants.

If one draws the aggregate with each signal travelling between automata as
arrows, one could traverse the network simply following the arrows. If one starts from
the aggregate inputs, some automata would be visited earlier, and others would be
visited later. However, with the feedback loops it is not feasible to define a global
“earlier-later” relationship between all the aggregate’s automata. In the general case,
this relationship has only local character, we call it functional order.

For network without feedbacks, we can draw an ideal “earlier-later” relationship,
called cone of influence [Gecow 83]. Cone of influence is the functional dependency
between a given automaton and the ones this automaton can influence by its outputs.
A given automaton divides the system structure into three parts: earlier automata that
influence the given automaton (in-components as used in [Dorogovtsev 03], and
notion of supremacy [Holyst 04]), later automata (out-components) that will produce
outputs depended on a given automaton and neutral automata that are independent,
and do not influence a given automata. This is, as defined above, a functional order in
the system structure derived from the signal propagation.

A given automaton can change the outputs only of the following automata.
However, the change does not need to fill all the parts of the cone of influence. The
degree of fill depends on the coefficient of change propagation. In a given aggregate,
where all automata have the same n and s, the coefficient w is constant. The size L of
change on outputs of structure depends then only on height of the cone of influence. If
we draw aggregate, as on the [Fig. 3] where signals go from bottom up and there are
outputs in top of the structure, then this height of the cone would start at the top of the
diagram, on the system outputs, and would continue downwards down to the point
initialising the change. This is equivalent to the concept of depth of change source.
Initiation of change in deeper parts of the system structure should cause a larger
change of outputs, because it has larger cone of influence, covering more output
signals. The small change tendency should prefer small depth. This is the main
mechanism for structural tendencies.

4.3 Depth – the Measure of Functional Order

In our models we have to assume systems with feedback loops, as they are more
robust, flexible and more adequate to modelling development of software systems.
Our aggregate will have then highly irregular structure, with feedback loops.
Therefore the simple view of the cone of influence has only a demonstrative purpose.
It is quite difficult to refer uniquely to a particular place in the growing structure of
our aggregate. There are feedback loops, and the structure itself has a very irregular
character; and there are only two points of reference: aggregate inputs and aggregate
outputs. The problem of referring to particular automata in different aggregate
structures is even more difficult because we need a mechanism to identify and refer to
“similar” regions, in the general case, for different growing aggregate structures.

We proposed two methods of referring to automata in an aggregate. In the first
simple method we marked whether the added automaton was placed closer to the
inputs, or closer to the outputs. We ran analysis based on this, and we called this
model: edge model. This name represents the fact that all the additions were

337Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

performed on the “edge of the aggregate”: on the input, and/or on the output of the
system. We have not used removals in this model.

The second method was based on calculating the depth of a given automata in
reference to the aggregate outputs. This allowed us to perform additions and removals
in the whole volume of the aggregate. We referred to this model as volume model. In
this model, we used the depth as an approximation of the aggregate functional order.
See [Fig. 8] for the definition used in our simulations.

4.4 Changeability

4.4.1 System Change Distributions

We know from Bayes condition (equation 2) that probability distributions of the main
characteristics of changes in a free process should not be important to show statistical
tendencies (differences between free and adaptive process). However, we can assume
different probability distributions for different aspects of the aggregate development
that result in differences in the aggregate structure. In aggregates that differ in
structure, a given tendency may have a different level of expression. For example, we
can expect that an aggregate that was grown only by the addition will be different
from the aggregate grown with both addition and removal changes. This, in turn, will
influence the tendencies that we are trying to investigate. The fundamental aspects of
some tendencies are expressed as relationships of intensity of some events. For
example, when investigating the aggregate tendency to grow, we have to analyse the
difference between probabilities of acceptance between changes based on addition
and on removal. One can see that it is very important to pick appropriate probability
distributions to observe given tendencies. In our model these distributions however
have an arbitrary character, and can be any. Based on the unknown character of most
of these distributions, we use uniform probability distributions. It is important to
remember that sometimes a given tendency influences the expression of the very
tendency, or other tendencies (feedback loops).

It is easy to implement the assumption of the uniform probability distribution of
change in all of the aggregate volume. We implemented removals simply by a random
selection of an automaton to be removed, from the list of all of the aggregate
automata. After removing it we reconnect two of its inputs with two of its outputs
directly. For additions we have to randomly generate a new automaton - we create its
function (function between its inputs and outputs). Then we select two existing
connections between automata (including inputs and outputs of the aggregate). We
“break” the connections, and reconnect the newly created automaton with appropriate
input and output connections. This is a different algorithm than assumed in random
graph theory [Albert 02]. Also it differs substantially from the case of addition of a
new node and directed edges [Dorogovtsev 00].

4.4.2 Differences Between Addition and Removal of Automata

As described above, there are some important differences between adding and
removing automata to and from a system. The process of automaton removal has
relatively fewer possibilities and is inherently simpler. This is an important source of
difference in probabilities of change acceptance due to adaptive condition (changing
the system without decreasing the system aptness).

338 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

It is possible to run a test for removal of all individual automata of aggregate to
check that nothing can be removed without decreasing the aptness. It is however
impossible to do the same test for addition, simply because one can always add a new
automata that will not change the system’s aptness. This simply means that by the
properties of addition and removal, the system will grow in size indefinitely. After
accepted aggregate change, the conditions for the next aggregate change may
themselves change. For example if there is nothing that can be removed from the
aggregate, then after a successful addition possible removals may naturally occur.

4.4.3 Transparent Automata and Cost

Due to our assumed adaptive condition (weak inequality) it is possible to always add
transparent automata. Transparent automata are such automata that do not change the
output signals for particular inputs. In other words, the output signals are exactly the
same, with or without such automata. In simulations this is a very common event (to
randomly select a transparent automaton to be added). These transparent automata,
given different input signals, will produce appropriate output signals, according to
their actual function. In that case these transparent automata are not transparent
anymore. After addition, transparent automata may be kept in the structure, or may be
subjected to automatic removal – because they do not do anything.

The issue of transparent automata is similar to, but substantially different from,
“neutral walk” models, e.g. [Gould 77]. Temporary useless structures and repetitions
are kept in a “neutral walk” model until they prove to be useful. However, our model
is too simple to accommodate a “neutral walk” model in its entirety. We do not model
local optima of aptness, and the ability to jump from one to the other.

For software systems if we take into consideration memory and CPU time, and
other similar cost functions to maintain an automaton in the aggregate structure, then
adding one more extra automaton is always considered as a decrease in the aptness of
the aggregate. To make it simple, yet general, we used strict inequality in the adaptive
condition for additions, and weak inequality for removals. This is equivalent to an
explicit cost function for additions of new automaton. For big values of number of
signal variants (s) the importance of this extra condition (cost function) is decreasing,
due to the lower probability of random selections of transparent automata.

4.4.4 Change of Requirements

In our model, to obtain a long adaptive process, the ideal y* must be slowly changed
(the b for a system is kept at the level ¾ of the ideal value of aptness). Without this
change of requirements, the aptness b in a short time achieves maximum value and
then any really adaptive change of the aggregate is prohibited. We are interested in
long-term cumulative adaptive changes that substantially lead to increase of aptness.

Traditionally, the term “environment” includes external conditions of existence of
an organism (a system), together with the requirements imposed on the organism to
exist. We have decoupled these two aspects. The requirements are separate
(conditions on output signals) to the external conditions (input signals). In our
simulations the environment of the aggregate was fixed. Only for investigating
tendency of covering have we used a changing environment.

339Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

4.5 Calculating the Function of an Aggregate of Automata

To do the calculation of the aggregate function, we use the description of the structure
of aggregate (all the connections) and functions of individual automata. We will refer
to it as: R-algorithm. We developed it in several steps.

4.5.1 Algorithm R0

The aggregate structure itself in an obvious way suggests a simple algorithm for
calculating aggregate outputs. We will call this simple algorithm, R0:

1. The input signals vector is passed to the aggregate. We mark all these inputs
as ready signals.

2. Ready signals are passed to inputs of subsequent automata connected to the
given signals.

3. If for a given automaton all its input signals are ready, we calculate the
output for this automaton. We mark all its output signals as ready signals.

4. If all output signals of the aggregate are ready, then the R0 algorithm stops.
Otherwise we continue to step 2.

It is easy to note, that our simple algorithm R0 can only calculate the outputs for
the aggregate without feedback loops. For the system with feedback loops, the use of
the algorithm R0 is not suitable.

Because our aggregate are constructed in a random fashion, in a single aggregate
there can be a lot of such cyclic loops and these loops may have a lot of common
points. For these reasons it is impossible to obtain one stable real output signals vector
to compare it to the ideal output vector. However, we do not need to calculate the true
output vector to get a correct statistical size of change L. To calculate L we compare
outputs of the aggregate before and after the change of the aggregate has been made.
We can obtain a distribution of probability of acceptance for change parameters. This
is an important remark that allows us to study the structural tendencies in complex
systems in our computer-based model system implementation.

4.5.2 Algorithms R1 and R2

We first designed algorithm R1, which tries to obtain the most correct output vector
by calculating properly all the loops and recursive dependencies. This ambitious
direction appeared not to be successful, and to be expensive and needless. We then
went on to design a simpler and more fruitful approach. To allow cyclic recursive
loops we can make any hypothesis of input signal in any place in the loop, and
calculate the loop only one time to obtain the correct statistical area of change. It is
not important whether the given chosen hypothesis was accurate or not. It is only
important to estimate the correct statistical range of change in output of an aggregate.
This is one of the most important differences in our model, when compared to other
models.

To optimise the time of calculations (time was the main limitation of our
simulations) we only re-calculated the changed signals. For each signal in the
aggregate, we stored its value from previous calculations; and for circular
dependencies in loops as well as for input signals from “not changed area”, we used
this stored value as a hypothesis. Such a rule of function calculation we call R2.

340 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

4.5.3 Two Maxima of Change Size and a Complexity Threshold

Both R1 and R2 were used in simulations of the edge model. The results of
simulations with the algorithm R2 show that in sufficiently complex systems
(complexity above the threshold) there exist two main peaks in the probability
distribution of change size (two maxima). Between these two peaks there is a wide
area of exactly zero probability. This effect is shown on [Fig. 4]. Depicted on [Fig. 4]
distributions are obtained for four consecutive stages of aggregate growth; in each
stage aggregate grows by 128 automata. The character of distribution changes in the
first 3 stages, when the aggregate is below a particular complexity level. However in
the fourth stage the changes cease, the distribution is stable and looks like stage three.

The shape of probability distribution of L is our qualitative “measure” of
complexity in a system. This is a useful notion that gives us a qualitative distinction
between systems that are not complex (below the threshold) and systems that are
complex (above the threshold). Most of the authors when discussing complex systems
use a proper measure of complexity (e.g. algorithmic complexity [Gell-Mann 95], or
Solomonov-Kolmogorov-Chaitin complexity). This is different from our own
approach and has different goals. We have obtained one significant but extended
threshold and two qualitative states, not a smooth and continuous-valued described
system. We have discovered that at a particular level a given system starts to exhibit
different and very interesting properties. This phenomenon is similar to a “phase
transition” in thermodynamics.

In research about complex systems to date there is often a reference to a critical
value for a given parameter. For example in scale-free networks [Barabasi 02,
Dorogovtsev 03], above a critical network size, average length of the path between
two nodes will not change with the growth of the network. Similarly, in self-
organising criticality [Bak 96, 88, 87] after some parameters reach a critical value, the
system will spontaneously exhibit behaviour characterized by power laws. In our
case, this level denotes a transition between a system and a complex system with
particular tendencies [Gecow 86].

We have investigated mechanisms of this phenomenon. If the coefficient of
change propagation is greater than 1, the change should explode onto the whole
network. Due to the statistical nature of our model and the coefficient of change
propagation, the change of signals may or may not fade out. Fading out may occur if
the automata close to the place where the change occurred will not multiply the
change. If the aggregate change occurred towards the “end” of the aggregate and few
changed signals ended up in the aggregate output vector, then the probability of
fading out is much higher. The probability of this event occurring in a given aggregate
may not be very small.

If the change fade-out does not occur in the first several steps, then the
probability of the change fading out in any following step rapidly drops down. This
continues up to a certain level, at which the change increased enough almost all the
automata newly infected by the change have two of their inputs changed. At this
stage, on average, each infected automata will have less then 2 of its outputs
“infected”, therefore the change propagation will continue spreading at a lower rate or
it may fade out. If the average change propagation coefficient for automata is
relatively low, the change may completely fade out then. This mechanism does not
depend on the initial position of the change, but it depends on feedback loops present

341Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

in the system. If feedbacks are present in the system’s structure, then the position of
the second maximum is constant.

Figure 4: Threshold of complexity as appearance of zero-frequency area between two
peaks in distribution of change size L in sequence stages of aggregate growth. There
was an observed independency of second peak of connection parameters and linear
dependency between change size on system output (L) and number of changed
automata (K).

The area between these two peaks equals exactly zero. If there are no feedbacks,
the mechanism is similar in the first few steps of the propagation of the change, but
later expansion of change depends on the capacity of the cone of influence. It also
depends on the initial place of change. In this case the section between the two peaks
is near, but not equal to zero. The position of the second maximum depends on the
aggregate size. The complexity threshold for a system without feedbacks is different.
However for both types of systems, with feedback loops and without, such a threshold
exists and gives similar statistical effects. The size of change in the aggregate outputs
directly depends on a number of changed automata. [Fig. 4], the right side, shows the
frequency distribution of K – number of changed automata and its linear statistical
relationship to L (-change size on the output of the aggregate).

4.5.4 Algorithm R3

For parameter K the probability distribution is very similar to L. There are two peaks,
one for very small K, and the other one for very large K. Both of these peaks are very
narrow with sharp slopes, and between them there is a large area of exactly zero
probability. Unlike the distribution for L, the second maximum is not fixed, and
depends on the number of automata in the aggregate. Once the parameter K reaches

342 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

the zero-frequency plateau, it must later climb the second peak for K distribution.
However, all of the cases from the second peak of K distribution, for large K, will not
be accepted due to the adaptability condition [Section 3.1, Equation 1] and small
change tendency. Therefore, we can stop the calculations of a given case as soon as
parameter K reaches the zero frequency plateaus. This is our modifications to the
algorithm R2, that we call algorithm R3. Algorithm R3 was fast enough to be used in
volume models.

5 Main Structural Tendencies in a Complex System Evolution

5.1 Aggregate Growth

Due to the differences in the structure of the evolving aggregate, some tendencies
may be expressed with a different strength. On the other hand, the differences in the
structure may also be due to different tendencies in the evolutionary process. This is a
circular dependency, and to make progress we need to grow the aggregate in a fully
controlled way, under the adaptive condition. In the edge model as a change
mechanism we have used only addition of new automata. In such circumstances the
aggregate is continuously growing. For every single aggregate, we could start with the
empty one, and proceed up to the size at which the system exhibited tendencies
characteristic for complex system [see Section 4.5.3].

Some experiments required a relatively constant size of the aggregate. Therefore
at the end of each stage (addition of 128 automata) we have kept the number of
automata fixed, and we were changing the aggregate only by changing the function of
randomly selected automata already existing in the aggregate. The results of these
experiments are presented on [Fig. 4].

In volume model simulations, the growth of the aggregate is one of the tendencies
that occur under the adaptive condition. However, as tendencies are valid only in
complex systems (above the complexity threshold) it is a bit problematic to start the
simulations with the empty aggregate. In addition to that, we try to use very small
value of signals, s=4. The interesting effects in such a simulation configuration exist,
but are extreme small. Without the cost function the aggregate should grow, but in
first trials with cost we did not obtain aggregate growth. To start the simulations at
higher complexity levels, we let the aggregate grow through 6 stages up to 768
automata (only addition operation is active, no removals up to this stage). At this
stage (768 automata) we added removal processes and this modification resulted in
the aggregate disintegration, [see Fig. 5.f] for reference.

 Our aim was to obtain sufficiently complex aggregate that would show structural
tendencies described before. However, aggregate disintegration after enabling
automata removal is a major problem with the current scenario. This required many
more experiments to solve this problem. This experience shows that obtained
structures are significantly different (and this was expected). It is shown by a growth
difference for s=4 without a cost [Fig. 5.a-e], and with initial growth forced by
additions alone [Fig. 5.a and 5.b], and without initial growth [Fig. 5.c and 5.d]. There
must be some mechanism with the ability to dynamically regulate the additions and
removals in aggregate. In this regulatory mechanism removals must depend on the
coefficient of change propagation and the probability of change acceptance. Each

343Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

accepted addition or change of requirements will generate new ability of removals,
but to find them time is needed.

Figure 5: The grow of aggregates as a dynamic balance of additions and removals of
automata. Aggregate built without removal is different.

With cost for s=4, this mechanism was outside the correct parameters area,
possibly due to model simplicity. We have decided to add some elements to the
system that could potentially improve the model ability to show the discussed
mechanism. First, we have redefined our aptness function b, in such a way, that it was
smoother, and it allowed more diversification between different aptnesses for
different aggregate cases (more discrete steps in the aptness landscape). We used:

∑ −−−=
j

jj |y*y|)1s(b 5

This variant of b gave the expected growth of the aggregate for s=4 with cost
[Fig. 5.f].

Second, we tried one big change of requirements instead of many small changes;
this however did not give expected growth of the aggregate. Both of these
modifications did not give any visible effects without cost ([Fig. 5.e] looks exactly the
same as [Fig. 5.c and 5.d]). In summary, the most important aspect is the coefficient
of change propagation w, which is dependent on s. When w=1.3 (usually 1.49)
then there is no growth for s=4 with cost [Fig. 5.f]. For bigger s, for example s=8,
s=16, we can observe a stable growth of the aggregate. The other important aspect of
aggregate growth is the ability of the evolutionary process to remove the transparent
automata. This aspect, however, is very difficult for formal treatment and needs
further research.

5.2 Terminal Modifications and Conservation of Deeper Parts

The main tendency is terminal modifications [Naef, 17] and conservation of deeper
parts of the aggregate. The description of the depth D that we refer here has been

344 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

introduced in [Section 4.3] and it is explained in [Fig. 8]. We use here aggregate
structural relationships to denote functional order. The mechanism of this tendency is
based on the probability of change fading out. The probability of the change fading
out is highest if the initial point of change is close to the aggregate’s outputs and
changed signals can stop rapidly as aggregate output signals, without the ability to
spread widely into other automata. This mechanism strongly depends on the
coefficient of change propagation w and then on s.

Figure 6: Functionally terminal additions and removals in simulations.

In [Fig. 6], the distribution of the probability of acceptance is shown in relation to
depth D. On the left side - for addition and on the right side for removals of automata
in five different simulations (s=4,8,16 without cost function marked with minus
sign "-" in simulation name and for s=4,8 with cost function marked with "+"). The
probability P(a|±,D), where “+” means addition and “-” means removal, is
normalised by coefficient k shown on picture for better comparison. Only for s=4
without cost results are different and there is no tendency in removal. For higher s or
with cost the tendency is stronger. As can be seen in [Fig. 8 and 9], depth D=0 is very
narrow, but in this case the probability of acceptance is extremely high.

The terminal modifications tendency applies to any changes – additions and
subtractions as sources of initiations changes in structure of aggregate. In order to
refer to the special meaning of the addition new automata in the creation of similarity
of historic and functional sequence, the terminal modifications tendency for addition
is named the terminal addition tendency for convenience.

345Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

5.3 Terminal Majority of Addition and Simplification of Deeper Parts

Differences between addition and removals, visible in [Fig. 6], create three other
tendencies: terminal majority of addition and simplification of deeper parts of the
aggregate (discussed below) and aggregate growth (discussed above).

Figure 7: Functionally terminal majority of additions and simplification of
functionally deeper parts of the aggregate (left). Average depth of connection of
automata of aggregate on the right, is much lower then the aggregate with randomly
connected automata, [see Fig. 9].

The difference between the number of accepted additions and removals is different in
different places of structure of the aggregate. There is a race between creation of new
abilities for removals by additions and finding a possible automaton to be removed.
Due to the statistical nature of removals, automata that stayed in the structure for
longer periods, have a bigger chance of being tried to be removed. In shallow parts of
the aggregate (close to the system outputs), due to the terminal additions tendency,
additions win (that is, additions are much more frequent). However in deeper parts of
the aggregate, where automata have been present for a relatively long time, the
situation is different. Automata there have much more chance to be removed. In the
deeper parts of the structure there are different densities of automata able to be
removed than in the shallow parts.

The term “terminal modifications” means, that most of the accepted changes take
their place in shallow parts of the structure. This tendency means that in deeper parts
of the structure there are fewer changes. However, terminal majority of addition does
not mean that in deeper parts there is a majority of removals. The second, much more
crucial tendency is “simplification tendency”. For this one, a majority of removals is
necessary. This tendency is much more desirable, yet it is not expressed as strongly as
terminal majority of addition.

346 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

W=1 2 3 4 5 6 7 8

1

2

3

4

128

768

640

896

A=1024

= 256 AUT.

uw4+

512

384

256

D

0
0

1a

1b 1c

1a

2a 2a

2c 2b

3a

3b 3c

4

b = c

4 5 6 7 8

1

2

3

4
768

640

896

A=1024

uw8-

512

384

D

Figure 8: Functionally terminal majority of additions, simplification of deeper parts
of aggregate and shunting back. Left side: s=4 with cost, right side: s=8 without cost.
In the middle there is a specification of depth D - structural measure of functional
order. W - stage of aggregate grow. Flow of automata through the border of depth
and balance of addition and removal in function of depth.

In the experiments terminal majority of addition occurs strongly (see the left side
of [Fig. 7] and [Fig. 8]). However, measurements of tendency for simplification of
functionally deeper parts are not statistically significant. In all runs of simulations, the
somehow weak tendency can be seen and confirmed. In [Fig. 7] the simplification
tendency is too small to be observed, but in [Fig. 8], for s=4, it is visible from depth
D=2, and for s=8, it weakly appears from D=3.

In [Fig. 8] the large triangle depicts growing aggregate in consecutive stages W.
In each stage aggregate grows by 128 automata. In the middle of the [Fig. 8], there is
specification of depth D – the structural measure of functional order. Aggregates on
both sides are divided by this depth. In each stage and depth, the difference between
additions and removals is shown as a square, for more additions, and a rectangle, for
more removals. As you can see, there is much more addition in depth D=1. The right
aggregate (s=8 without cost) is shown from stage W=4 (starts from 384 automata),
because from this stage the aggregate is surely a complex system. All results
presented on [Fig. 6, 7, 9, 10 and 11] are obtain from the stage 4 onwards (without
stages 1-3).

347Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

5.4 Shunting Back

Terminal additions together with terminal majority of additions forces the aggregate’s
shallow automata to be pushed deeper and deeper in the aggregate structure (see right
side in [Fig. 7]). This looks like shunting back [Weisman 04, Holmes 44]. [Fig. 8]
shows a strong stream down, as constant volume of shallow depth cannot hold all
newly added automata. Of course, this is only an interpretation, because all automata
stay in their place without moving. New automata are placed on top of the existing
ones. It should rather be understood as building up on an old, ready foundation, or
base. If there is a process actively removing some automata from the parts of the
aggregate close to its inputs, then it will make some automata from the higher parts of
the aggregate to be pushed down. That is, when counted from the input of the
aggregate, automata occupying higher levels will be pushed to lower levels. This is
exactly what shunting back represents.

5.5 Similarity of Historical and Functional Order

The tendencies described above, terminal addition and terminal majority of additions,
result in a close similarity between historical and functional order (see right side of
[Fig. 9]). Automata added at the earlier stages of evolution of the aggregate occupy
deeper parts of the structure, near inputs of the aggregate. In terms of the functional
order these automata are earlier in the functional dependency graph. Automata added
later during the evolution, that is younger automata, are occupying shallower regions
of the structure, near outputs of the aggregate. This is an evident occurrence, and it
represents a significant statistical dependency. In all simulations, except s=4 without
cost, these dependencies are identical and statistically significant.

Due to this similarity, we can expect all the above discussed functional tendencies
to appear also in historical sequence. Therefore we have used above (for descriptions
to [Fig. 6, 7, 8 and 9]) the term “functional” to distinguish the terms “terminal” (late,
shallow) and “deeper” (early) from the historical sequence.

In simulations we have obtained historical terminal modifications tendency in
both cases – for additions and removals. In [Fig. 10] we show these tendencies and we
presented the influence of the cost function (for s=8, with and without cost). We
show also the participation of transparent automata. The participation of transparent
automata in case without cost is near 2/3 for additions and even higher for removals.
Transparent automata were removed in a very short time after their addition. In
models with cost there is a visible historical terminal majority of additions. In cases
without cost and for s=8, there is no such tendency, as you see comparing left and
right graphs.

We partition all the automata of the aggregate into 8 groups, 1 to 8, according to
the sequence at which these automata were added to the aggregate. The latest
additions will be in group 8, and the earliest in group 1. The number of the group we
refer to as H. In graph of P(a|+,H) parameter H refers to the automaton that
received the output signal of a newly added automaton. This is then averaged with the
second output value, and for this reason for old parts probability is not close to zero.

348 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

0 1 2 3 4 D

<H>

8

7

6

5

4

3

2

1

0.5

0.4

0.3

0.2

0.1

0.0 ol
d,

 e
ar

ly
 h

is
to

ric
a

l l
as

t,n
ew

shallow deep
late functionally early

shallow deep
late functionally early

uw4+ uw4+
uw8+
uw8-
uw16-

+

-

Figure 9: Distribution of change frequency in depths for free process and accepted
additions and removals for s=4 with cost. Functional terminal modification can be
observed. Similarity of historic and functional order (all simulations without: s=4
without cost).

 1 2 3 4 5 6 7 8 H
uw8- old new

0.03

0.02

0.01

0.00

P(a|+,H)

0.002

0.001

0.000
 1 2 3 4 5 6 7 8 H
uw8+ old new

P(a|-,H)

0.00

0.05

0.10

0.14

 1 2 3 4 5 6 7 8 H
uw8- old new

P(a|-,H)

0.003

0.000

0.006

0.009

 1 2 3 4 5 6 7 8 H
uw8+ old new

P(a|+,H)

Figure 10: Historical terminal modification tendency for additions and removal in
simulations: s = 8 without (uw8-) and with (uw8+) cost. Lower curve shows
participation of transparent automata.

349Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

5.6 Recapitulation Old States Deep in a System Structure

Tendencies of historical and functional terminal additions and conservation of older
and deeper parts of aggregate, together with terminal majority of additions, through
shunting back as building up, create a situation that in deeper, old parts of the
aggregate there are structures similar to the old state of the whole aggregate. The
older substructures are contained within younger regions of the aggregate. The
outputs of these substructures, that previously were outputs of the aggregate, appear
according to the functional order. This phenomenon is called recapitulation of older
states deep in the structure. This is statistically significant phenomena and should be
easily visible. To establish the level of conservation of these substructures, we have
measured the frequency of conservation of the original output signals. The results are
presented in [Fig. 11]. Only in the early stages, when the automaton is still placed
very shallow (H=8), it is possible for it to change its output signals. Later (H=7 to
H=3) there is visible conservation of its output signals. For automata with H=1 and
H=2 the aggregate was still not complex.

Figure 11: Stability of function (output signals from time of addition) of automata.
Also random levels are shown.

5.7 Covering

If the input signals to the aggregate are changed (environment is changed), then in
most cases, the only way for the system to maintain its aptness level (to survive) is to
rebuild within the system itself previous environmental signals. It can be done in
many ways. Nevertheless, each method must reconstruct a function of the aggregate
by changing it in functionally a very early place. In a complex system the correction
must be made near to the source of the dysfunction. The easiest and universal way is
to add a new automaton to the changed input of the aggregate, which converts the
new input signal to the old one. This new automaton repairing the old input signal, we
call cover, and the tendency to use this mechanism: covering.

350 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

160
 61

3 1

1

1

11

000

2
2 2 2 20 0011

1

119

17

225

161162
 8

165
 13

28

29

159

28
0

77

228

57163
164

166

5
5

7 0

3

167
 55

123

15
168
 36

130

10 0 0

0

179

516
1

1

0

1

1

32

169
 36

14715

170
 29

160

372

3

3221 1

3 1 152

171172
 44144

2

2 121

1

133

267

3

173
 61

13
3

3

2

1

207

>1000

 input
signals

 output
signals

 # of
automaton.

 type of
function

number
of trials
before
acceptation

144

2

input

output

 of
 aggregate
input/output

 #

start aggregate m = 32 B = 24
s = 4

3 0123

2

0

automata up to 159

not covering new
 automaton 171

covering new automaton 173

old
automaton 130

edge model: only only to inputs or outputs
 of aggregate

+

Figure 12: Mechanism of covering – simulation results in detail. Only when a new
signal on input 2 gave the same function new automata was not a cover.

Covering has been investigated in the early stages of our research [Gecow 83].
Due to limited resources we have used only an edge model (only addition only on
edge – to input or output of the aggregate) and number of inputs / outputs was
shortened to m=32. The covering effects are clearly visible, as shown in [Fig. 12].

On the right-hand side, there is given a description of the numerical value of
appropriate input or output signals of the aggregate. For example, the value in the
rectangle represents a symbolic numerical name of the given input/output of the
aggregate. Bottom number (in a circle) represents a symbolic name of the automaton
function for transforming inputs into outputs. For our simulations we have randomly
generated 64 of such functions. By the inputs and outputs of the automaton, we
provide the actual values for the signals being passed. As shown, automata were
attached somewhere to the aggregate only when a new signal on input numbered „2”
maintained the original function of the aggregate. The change faded out after a single
or the first two steps (automata 161, 163, 164, 166 and 171). Covering is here a very
strongly expressed tendency.

351Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

Covering is a very important and interesting tendency, and should be investigated
further in more detail. For that a new, more robust and improved model needs to be
developed. It will have fundamental theoretical and practical implications.

5.8 Other Tendencies

[Fig. 13] shows another simple yet interesting tendency: specialisation for aggregates
developed in diverse environments. In all of the environments there are some special
requirements, ideals. If an aggregate can acquire a method to avoid one of the
environments (the least frequent one), then it can adapt faster to the remaining ones.
However, after one of the environments is excluded for a few changes, it is very
difficult for an aggregate to accommodate that single environment again.

 aggregate

 ideal y1* for x1

property y1 in x1

x1 environment 1

Figure 13: Tendency of specialization.

aggregate 1 aggregate 2

aggregate 3
1

4

3

2

5

x1 environment
x2 environm.

x3 environm.

property y1 of aggr.1
y2 aggr.2

prop. y3 aggr.3

ideal y1* for aggr. 1
y2*

ideal y3*
ideal y*

environment x

property y

higher level
integron

Figure 14: Tendency of integration - after long common evolution earlier independent
systems must later develop together.

352 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

There is another, more complex and important problem, that of integrity. [Fig. 14]
shows a few events during the process of creating a new higher-level super-aggregate
(that we refer to as integron). After long common evolution, earlier independent
systems must later develop together. In effect, we expect a structure of higher-level
integrons, because of the earlier described tendencies of conservations of old areas of
an aggregate structure.

 In [Fig. 14] – aggregate 2 works as a cover for aggregate 3; 2,3,4,5 – are
common automata; 5 – common cover. Environments of early aggregates may be
independent, but during evolution they lose their independence and they use a mixture
of environments, properties and requirements. To create a higher-level integron, we
do not need to increment aptness requirements – long coexistence is enough. This is
an example of simple co-evolutionary behaviour.

6 Summary and Future Work

It is believed by many researchers in computer science that software systems are soon
to reach biological levels of complexity. Hardware systems, with their high levels of
integration are not far behind. For these reasons, computing systems are becoming a
natural metaphor for an organism as a whole, not only for a brain [Neumann 58]

When observing large software systems it is easy to draw parallels to biological
evolutionary processes. For such large software systems (like operating systems), it is
very difficult to implement some new functionality by modifying the existing
structures. It is much simpler to provide needed functionality on top, or parallel to the
existing one, therefore the system is being constantly patched, in a similar way to the
patching of genetic codes done by natural evolutionary processes [Chaitin 79].

The main aim of our work is, first, to develop a theory and then to develop tools
and frameworks for automatic maintenance and automatic adaptation of software
systems in dynamic environments. In this article we have addressed the theoretical
aspects of our main objective. We have described a system exhibiting particular
properties above a certain level of complexity. This threshold level has a statistical
character and it is commonly referred by other researchers as a phase transition. In the
presented model we have observed and investigated this effect. We have also
investigated structural tendencies of a developing complex system. These are
statistically significant, very strong, and we believe that they will occur in any
development of complex software system, independently of the development method
used. That means, regardless of the origins of changes to the system, whether the
changes are generated randomly by some stochastic process, or whether the changes
are generated by a team of programmers following a formal software methodology
and coordinated centrally, these tendencies should be visible (at least to a certain
degree). This is because all these tendencies are results of relatively simple statistical
relationships emerging in systems with complexity above the discussed threshold.

Interestingly, coming independently from two different set of basic definitions
and assumptions, both models ([Chaitin 79] and [Gecow 75, 83] achieved the same
conclusions. The process of improvement and the system growth are being
accomplished by carrying along all the previously developed structure, as new pieces
of the structure are added [Simon 68]. The simulations and statistical analyses
together replicate similar conclusions of Chaitin. The experimental proof of this is

353Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

that ontogeny recapitulates phylogeny, i.e. each embryo to a certain extent
recapitulates in the course of its development the evolutionary sequence that led to it
[Chaitin 79]. The preliminary results based on the finite-state automata model
discussed in the previous sections present very promising tendencies and robustness.
Note, that this is the first such detailed exploration of structural tendencies. These
phenomena have potential usefulness for complex and adaptive software
development. In the discussed scenario the model exhibited self-adaptability and
could be successfully used in some applications with binary input-output signals.

Based on obtained results we can identify some of the properties an efficient
automatic change generator needs to exhibit. These include among other things, the
following guidelines:

- follow small steps of adaptation to new requirements,
- perform changes close to system outputs,
- retain system function by rebuilding old environment conditions,
- do not try to change old mechanisms.
Future work will include a) formal definitions together with analysis of

aggregation of aggregations, b) automatic change generators that exhibit changes with
high probability of acceptance needs to be further explored and investigated; c) more
experimental data needs to be collected, and bigger real-life problems must be tested
and evaluated. A better understanding of the necessary reflective capabilities is also
required. Applications in the fields of evolutionary computation and artificial life are
possible and are also planned as future work.

One of the interesting tendencies described in this work is specialization and
integration. These mechanisms have a potential crucial role in practical aspects of
software maintenance. However, they may also have an important role in biological
and philosophical aspects of the theory of life. These will be addressed in future
publications.

References

[Albert 02] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks. Rev. Mod.
Phys., Vol. 74, No. 1, 2002, 47-97

[Albert 00] R. Albert, A.-L. Barabási, Dynamics of Complex Systems: Scaling Laws for the
Period of Boolean Networks. Phys. Rev. Lett. Vol. 84 No. 24, 2000, 5660-5663

[Bak 96] P. Bak, How Nature Works. Springer-Verlag, New York, 1996

[Bak 88] P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality. Phys. Rev. A, 38, 1988,
364-374

[Bak 87] P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: An explanation of 1/f
noise. Phys. Rev. Lett., 59, 1987, 381-384

[Barabasi 03] A.-L. Barabási, E. Bonabeau, Scale-Free Networks, Scientific American,
www.sciam.com 2003, 50-59

[Barabasi 02] A.-L. Barabási, Linked: The New Science of Networks. Massachusetts: Persus
Publishing, 2002

354 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

[Barabasi 99] A.-L. Barabási, R. Albert, H. Jeong, Mean-field theory for scale-free random
networks. Physica A 272, 1999, 173-187

[Capra 96] F. Capra, The Web of Life: A New Understanding of Living Systems. New York:
Anchor Books/Doubleday, 1996

[Chaitin 79] G.J. Chaitin, Toward a mathematical definition of “life”. In Levine, R.D., Tribus,
M., eds.: The Maximum Entropy Formalism. MIT Press, 1979, 477-498

[Chaitin 70] G.J. Chaitin, To a mathematical definition of 'life'. ACM SICACT News 4, 1970,
12-18

[Darwin 59] C. Darwin, On the Origin of Species by Means of Natural Selection. John Murray,
1859

[Dorogovtsev 03] S. N. Dorogovtsev, J. F. F. Mendes, Evolution of Networks: From Biological
Nets to the Internet and WWW. New York: Oxford University Press, 2003

[Dorogovtsev 00] S. N. Dorogovtsev, J. F. F. Mendes, A. N. Samukhin, Structure of Growing
Networks with Preferential Linking. Phys. Rev. Lett. Vol. 85, 2000, 4633

[Eigen 79] M. Eigen, P. Schuster, The Hypercycle: A Principle of Natural Self-Organization.
Springer-Verlag, 1979

[Gecow 86] A. Gecow, Statistical analysis of structural tendencies in complex systems vs.
ontogeny. PhD thesis, Instytut Badań Systemowych PAN, Warsaw, Poland, 1986

[Gecow 83] A. Gecow, A. Hoffman, Self-improvement in a complex cybernetic system and its
implication for biology. Acta Biotheoretica 32, 1983, 61-71

[Gecow 75] A. Gecow, A cybernetical model of improving and its application to the evolution
and ontogenesis description. In: Proceedings of Fifth International Congress of
Biomathematics. Paris, 1975, 48-57

[Gell-Mann 95] M. Gell-Mann, What Is Complexity? John Wiley and Sons, Inc., 1995

[Gould 77] S.J. Gould, N. Eldredge, Punctuated equilibria: the tempo and mode of evolution
reconsidered. Paleobiology 3, 1977, 115-151

[Holmes 44] S.J. Holmes, Recapitulation and Its Supposed Causes. The Quartely Review of
Biology, Vol.19, No.4, 1944, 319-331

[Holyst 04] J.A. Holyst, A.Fronczak, and P.Fronczak, Supremacy distribution in evolving
networks. Phys. Rev. E 70, 046119, 2004

[Kauffman 93] S. Kauffman, The Origins of Order. Oxford University Press, New York, 1993

[Kokar 99] M. Kokar, K.Baclawski, Eracar A., Control theory-based foundations of self-
controlling software. IEEE Intelligent Systems, 1999, 37-45

[Koza 92] J.R. Koza, On the Programming of Computers by Means of Natural Selection. MIT
Press, 1992

[Meng 00] A.C.Meng, On evaluating self-adaptive software. In Robertson P., Shrobe H.,
Laddaga R., eds.: Self-Adaptive Software. Number 1936 in LNCS. Springer-Verlag, Oxford,
UK 2000, 65-74 IWSAS, 2000, Revised Papers.

[Naef 17] A.Naef, Die individuelle Entwicklung organischen Formen als Urkunde ihrer
Stammesgeschichte. Jena, 1917

355Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

[Neumann 66] J.L. von Neumann, Theory of self-reproducing automata. ed. A. W. Burks,
University of Illinois, USA, 1966

[Neumann 63] J.L. von Neumann, The general and logical theory of automata. In Taub, A.H.,
ed.: J. Neumann - Collected Works. Volume~ V.Macmillan, New York, 1963, 288-328

[Neumann 58] J.L. von Neumann, The Computer and the Brain. Silliman Lectures Series, Yale
Univ, Press, New Haven, CT, 1958

[Orgel 73] L.E.Orgel, The Origins of Life: Molecules and Natural Selection. Wiley, New York,
1983, 187-197

[Pastor-Satorras 04] R.Pastor-Satorras, A.Vespignani, Evolution and Structure of the Internet:
A Statistical Physics Approach. Cambridge University Press, February, 2004

[Purvis 00] M.Purvis, S.Cranefield, G.Bush, D.Carter, B.McKinlay, M.Nowostawski, R.Ward,
The NZDIS Project: an Agent-based Distributed Information Systems Architecture”, in
CDROM Proceedings of the Hawaii International Conference on System Sciences (HICSS-33),
editor R.H. Sprague, Jr., IEEE Computer Society Press, 2000

[Shannon, 49] C.E. Shannon, W. Weaver, The Mathematical Theory of Communication.
University of Illinois Press, 1949

[Simon 68] H.A. Simon, The sciences of the artificial. MIT Press 1968

[Stauffer 96] D. Stauffer, Cellular Automata, Ch. 9. pp. 339-365, in A. Bunde, S. Havlin (eds.)
Fractals and Disordered Systems. Springer-Verlag, Berlin Heidelberg, 1991,1996

[Weisbuch 88] G. Weisbuch, Complex Systems, organization and networks of automata. in
L.Peliti, A.Vulpiani (eds.), Measures of Complexity. Lecture Notes in Physics, no.314,
Springer Verlag, 1988, 128-138

[Weismann 04] A. Weismann, The Evolution Theory. 2 vols. London, 1904, 185

[Vose 99] M.D.Vose, The Simple Genetic Algorithm: Foundations and Theory. A Bradford
Book, The MIT Press. 1999

356 Gecow A., Nowostawski M., Purvis M.: Structural Tendencies in Complex Systems ...

