
Atomicity as a First-Class System Provision

J. Eliot B. Moss
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003
moss@cs.umass.edu

Ravi Rajwar
Intel Corporation

Hillsboro, OR 97124
ravi.rajwar@intel.com

Abstract: We argue that atomicity, i.e., atomic actions with most of the traditional “ACID” prop-
erties, namely atomicity, consistency, and isolation but perhaps not durability, should be provided
as a fundamental first class resource in computer systems. This implies coherent, convenient,
and well-engineered support from the hardware, through the run-time system, programming lan-
guage, and libraries, to the operating system. We articulate the advantages of this approach, in-
dicate what has already been accomplished, and outline what remains to be done to realize the
vision.
Key Words: Atomicity, transactions, transactional memory, cache coherence
Category: C.0 COMPUTER SYSTEMS ORGANIZATION—General—hardware/software in-
terfaces

1 Motivation: Why Provide Atomicity as a First Class Systems Facility?

The Dagstuhl Seminar 04181 [D04] included two discussions concerning offering trans-
actions as a fundamental facility of computer systems. The first discussion focused on
hardware, namely the ability to perform a set of operations to arbitrary memory ad-
dresses atomically in hardware, while the second discussion focused on software and
the advantages of atomicity as a tool for reasoning and development of reliable and
robust multithreaded programs.

The motivating developments for both communities emerged from the growing
prevalence of highly-threaded software systems and the intractability of their construc-
tion and maintenance.

Explicit hardware support for multithreaded software, either in the form of shared-
memory chip multiprocessors or hardware multithreaded architectures, is becoming
increasingly common. As such support becomes available, application developers are
expected to exploit these developments by employing multithreaded programming. Al-
though threads may simplify a program’s conceptual design, they substantially increase
programming complexity. In writing shared memory multithreaded applications, pro-
grammers must ensure that threads interact correctly, and this requires care and ex-
pertise. Errors in accessing shared-data objects can cause incorrect program execution

Journal of Universal Computer Science, vol. 11, no. 5 (2005), 651-660
submitted: 30/11/04, accepted: 31/1/05, appeared: 28/5/05 © J.UCS



and can be extremely subtle. This is expected to become an even greater problem as
we go towards heavily threaded systems where their programmability, debuggability,
reliability, and performance become major issues.

The emergence of Java [G+00] as an important programming language is particu-
larly relevant, because Java is the first widely used language that includes standardized
support for multithreading as part of its ordinary platform. 1 While Java’s level of ab-
straction of memory management is high, i.e., it provides type-safe automatic reclama-
tion of unreachable objects (namely “garbage collection”), its support for multithread-
ing and control of the interaction of threads is based on conventional primitives, which
operate at a rather low level of abstraction. The Java memory model [LY99] was in-
tended to articulate Java’s behavior in the face of concurrent execution on multiproces-
sors with advanced memory coherence models (such as acquire-release synchroniza-
tion [G+90], etc.), but was found to be fatally flawed. The community has developed
a replacement [S04], but the overall experience is that even the experts have difficulty
reasoning about all but the simplest cases.

While conventional synchronization techniques such as locks, which appear in Java
as synchronized methods and blocks, have been extensively used in coordinating inter-
actions among threads, the programmer is often left with the task of discovering and im-
plementing the most efficient synchronization algorithm for the specific circumstance.
Keeping both functionality and performance of complex software systems in perspec-
tive simultaneously is a daunting task, and this trade-off between programmability and
performance becomes key. In addition, the software-enforced waiting introduced by
locking constructs introduces undesirable behavior in the presence of context switches
and thread failures–if a thread holding a lock is delayed, it can prevent the whole system
from making progress. (The situation where a low priority thread holds a lock needed
by a high-priority one is called priority inversion.)

Furthermore, locking and similar synchronization constructs are software contracts
based purely on convention—protected data is to be accessed only after executing the
appropriate synchronization construct. These contracts are not enforced in anyway:
nothing prevents threads from accidentally violating a contract. For example, a pro-
grammer may mistakenly update some data structure without executing the right syn-
chronization construct (acquiring the corresponding lock(s)). Likewise, if a collection of
locks is designed for individual locks to be acquired in particular orders, so as to avoid
deadlock, violating that (unwritten and unenforced) contract can lead to deadlock.

Flanagan and Qadeer [FQ03] have also noted the general problem of improper syn-
chronization in multithreaded Java code, and their tool for checking proper atomicity
of Java programs found errors in basic language libraries. Their strategy is to develop
type systems and checking tools. We advocate a different approach: include support for

� It is true that threads are available with many other languages, but Java has really brought them
into main stream programming, and thus introduced a potentially huge problem. Java is also
relevant because it has tried to specify semantics of concurrency in the language, something
not done well in previous widely used languages.

652 Moss J.E.B., Rajwar R.: Atomicity as a First-Class System Provision



atomicity in the hardware, run-time system, and programming language, so that it is
easy to insure atomicity in programs.

1.1 The Challenge of Engineering Multithreaded Software

The challenge in engineering multithreaded software can be summarized in the desire
to obtain three properties simultaneously:

1. Reliability: Data should be accessed only under the appropriate contract, thus guar-
anteeing intended atomicity of access and update, and avoiding deadlocks. This has
to do with correctness of the system.

2. Performance: The running system should use resources, particularly available pro-
cessor cycles, effectively. Not only should we avoid priority inversions (which may
also be a functionality or correctness issue), we should not unduly delay threads
waiting to access data. The desire for performance tends to lead to systems with
more, finer-grained, locks and more complex contracts concerning them.

3. Programmability: Constructing the system originally, and modifying and main-
taining it afterwards, should not be overly expensive. System complexity and sub-
tlety, such as caused by having many locks and complex unenforced contracts,
dramatically reduces programmability. Most programmers today do not have the
knowledge and skills to build and maintain multithreaded software effectively.

The present state of affairs is that we cannot achieve all three of these properties
simultaneously, because a reliable and high performing design will tend to be complex.
We argue that providing suitable, i.e., well designed and good performing, support for
atomicity in the hardware, programming language, and operating system will enable
future designs to achieve all three properties, essentially by making it easier to program
multithreaded systems to be reliable and high performing.

2 Our Proposed Strategy: Atomic Actions, not Locks

The essence of the strategy we propose is to raise the level of abstraction of support
for concurrent (multithreaded) programming. Rather than having the hardware and run-
time system offer a mechanistic primitive, namely locks, we envision direct support
for atomic actions. Since we wish a well-engineered result, achieving all three of the
goals of reliability, performance, and programmability, we can offer at the outset only
a rough and provisional definition of exactly what constitutes an atomic action; the
exact definition needs to emerge from the process of designing language and hardware
features that achieve the goals. Here is a provisional definition of “atomic action”, which
we offer both from the software (programmer’s) and hardware viewpoints:

653Moss J.E.B., Rajwar R.: Atomicity as a First-Class System Provision



Software View: An atomic action is a (temporally) contiguous sequence of primitive
actions in one thread that appears to execute as a whole (or not at all), and as if no
other thread executes during the action. This is similar to the traditional notion of
transaction from database systems [G+75], though we are not necessarily insisting
that the effects of an atomic action be durable across system failures of at least
some kinds.

Hardware View: An atomic action is a (temporally) contiguous sequence of memory
reads and writes in one thread that appears to execute as a whole (or not at all),
and as if no other thread executes during the action. This is similar to transac-
tional memory [HM93] and related proposals, and ultimately relies on processor
and cache rollback mechanisms and cache coherency protocols.

We make two primary claims here. First, that the hardware view can be offered by
implementing relatively small enhancements to existing processor designs, caches, and
cache coherency protocols. Thus, if there is sufficient motivation from the software side,
hardware manufacturers might be persuaded to begin to offer this support. It is a good
value added for incremental design effort.

Second, we claim that, given the hardware support, the software (programmer’s)
view can be achieved through incremental language and run-time system enhancements,
and that the whole will support atomic actions with excellent performance and minimal
additional cost.

3 The Software Role: Using Atomicity

Using an atomicity construct with simple and clear semantics is attractive for reasoning
about, and for writing, multithreaded programs because one may assume, and guar-
antee, stronger invariants. For example, consider a linked list data structure and two
operations upon the list: insertion and deletion. Today, the programmer would have to
ensure that the appropriate lock is acquired by any thread operating upon the linked list.
However, an attractive approach would be to declare all operations upon the linked list
as “atomic”. How the atomicity is provided is abstracted out for the programmer, and
the underlying system (hardware, software, or a combination) guarantees the contract of
atomicity. The underlying system would also worry about the performance implications
of such a guarantee. Decoupling performance from correctness, and abstracting out the
machinery for achieving inter-thread coordination, by using an atomic construct pro-
vides more powerful tools for programmers. For one, they do not have to worry about
the details of providing atomicity and can focus on ensuring application algorithm cor-
rectness.

The essence is that the programmer specifies the what, i.e., what must be atomic,
and not the how, i.e., the implementation details.

654 Moss J.E.B., Rajwar R.: Atomicity as a First-Class System Provision



4 The Hardware Role: Providing Atomicity

The hardware notion of atomicity involves performing a sequence of memory opera-
tions atomically. The identification of the sequence is of course best left to the program-
mer/software layer. However, the provision and guarantee of atomicity comes primarily
from the hardware. The core algorithm of atomically performing a sequence of mem-
ory operations involves obtaining the ownership of appropriate memory locations in
hardware, performing temporary updates to the locations, and then instantaneously re-
leasing these locations and making the updates permanent (meaning, committing them
to memory, not necessarily durable to system failures). In the event of action failure,
such as induced by some kinds of conflicts, any temporary updates are discarded, thus
leaving all critical state consistent. (We can use the same strategy for transient hardware
failures as well.) Hardware has become exceedingly proficient in executing operations
optimistically and speculatively, performing updates temporarily, and then making them
permanent instantaneously as appropriate.

4.1 What Such Hardware Might Look Like

The notion of speculatively updating memory and subsequently committing updates has
been developed in the context of speculatively parallelizing sequential programs [K86,
S+95], and in the context of explicitly parallel programs [S+93, HM93, RG01, RG02].

Transactional Memory [HM93] and The Oklahoma Update [S+93] were the ini-
tial proposals for employing such hardware support for developing lock-free programs
where applications did not suffer from the drawbacks of locking, and were generaliza-
tions of the load-linked/store-conditional proposals [J+87]. 2 The Transactional Mem-
ory and Oklahoma Update proposals advocated a new programming model replac-
ing locks. Recently Speculative Lock Elision [RG01] and also Transactional Lock Re-
moval [RG02] have been proposed, where the hardware can dynamically identify and
elide synchronization operations, and transparently execute lock-based critical sections
as lock-free optimistic transactions while still providing the correct semantics. The
hardware identifies, at run time, lock-protected critical sections in the program and
executes these sections without acquiring the lock. The hardware mechanism maintains
correct semantics of the program in the absence of locks by executing and committing
all operations in the now lock-free critical section “atomically”. Any updates performed
during the critical section execution are locally buffered in processor caches. They are
made visible to other threads instantaneously at the end of the critical section. By not
acquiring locks, the hardware can extract inherent parallelism in the program indepen-
dent of locking granularity.

� Of course these were preceded by a number of read-modify-write primitives, such as test-and-
set and compare-and-swap [IBM]. Load-linked/store-conditional has more the flavor of atomic
actions, however, since it allows an arbitrary computation on the loaded value and separates
the read and write parts of the atomic action.

655Moss J.E.B., Rajwar R.: Atomicity as a First-Class System Provision



While the mechanism sounds complex, much of the hardware required to imple-
ment it is already present in systems today. The ability to recover to an earlier point in
an execution and re-execute is used in modern processors and can be performed very
quickly. Caches retain local copies of memory blocks for fast access and thus can be
used to buffer local updates. Cache coherence protocols allow threads to obtain cache
blocks containing data in either shared state for reading or exclusive state for writing.
They also have the ability to upgrade the cache block from a shared state to an exclusive
state if the thread intends to write the block. The protocol also ensures all shared copies
of a block are kept consistent. A write on a block by any processor is broadcast to other
processors with cached copies of the block. Similarly, a processor with an exclusive
copy of the block responds to any future requests from other processors for the block.
The coherence protocols serve as a distributed conflict detection and resolution mech-
anism and can be viewed as a giant distributed conflict manager. Coherence protocols
also provide the ability for processors to retain exclusive ownership of cache blocks for
some time until the critical section completes. A deadlock avoidance protocol in hard-
ware prevents various threads from deadlocking while accessing these various cache
blocks.

The model just described assumes that a “processor” (a cache, actually) has only
one thread of control executing at a time. Many modern processors support multiple
simultaneous thread in hardware. In such a case, reads and writes buffered in a cache
need to be associated with hardware threads, perhaps necessitating a thread id with each
cache block. Similar mechanisms may be required to some extent anyway in order to
implement atomic read-modify-write operations correctly, etc. The principles are simi-
lar, though one needs extra bits and a little extra hardware than without multithreading.

Thus it appears that the stage is well set for hardware to offer with low cost at least
a simple high-performance atomic action construct.

4.2 Benefits of the Hardware Atomic Action Construct

The main benefits of this hardware atomic action construct include:

– It eliminates the possibility of deadlock. (It pushes deadlock down to the hardware
level, where we can use a priority scheme to guarantee success of at least one of a
conflicting set of transactions.)

– It eliminates problems of lock inversion, where a high priority task blocks on a lock
held by a de-scheduled low priority task, etc.

– It synchronizes directly on the conflicting data, whereas with locks one must know
which locks to acquire in order to manipulate each shared datum.

– It eliminates the overhead of the actual manipulation of the locks. Previous work
has shown that in high-traffic, low-conflict situations this overhead is significant.

656 Moss J.E.B., Rajwar R.: Atomicity as a First-Class System Provision



– It is as fine-grained as need be, boosting performance over the case of coarse-
grained locks, and improving reliability compared with designing and using neces-
sarily more complex arrangements of fine-grained locks.

– It allows for more efficient communication of access/update and synchronization
information between processors at the hardware level.

In sum, there are good reasons to pursue hardware support for atomicity on grounds not
only of improved software engineering but also better performance.

5 What a Software Atomic Action Construct Might Look Like

Recently Harris and Fraser [HF03] proposed a simple yet powerful language construct,
offering the semantics of conditional critical regions. 3 Its form (in Java) is as follows:

atomic (p) � S �

where p is an optional predicate (expression of type boolean) and S is a statement. It
meaning is: execute S if p evaluates to true; the evaluation of both p and S is done as
a single atomic unit with respect to other threads. If p evaluates to false, the executing
thread needs to wait for some other thread to change some variable on which p depends
(a fact which we can detect in hardware by noticing a conflicting access; we would then
abort the evaluation of p that led to false and retry the whole construct).

This construct is slightly more sophisticated and flexible than a more basic one with
the condition p, which we might write:

atomic � S �

We might be able to express the Harris and Fraser construct in terms of the more ba-
sic one if we are also given a primitive such as abort or retry, though mapping onto
hardware detection of changes that might affect the value of p would be more difficult.

6 Open Questions

Crucial work remains–both in hardware and software systems. The classic chicken-
and-egg problem persists. On the one hand, existing software-only implementations of
atomicity and transactions for general use suffer from poor performance; on the other
hand, no hardware systems today provide the notion of generalized atomic transactions.
A major hurdle for hardware transactions remains in their specification. Importantly,
what hardware transaction abstraction should be provided to the software? How is the
limitation of finite hardware resources for temporarily buffering transactions handled?
One strategy is to attempt to provide transactions of essentially unbounded size (though

� See also Lomet’s earlier work [L77].

657Moss J.E.B., Rajwar R.: Atomicity as a First-Class System Provision



large transactions might have large performance impacts). This would be nicest from
the standpoint of software design, but still ultimately demands some way to structure
software to provide good performance. Multi-level (open nested) transactions seem a
fruitful direction. A tension will always exist between “power” users, who would prefer
all possible flexibility available from the hardware, and users who would prefer a sim-
ple hardware abstraction where they do not worry about underlying implementations.
These are some of the questions that must be addressed. However, much of the core
mechanisms in hardware required for atomic transactions are well understood and have
been proposed for numerous other reasons.

Likewise, the software area requires significant work. Harris and Fraser’s construct
may provide a good starting point, but one immediate issue is how to specify the seman-
tics with enough adequate rigor (but in a way that programmers and language imple-
mentors can use effectively). At least from the formal methods community perspective,
specifying a concise formal description of the above constructs as a semantic inference
rule in the operational semantics style affords one approach—though the semantics
would benefit consideration from a variety of formal perspectives.

A first pass at an operational semantics definition is:

��p���� true� � ���S���� � ��atomic (p) � S �����

In English: If we start in state � and the guard predicate p evaluates to true, then we
make the atomic state transition that evaluates p followed by S. No other other process
will be able to observe or affect the intermediate state � � or any other intermediate state.
Note that no transition occurs if p evaluates to false

Looking forward, we suggest language designs will need to go beyond such simple
constructs. Some of the issues designs might want to handle include:

– Connecting with durability somehow, perhaps through providing special durable
memory regions.

– Expressing relative ordering constraints (or lack thereof) for transactions issued
conceptually concurrently (e.g., iterations of counted loops, as typical of scientific
programs operating on numerical arrays).

– Supporting (closed) nesting (in the style of Moss’s nested transactions [M85]) and
the bounded rollback that it implies on failure.

– Supporting open nesting [WS92] (also called multi-level transactions), where com-
mitment of a nested transaction releases basic resources (e.g., cache lines) but im-
plies retention of semantic locks and building a list of undo routines to invoke if
the higher level transaction fails. This process of undoing a committed nested open
transaction is often called compensation.

– Providing for lists of actions to perform only if the top-level enclosing transaction
commits.

658 Moss J.E.B., Rajwar R.: Atomicity as a First-Class System Provision



– Supporting the leap-frogging style of locking along a path one is accessing in a data
structure. (In a singly-linked list, one holds locks on elements � and ���. To move
down the list, one acquires a lock on � � � and releases the lock on �.) Essentially
this requires means to release specific previously acquired items.

– More general split-join transaction semantics.

– More general save-points for rolling back.

Some of these features may require more functionality from the hardware. For ex-
ample, it would appear that leap-frog style locking requires managing more than one
set of accessed cache lines, so the hardware may need to include the notion of a trans-
action id and the ability to commit/abort a transaction, given its id, independently of
other ongoing transactions, etc.

7 Atomicity as a First Class System Provision

The important challenges of language and software systems support for such transac-
tions and their interactions with the underlying atomic hardware transactions requires
a coordinated inter-disciplinary research effort. We believe future software systems
should use transactions for improving their reliability and programmability, and hard-
ware mechanisms such as atomic transactions should provide the common-case perfor-
mance for such software systems. The uncommon case might be handled using a slower
software interface, thus guaranteeing transaction properties in all cases. This decoupling
of performance and programmability holds the key to future reliable high-performance
systems [RG03].

References

[D04] Dagstuhl Seminar 04181. Atomicity in System Design and Execution. organized by
C. Jones, D. Lomet, A. Romanovsky, G. Weikum, http://www.dagstuhl.de/04181/

[FQ03] Cormac Flanagan and Shaz Qadeer. A Type and Effect System for Atomicity. In Pro-
ceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation (PLDI 2003), pages 338–349, San Diego, CA, May 2003. ACM
SIGPLAN, ACM Press.

[G+90] K. Gharachorloo, et al. Memory consistency and event ordering in scalable shared-
memory multiprocessors. In Proceedings of the 17th International Symposium on
Computer Architecture, pages 15–26, 1990.

[G+00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java language specifica-
tion, second edition. Addison-Wesley, 2000.

[G+75] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger. Gran-
ularity of Locks in a Large Shared Data Base. In Proceedings of the International
Conference on Very Large Data Bases, pages 428–452, 1975.

[HF03] Tim Harris and Keir Fraser. Language support for lightweight transactions. In Pro-
ceedings of the 2003 ACM International Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA 2003), Anaheim, CA, October
2003. ACM SIGPLAN, ACM Press.

659Moss J.E.B., Rajwar R.: Atomicity as a First-Class System Provision



[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural support
for lock-free data structures. In Proceedings of the 20th International Symposium on
Computer Architecture, pages 289–300, San Diego, CA, May 1993.

[IBM] IBM Corporation. IBM System/370 Principles of Operation. IBM Systems library,
order number GA22-7000.

[J+87] Eric H. Jensen, Gary W. Hagensen, and Jeffrey M. Broughton. A new approach to
exclusive data access in shared memory multiprocessors. Technical Report UCRL-
97663, Lawrence Livermore National Laboratory, November 1987.

[K86] Thomas F. Knight. An architecture for mostly functional languages. In Proceedings
of ACM Lisp and Functional Programming Conference, pages 105–112, August 1986.
An initial proposal for speculatively parallelizing sequential code using hardware
support.

[LY99] Tim Lindholm and Frank Yellin. The Java virtual machine specification, second edi-
tion. Addison-Wesley, 1999.

[L77] David B. Lomet. Process Structuring, Synchronization, and Recovery Using Atomic
Actions. In Proceedings of an ACM Conference on Language Design for Reliable
Software (LDRS), pages 128–137, 1977.

[M85] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Distributed Com-
puting. MIT Press, Cambridge, MA, 1985.

[RG01] Ravi Rajwar and James R. Goodman. Speculative Lock Elision: Enabling highly con-
current multithreaded execution. In Proceedings of the 34th International Symposium
on Microarchitecture (MICRO), pages 294–305, Austin, TX, December 2001. IEEE.

[RG02] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-
based programs. In Tenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 5–17, San Jose, CA,
May 2002. ACM, ACM Press.

[RG03] Ravi Rajwar and James R. Goodman. Transactional Execution: Toward Reliable,
High-Performance Multithreading. In IEEE Micro, pages 117–125, Volume 23 Num-
ber 6 November/December 2003.

[S+95] Gurindar S. Sohi, Scott E. Breach, and T.N. Vijaykumar. Multiscalar processors. In
Proceedings of the 22nd International Symposium on Computer Architecture, pages
414–425, 1995.

[S+93] Janice M. Stone, Harold S. Stone, Phil Heidelberger, and John Turek. Multiple
reservations and the Oklahoma update. IEEE Parallel and Distributed Technology,
1(4):58–71, November 1993.

[S04] Sun Microsystems. JSR-000133 Java memory model and thread specification re-
vision. Available from http://www.cs.umd.edu/˜pugh/java/memoryModel, February
2004.

[WS92] Gerhard Weikum and Hans-Jörg Schek. Concepts and Applications of Multilevel
Transactions and Open Nested Transactions. Database Transaction Models for Ad-
vanced Applications, (A. Elmagarmid, ed.), Morgan Kaufmann, 1992, pages 515–
553.

660 Moss J.E.B., Rajwar R.: Atomicity as a First-Class System Provision


