Journal of Universal Computer Science, vol. 11, no. 5 (2005), 744-770
submitted: 30/11/04, accepted: 31/1/05, appeared: 28/5/05 © J.UCS

Formal Construction of a Non-blocking Concurrent Queue
Algorithm (a Case Study in Atomicity)

Jean-Raymond Abrial
(ETH Zdurich, Switzerland
jabriale@einf.ethz.ch)

Dominique Cansell
(Université de Metz & LORIA, France
cansell@loria.fr)

Abstract: This paper contains a completely formal (and mechanically proved) development of
some algorithms dealing with a linked list supposed to be shared by various processes. These
algorithms are executed in a highly concurrent fashion by an unknown number of such indepen-
dent processes. These algorithms have been first presented in [MS96] by M.M. Michael and M.L.
Scott. Two other developments of the same algorithms have been proposed recently in [YS03]
(using the 3VMC Model Checker developed by E. Yahav) and in [DGLMO04] (using 1/0 Au-
tomata and PVS).

Key Words: atomicity, concurrency, refinement, formal proof, prover.
Category: D.1.3

1 [Introduction

This paper? contains a case study in concurrency and atomicity. The example we study
here has been published a long time ago by M.M. Michael and M.L. Scott in [MS96].
Their paper presented a number of algorithms for accessing and modifying some global
data structures in a concurrent fashion. Among those, we have selected two very in-
teresting algorithms whose simple purpose is to dequeue or enqueue nodes in a pointer
constructed linear queue. The algorithms, which are presented in their paper in the form
of C-like pseudo-code, seem to be extremely efficient (they give some statistical results
supporting this assertion) although they appear to be not so obvious to fully understand
(at least for us). Moreover, Michael and Scott gave some informal mathematical proofs
of the correctness of their algorithms. As usual with proofs of that kind, it is rather hard
to be certain to be completely convinced (at least, this is what happened to us). For
all these reasons, we found it very interesting and challenging to see whether it would
be possible to undertake a completely formal (and proved) re-construction of these al-
gorithms. In other words, rather than verifying the algorithms as given by Michael and
Scott, we redevelop them from scratch. As will be seen, we end up with some algorithms
which are slightly different from theirs (we shall explain where and why). Correct al-
gorithm construction is a task which is quite different from that of final verification. We

! This work has been partly supported by IST FP6 Rigorous Open Development Environment
for Complex Systems (RODIN, 1ST-511599) Project.

Abrial J.-R., Cansdll D.: Formal Construction ... 745

think that it gives more insight on the very nature of the algorithm.

The paper is organized in the following way. Section 2 contains an informal def-
inition of the global queue and of the two operations that could be performed on it.
These definitions are given as if the operations were to be executed in a non-concurrent
fashion. Section 3 contains the concurrency and atomicity assumptions which are to
be followed in the final algorithms. Section 4 contains informal transformations of the
definitions given in section 2 in order to take care of the assumptions that were defined
in section 3. At this point the algorithms present themselves in the form of a number of
successive atomic actions. So far nothing is formal, we just wanted to make very clear
what we might eventually obtain. And, of course, nothing guarantees that the transfor-
mations done in section 4 are correct (in fact they are not). Section 5 contains a survey
of the formal development technique which we shall use. Section 6 contains explana-
tions of our development: it is done using 7 gradually refined models. Section 8 contains
some comparisons of our work with similar recent studies done on the same example.
Finally, section 9 concludes this study.

2 Defining the Queue and its Basic Operations

2.1 TheQueue

The queue is made of a number of nodes linked by pointers (called Next) and forming a
linear list. The last element of the queue is a “dummy” node called Null. We call Null
a dummy because it does not contain any useful information. The queue is accessed
through two extra pointers called Head (pointing to the first node of the queue) and
Tail (normally pointing to the node preceding Nwll in the queue).

Head Tail Head Tail

l l A
O—0-0-0— OO

Next Next Next Next Next

Figure 1: The Queue (normal and degraded)

The nodes belonging to the queue are those nodes connected by Next ranging from
the node pointed to by Head to the Null node. Notice however that the first node of
the queue is in fact a dummy node (according to [MS96]). The queue could be in one of
two states: normal (when Head and T'ail are pointing to different nodes in the queue)
or degraded (when both Head and T'ail point to the last node of the queue) as indicated
in Figure 1. In that latter case, the queue is indeed “empty”.

746 Abrial J.-R., Cansdll D.: Formal Construction ...

2.2 TheDequeue Operation

The queue can be modified by means of two operations called Dequeue and Enqueue.
Operation Dequeue can result in a success or in a failure. It is a success in case it is
performed on a normal queue, and it is a failure in case an attempt is made to perform
it on a degraded queue (in which case the queue is left unchanged). Figure 2 shows a
successful application of Dequeue: the first node in the queue is removed as a conse-
quence of moving ahead the H ead pointer.

Head Tail

TN l
O—U—0—0

Next Next Next Next

Figure 2: A successful Dequeue operation

2.3 TheEnqueue Operation

Applying operation Enqueue results in adding an extra node by the end of the queue
(preceding Nwull) as indicated in Figure 3. The extra node in question is one that is not
in the queue: we suppose that we always have a sufficient supply of such extra nodes.

Head Tail

l |
O-O-07==@

Next Next
Figure 3: The Enqueue Operation (provided condition “Next(T'ail) = Null” holds)

After applying operation Enqueue, the T'ail pointer is not moved one step ahead.
It results in the queue having one of the two shapes indicated in Figure 4. Operation
Enqueue cannot be performed on a queue of these forms, but operation Dequeue can
still be performed.

Head Tail Head Tail

b R
00— 00—

Next Next Next Next

Figure 4: Possible queue shapes after an Enqueue operation

Abrial J.-R., Cansdll D.: Formal Construction ... 747

2.4 TheAdapt Operation

A third operation, called Adapt, is thus necessary to move forward the T'ail pointer in
case it does not point to the node preceding Null in the queue. Such an operation is illus-
trated in Figure 5. Thanks to operation Adapt, and Enqueue, T'a:l always points either
to the node n preceding Nwull in the queue or to the node preceding n. Notice that in
what follows, operation Adapt will be merged with operations Dequeue and Enqueue
when necessary so that there will not exist such an independent Adapt operation.

Head Tail

l AN
O—0—-0-0—

Next Next Next Next

Figure5: The Adapt Operation (provided condition “Neat(Tail) # Null” holds)

2.5 Non-concurrent versions of the Operations

The three operations we have just informally described and illustrated can be given
more precise definitions by means of some “programs” written in a pseudo-code as in-
dicated in Figure 6. Note that we also have an initialization defining an initial degraded
queue.

Dequeue Enqueue Adapt
I if
" :: cad 7 Tail Next(Tail) = Null | if
Head = Next(Head): then Next(Tail) # Null
return(true) nde := new_node; then
Next(nde) := Null; Tail := Next(Tail)
else .
Next(Tail) :=nde | end
return(false)
end
end

Figure6: The Three Operations

748 Abrial J.-R., Cansdll D.: Formal Construction ...

3

Concurrency and Atomicity Assumptions

The three operations mentioned in the previous section were defined as if activated by
a single process. The problem, which was studied in the original paper [MS96], and
which we shall study here again, is to have several processes willing to concurrently
perform these operations. These concurrent processes perform these operations under
certain assumptions which are the following:

1.

There does not exist any critical section around the queue. In other words, processes
can access the queue in a genuinely concurrent fashion by means of a succession
of elementary atomic actions. An atomic action is an elementary modification of
the queue and of its pointers Head and T'ail in a way which is guaranteed to be
done by a single process at a time. The global behavior of these processes is thus
one where all such atomic actions are interleaved.

We have a number of global “variables” corresponding to the various nodes (inside
and outside the queue) and to their connections (which we call Next in Figures
1 to 5). Note that the two pointers Head and T'ail are also global variables. As a
practical convention, names of global variables all start with an upper case letter.

We have a number of other “variables” which are local to each process. Among
these are local copies of Head and T'ail and also pointers to new nodes to be
engueued. Again as a practical convention, names of local variables all start with a
lower case letter.

We can assume two kind of elementary atomic actions: Reading and Compare-
And-Swap (for short CAS).These two atomic actions are described in Figure 7.

Actions involving only local tests and local assignments can be performed concur-
rently by each process.

Reading local_variable := global_variable

if global_variable = some_local_variable then
Compare-And-Swap global_variable := another_local_variable
end

Figure 7: The Two Kinds of Elementary Atomic Actions

Notice that we shall extend in what follows the Compare-And-Swap atomic action to
possibly contain a local test and a local action as indicated below:

Abrial J.-R., Cansdll D.: Formal Construction ... 749

if local_test N global_variable = some_local_variable then
global_variable := another_local_variable;
local_action

end

And it can also be simplified to the case where the body of the condition is just a local
action:

if local_test N global_variable = some_local_variable then
local_action
end

Such extensions are just convenient ways to handle the atomic actions. They will
be used in this paper to ease the reasoning. It is always possible to return to the unique
basic Compare_And_Swap atomic action by adding extra local assignments and tests.

We shall also sometimes use the construct C' AS(glb, locl, loc2) (where glb is sup-
posed to be a global variable while loc1 and [oc2 are local values) to represent a boolean
expression (glb = locl) with a possible side effect (gib := loc2). Such a construct can
be used either: (1) as a condition within an if pseudo-code statement, or (2) as a simple
statement. Example of such uses will be shown in Figure 12.

4 Informal Transformations of the Non-concurrent Operations

In this section, we gradually informally transform each operation Dequeue and En-
gqueue into a sequence of elementary atomic actions. Before doing that however, we
first merge the operation Adapt within Dequeue and Enqueue respectively. All this
will be done (and informally validated) as if the operations were executed in a purely
non-concurrent fashion. The idea is to obtain at the end of these transformations some
operations that will be ready for the formalization and the proof (but probably not yet
completely correct). The idea of the formal development is then to gradually “encode”
the atomic actions in a mathematical framework (Event-B) allowing us to prove that
they indeed refine the initial operations Dequeue and Enqueue.

4.1 Merging Adapt within the Main Operations

In Figure 8, you can see how operation Adapt (which is boxed) is merged with opera-
tions Dequeue and Enqueue.

The merging with Dequeue and Enqueue can be further extended by providing a
loop as indicated in Figure 9. The reason for introducing these loops is to move towards
the concurrent algorithm. In a non-concurrent case, as we are supposed to be here, these
loops are at most executed twice.

750 Abrial J.-R., Cansdll D.: Formal Construction ...

if Head # Tail then
Head := Next(Head);
return(true)

elsif Next(Tail) # Null then
Tail := Next(Tail);
Head := Next(Head);
return(true)

else
return(false)

end

nde := new_node;

Next(nde) := Null;

if Next(Tail) # Null then
Tail :== Next(Tail)

end;

Next(Tail) := nde

Figure 8: Merging Adapt with Dequeue and Enqueue

loop
if Head # Tail then
Head := Next(Head);
return(true)
elsif Next(Tail) # Null then
Tail := Next(Tail)
else
return(false)
end
end

nde := new_node;
Next(nde) := Null;
loop
if Next(Tail) # Null then
Tail := Next(Tail)
else
Next(Tail) := nde;
break
end
end

Figure 9: Introducing a loop in Dequeue and in Enqueue

4.2 Introducing L ocal Process Variables

In Figure 10, local variables (all starting with lower case letters) are introduced within
the previous versions of operations Dequeue and Enqueue. On operation Dequeue,
you can see that expression Next(Tail) is replaced by nad which is clearly equal to
Next(Head) in a non-concurrent execution. Notice that it is correct to do these re-
placements because they are made in places where Head and T'ail are equal. Likewise,
in operation Enqueue you can see that expression Next(T ail) is replaced by nze, and
that an assignment to Next(Tail) is replaced by an assignment to Next(tle). Again,
such replacements are certainly correct in a non-concurrent execution.

Abrial J.-R., Cansdll D.: Formal Construction ... 751

loop
e
tld := Tail, loss nde) := :
nzd := Next(hdd); e i Tail

if hdd +# tld then nxe := Next(tle);

Head := naxd, .
’ if nze £ Null then
return(true) Tail = nae
elsif nxzd # Null then
) else
Tail := nxd
Next(tle) := nde;
else
break
return(false)
end
end
end

end

Figure 10: Introducing local variables within Dequeue and Enqueue

4.3 Preparing for Concurrency

In Figure 11, we prepare for concurrency in operations Dequeue and Enqueue by
adding some extra tests which are certainly useless within a non-concurrent execution
but will be important within a concurrent one because they will allow us to define ele-
mentary atomic actions. In Figure 12, we show the same pseudo-code with an explicit
usage of the C'AS atomic operation.

4.4 Final Atomic Actions

In Figures 13 and 14, we show the final (for the moment) situation with the decompo-
sition of each operation in a sequence of elementary atomic actions. As can be seen,
they are all simply connected by sequential composition. As a consequence, some lo-
cal tests are repeated. We have adopted this form because it simplifies the analysis.
Each atomic action is either a simple assignment or a possibly degenerated CAS. Each
of them is represented in a named box followed by some “...” to indicate that some
other atomic actions can take place before execution of the same operation can resume.
The other atomic actions which can take place are other instantiations of the same or
the other operation executed by different processes. Notice that the elementary atomic
actions named Deq_Loop and Enq_Loop, which have no contents in these figures,
correspond to the deallocation of the local variables created within the loop body. As
can be seen, atomic actions are all of the forms presented in section 3. We have so far
depicted 13 elementary atomic actions (7 for Dequeue and 6 for Enqueue). If we
suppose that 20 different processes are acting concurrently, then we have 13 2° different
situations to consider (processes executing Dequeue can be in 7 distinct waiting situ-

752 Abrial J.-R., Cansdll D.: Formal Construction ...

loop
hdd := Head; de := new _node;
tld := Tail, [. |

Next(nde) := Null;
loop

tle := Tail;

nxe := Next(tle);

nad := Next(hdd);
if hdd # tld then
if Head = hdd then

S e
if Tail =tle then
end

Tail := nxe
end
elsif Neuxt(tle) = nxe then

elsif naxd # Null then
if Tail =tld then

Tail :=nxd Next(tle) := nde;
end break
gsif Tail = tld then
end
return(false)
end
end

end

Figure11: Preparing for concurrency in Dequeue and in Enqueue

ations while processes executing Enqueue can be in 6 waiting situations). Testing is
clearly impossible.

5 A Survey of the Event-B Formal Approach

5.1 Development Principles

We have no guarantee, of course, that the previous informal decomposition of each
operation into a sequence of atomic actions is “correct”. And, as we have just seen at the
end of previous section, it is out of the question to perform any test. As a consequence,
we think that a formal development (with proofs) is needed. Our approach consists
of building several more and more accurate models of the concurrent execution. Each
such model corresponds to what can be observed by a more and more accurate external
observer.

5.2 Theinitial Model

In the first model, the observer can only see the “last” event (i.e. atomic action) of each
operation invocation, that is: events Deq_true or Deq_false for operation Dequeue,
and event Enq for operation Enqueue. In other words, the complete execution of each
operation has thus been reduced to a single “point”. Note that this does not mean that

Abrial J.-R., Cansdll D.: Formal Construction ... 753

loop
hdd := Head, de —n node:
tld .= Tail; nae := New_node;

nad := Next(hdd); NVext(nde) := Nulk

if hdd # tid then loop |
i tle := Tail;
if CAS1 then
return(true) ne := Newt(tle);
end if naze # Null then

CAS(Tail, tle, nxe)

elsif nxd # Null then dsif CAS2 then

CAS(Tail, tld, nxd)

elsif Tail = tld then break
end
return(false)
end end
C' AS?2 stands for

end
CAS1 stands for
CAS(Head, hdd, nxd)

CAS(Next(tle), nxe,nde)

Figure 12: Final versions (so far) of Dequeue and Enqueue with explicit CAS

these operations are performed sequentially: in fact, their hidden events can be inter-
leaved. It only means that the end point of each of them occur in a certain order. In Fig-
ure 15, we have represented an execution sample, as “seen” by the observer of the first
model. The horizontal line is a time axis. Moreover, A stands for events Adapt_Deq
or Adapt_Enq, E stands for event Eng, and D stand for event Deq_true. What is im-
posed here by this view is that these operations are serializable, as would be the case
if the queue would have been protected by a global critical section. To put it in another
way, the observer closes eyes most of the time: he only opens them when an operation
terminates and he thus believes that the operation has been performed “just now”. No-
tice that, at this stage, we also have two identical events Adapt_Deq and Adapt_Enq
for operation Adapt.

5.3 Subsequent Models

In subsequent models these timeless events will be gradually “stretched” by means of
more events corresponding to the various atomic actions and loops that were devel-
oped informally in the previous section. In Figure 16, the observer can see more events
making the Dequeue operation. Operation Enqueue is still abstract (performed in one
shot). On this figure, d1 to d3 stands for events Deql to Deg3. In Figure 17, operation
Enqueue is stretched by means of events Engql, Eng2, Eng3, and Adapt-Eng. Note
that among the two executions of operation Enqueue, the one which terminated last,
was started first.

754 Abrial J.-R., Cansdll D.: Formal Construction ...

loop
hdd := Head|, Deql
tld := Tail|, Deg2
|na:d := Next(hdd) |; Deg3
if hdd #tld N Head = hdd then
Head := nxd;
; Deq_true
return(true)
end
if hdd =tld N nxzd# Null A Tail =tld then
Tail := nxd . Adapt_Deq
end
if hdd=tld N nxzd=Null A Tail =tld then
return(false) . Deg_false
end
end Deqg_Loop

Figure 13: Showing concurrent atomic actions in Dequeue

5.4 Development Technique

The development technique which we shall use here is called Event-B. It has already
been described in various papers such as [ACMO03] and [Abr03], so that we shall not
repeat it here. Roughly speaking, an Event-B development is made of a sequence of
more refined models. Each such model contains a state description with some invariant
properties and various events corresponding to transitions. Correctness imply proving
invariant preservation and correct refinement of abstract events. In a refined model new
events can be introduced: they are supposed to refine implicit events doing nothing.
We shall only give in what follows a summary of the different models that have been
written and proved. The interested reader can download the entire development from
[ACO3b]. He can also see and redo the proofs with the Click’'n’Proof tool [AC03a,
ACO03b, Cle04].

Abrial J.-R., Cansdll D.: Formal Construction ...

Next(nde) := Null

nde := new_node;|

U

loop

o= T

|nxe := Next(tle)

U

if nze# Null A
Tail == nxe
end

Tail = tle then

u

Enqgl

Eng2

Eng3

Adapt_Eng

break
end

if nze=Null A Next(tle) = nxe then
Next(tle) := nde;

; Enqg

end

Enqg_Loop

Figure 14: Showing concurrent atomic actions in Enqueue

E

755

Figure 15: An abstract execution sample: the observer only sees a very few events

6 Summary of Event-B Development

6.1 Mode O: Introducing the Queue and its Basic Operations

In this first model, we introduce the basic global variables of the problem: the function
Next, the set Queue, and the three nodes H ead, T'ail and Null. They are all defined in
terms of the abstract set V (for nodes). The invariants of Model 0 are shown in Figure
18. On this figure, Head and T'ail always point to the Queue (invariant inv0_3 and
inv0_4) and they are different from Nwll (invariant invO_5). Head points to the first
element of the Queue (since it does not belong to the range of Next restricted to Queue
according to invariant inv0_8). Moreover T'ail points to the node n preceding Null or
to the node preceding n (invO_7). Notice that we say nothing about the structure of the

756 Abrial J.-R., Cansdll D.: Formal Construction ...

A E D

A E
| di d2 d3

Figure 16: The observer now sees most of the atomic actions of Dequeue

A E A E D

el el e e2 €3 e3 di d2 d3

O A O o

S~ T A A A T T T T T A

Figure17: The observer now sees the atomic actions of Enqueue

function Next outside the queue. Within the queue however, we express that Next is a
bijection (inv0_8). Finally, we express that Queue is inductive (inv0_9). That is: every
property of Queue (represented by a subset s of Queue), which is true at Head and
also at Next(z) if true at «, is then true for all members of Queue. The connectivity
of the Queue from Head to Null follows from invariants invO_8 and invO_9. As a
consequence three of the five properties that were mentioned in [MS96] are certainly
fulfilled in Model O (the other two follows from the events as will be seen below),
namely:

— The linked list is always connected.
— Head always points to the first element in the linked list.

— Tail always points to a node in the linked list.

The four events are straightforward formalizations of the pseudo-code programs
defined in Figure 6. They are defined in Figures 19 and 202. It can be seen from the
description of events Deq_true and Enq that the two other properties mentioned in
[MS96] are indeed fulfilled:

— Nodes are only inserted after the last node in the linked list.

— Nodes are only deleted from the beginning of the linked list.

2 Our events are defined by a guard (situated between the keywords when and then) and an
action (situated between the keywords then and end). The guard expresses the necessary con-
dition for the event to occur. And the action is either a multiple deterministic assignment (in all
events shown here except Eng) or a multiple non-deterministic assignment introduced by an
any construct (in event Enq).

Abrial J.-R., Cansdll D.: Formal Construction ... 757

inv0_1: Nexte N+ N

inv0_2: Queue C N

inv0_3: Head € Queue

inv0_4: Tail € Queue

inv0_5: Null € Queue\ {Head, Tail}

inv0_6: Return € BOOL

inv0_7: Neat(Tail) = Null vV Next(Next(Tail)) = Null

inv0_8: Queue < Next € Queue\ {Null} — Queue\ {Head}
s C Queue
Head € s

inv0_9: Vs- | Next[s] C s

=
Queue C s

Figure 18: The Invariant of Model 0

The only aspect that remained rather “vague” in Figure 6 was the nature of the
new_node chosen by the event Eng. What we say for the moment in event Enq is that
our filter for enqueuing a new node is that it does not belong to the Queue. The filter is
thus the set V \ Queue as shown in Figure 20. Mechanically proving that these events
all maintain the invariants is easy.

The proof of this model required 50 lemmas of which 7 were proved interactively.

6.2 Moded 1. Refining the Dequeue Event

In Model 1, we introduce the abstract set P of processes. We also define the local vari-
ables hdd, tld, and nxzd as they were used in Figure 10. They are defined here as partial
functions from P to N. The constraints on the domains of these functions allows one to
take care of the order in which these local variables are assigned by their corresponding
atomic actions (see Figure 13): first hdd, then tld, and finally nxd. The invariants of
this model are presented in Figure 21.

758 Abrial J.-R., Cansdll D.: Formal Construction ...

Deq_true =

when Deq_false =
Head # Tail when

then Head = Tail
Head := Next(Head) then
Queue := Queue \ {Head} Return = false
Return := true end

end

Figure19: The Deq_true and Deq_false Events of Model 0

Enqg =
when
Next(Tail) = Null Adapt =
then
any n where when
n € N\ Queue Next(Tail) # null
then then
Next := Next < {Tail — n, n — Null} Tail := Newt(Tail)
end
Queue := Queue U {n}
end
end

Figure 20: The Eng and Adapt Events of Model 0

The definition of the events Deql to Deq3 are straightforward formalizations of the
corresponding atomic actions defined in Figure 13. The new versions of the three events
Deq_true, Deq_false, Adapt_Deq must refine their abstract counterparts defined in
Model 0. In Figures 22 to 24 we show the abstract and concrete versions of each of
these events together with the invariants which we have to introduce in order to ensure
the correct refinements of the concrete event versions with regard to the more abstract
ones. We remind the reader that the guards of a refined event must be stronger than that
of its more abstract one (this requirement is a consequence of the refinement theory).

As can be seen in Figure 22 (event Deq_true), the invariant we introduce is uni-
versally quantified over processes. The antecedent of the quantified implication of this
invariant is the same as the guard of the refined event (up to a change of variables, which
is introduced in order to ease the reading). The consequent of the implication contains
exactly what we need in order to prove that the concrete version of the event refines its

Abrial J.-R., Cansdll D.: Formal Construction ... 759

hdd € P+ N

dom (nazd) C dom (tld)
tlde P+ N

dom (tld) C dom (hdd)
nxd € P+ N

Figure 21: Parts of the Invariant of Model 1

more abstract version, namely (1) the condition Head # T'ail, which is exactly the ab-
stract guard, and (2) the condition nzd(q) = Next(Head), which allows us to replace
Next(Head) in the abstract version by na:d(p) in the concrete one. Similar comments

Deq_true =

when Deq_true =
Head # Tail any p where

then p € dom (nzd)
Head := Next(Head) tld(p) # hdd(p)
Queue := Queue \ {Head} hdd(p) = Head
Return := true then

end Head := nxd(p)

tld := {p} < tld
q € dom (nzd) hdd := {p} < hdd

ld hdd nzd := {p} < nad
Zdé(g;;é_ H 6(2 Queue := Queue \ { Head}

Vq- Return := true
=

Head # Tail end
nxd(q) = Next(Head)

Figure 22: Refinement of Event Deq_true with abstraction and invariant

as the one we have made for event Deq_true can be made on the two other invariants
we introduce together with the refinements of events Deq_false and Adapt (see figures
23 and 24). Note that the antecedent of the invariant given in figure 23 is weaker than
the guard of event Deq_false (since dom (nzd) is included in dom (¢ld) according to
the invariant given in Figure 21), but it is indeed sufficient to prove the refinement of
this event.

All these invariants are introduced by looking at the reason why some refinement
proofs fail. As a matter of fact, some specific statements that cannot be proven are

760 Abrial J.-R., Cansdll D.: Formal Construction ...

candidate new invariants.

Deq_false = Deq_false =
when any p where
Head = Tail p € dom (nzd)
then tld(p) = hdd(p)
Return = false tld(p) = Tail
end nad(p) = null
then

tid = {p} < tld

hdd := {p} < hdd

nxd := {p} < nxd

Return := false
end

q € dom (tld)
tld(q) = hdd(q)
Vq- | tid(q) = Tail
=
Head = Tail

Figure 23: Refinement of Event Deq_false with abstraction and invariant

Adapt Deq = ~
when it
the]:]fext(Tazl) # null p € dom (nzd)
Tail := Next(Tail) td(p) = hdc%(p)
end tld(p) = Tail
nad(p) # null
THEN

q € dom (nzd) Tail :== nxd(p)

tld(q) = hdd(q) tld := {p} < tld
Vg tld(q) = Tail hdd := {p} < hdd

nzd(q) # null nxd := {p} < nad

= END

nxd(q) = Next(Tail)

Figure 24: Refinement of Events Adapt_Deq with abstraction and invariant

After introducing these invariants, our task is not finished: we have to prove them,
that is to prove that they are maintained by all our events. Unfortunately, such proofs
failed. The reason for this is what is called in [MS96] the ABA problem. This is a
problem which arises frequently in concurrent applications where several processes are
competing for a shared resource. More precisely, this problem occurs when a node n
(pointed to by Head) is removed from the Queue by an instance of event Deq_true

Abrial J.-R., Cansdll D.: Formal Construction ... 761

working for a certain process p. Suppose it is done while another process ¢ points to
Head with its local variable hdd. If ¢ still points to n while n is re-enqueued by an
instance of event Enq (it is possible because n is not any more in the Queue), then the
invariant is broken. For example the following invariant was introduced with Deq_true.

q € dom (nzd)
tld(q) # hdd(q)
Yq- | hdd(q) = Head
=
Head # Tail

When trying to prove that Deq_true maintains it, we are led to prove the following
(after some simplifications):

p € dom (hdd)

q € dom (hdd)

hdd(p) = Head

hdd(q) = Next(Head)
=

Next(Head) # Tail

In Figure 25 we generate a counter-example to the previous condition. In other words,
we are going to generate a situation where the following three conditions are simulta-
neously true:

hdd(p) = Head
hdd(q) = Next(Head)
Next(Head) = Tail

We start in a situation where two processes, say » and ¢, have asked to perform a De-
queue, so that their hdd local variables both point to the first element of the queue also
pointed to by the global variable Head. We suppose that process p wins the contest
(Deq_true). As a consequence, the first element of the queue is removed and Head
moves forward. But process ¢ still points to the removed node. We suppose then that
an Enq event does occur, which choose precisely the just removed element to be en-
queued (still process ¢ points to it). Then an event Adapt takes place. Notice that now
Tail points to the same node as ¢ does. Finally event Deql occurs for process p. Thus
process p points to Head. Now, the counter-example is there, since we have the follow-
ing three conditions simultaneously true:

hdd(p) = Head
hdd(q) = Next(Head)
Next(Head) = Tail

The solution is to add the following invariant stipulating that the range of hdd inter-
sects Queue at most on the Head node:

762 Abrial J.-R., Cansdll D.: Formal Construction ...

H T HT
O =" O

hdd(r) hdd(q)
' Eng

hdd(q)
H T Adapt HT
- — O

hdd(q) hdd(q)

' Deql

H T

(0 o O

hdd(p) hdd(q)
Figure 25: Generating a counter-example

ran (hdd) N Queue C {Head}

In other words, local variables hdd must all point to Head when pointing within
the Queue. Note that the invariant given with Deq_false can now be deduced from
this new invariant. Figure 26 shows the remaining invariants.

These invariants can all be proved provided we modify event Enq (Figure 27) by
ensuring that the new node, which is chosen for enqueuing is not in the range of hdd.
In other words, no process has its local variable pointing to the chosen node. Of course,
this solution is not satisfactory (since Enq has to check all hdd local variables) but at
this abstract stage it is sufficient to allow all the proofs to be done. To summarize, our
filter isnow N \ (Queue U ran (hdd)).

We touch here a very important aspect of our refinement approach. At some stage,
we define some abstract solutions where things are correct but not practically imple-
mentable. The situation is then improved at a later refinement stage. And the refinement
proof will then ensure that the more concrete version will behave as the abstract one but
with a practical and implementable solution. Another aspect that is important in our de-
sign approach is our usage of the prover. It helps us discovering the invariant we need.
This is a consequence of its failure: it often indicates that the invariants are not strong
enough.

The proof of this model required 79 lemmas of which 16 were proved interactively.

Abrial J.-R., Cansdll D.: Formal Construction ...

763

g € dom (tld)

ran (hdd) N Queue C {Head}

Vg-
td(q) # hdd(q) !
Vq- | hdd(q) = Head
=
Head # Tail
Yq-

q € dom (nxd)
tld(q) # hdd(q)
hdd(q) = Head
=
nxd(q) = Next(Head)

q € dom (nxd)
tld(q) = hdd(q)
tld(q) = Tail
nxd(q) # null

=
nxd(q) = Next(Tail)

Figure 26: Summary of new invariants of Model 1

Enqg =
when
Next(Tail) = Null
then
any n where

then
Queue := Queue U {n}

end
end

n € N\ (Queue U ran (hdd))

Neat := Next < {Tail — n, n — Null}

Figure27: The Refinement of Event Enq

6.3 Model 2: Introducing an Abstract Waste Basket

In this model, we introduce a waste basket, Bsk. This will certainly not constitute the
final solution of the ABA problem mentioned in the previous section but will be a little
more appropriate than the previous one. And thanks to the proposed invariant it will be a
refinement of the previous model. The idea is that a node that is dequeued will be put in
the waste basket by event Deq_true and will stay there for ever (we shall see in section
6.6 how to implement “for ever”). The invariant for Bsk are defined in Figure 28. One
has to refine again event Eng. The new node to be enqueued has to be chosen outside
Bsk. Then, according to the invariant, this node will be, a fortiori, outside ran (hdd)
(as required by the abstraction). Our filter is thus now N \ (Queue U Bsk). This filter

764 Abrial J.-R., Cansdll D.: Formal Construction ...

Bsk € N Bsk C dom (Next)

ran (hdd) C {Head} U Bsk Bsk N Queue = &

Figure 28: Invariant of Model 2

has to replace NV \ (Queue U ran (hdd)) in event Enq.

The proof of this model required 22 lemmas of which one was proved interactively.

6.4 Model 3: Refining the Enqueue Event

In this model, the event Enq is refined by introducing the extra events of this operation
as shown in Figure 14. Some local variables are defined as shown in Figure 29. No-
tice the injectivity of the function nde: this is because potential nodes to be enqueued
should not be shared by different processes. The new events and the refinement of Enq
are straightforward. Some more specific invariants have to be introduced however (these
invariants are not presented in the paper). The filtering of new nodes to be enqueued,
which was done so far by event Eng is now moved to the new event Engl (Figure 30).
Notice that the filter is made stronger by excluding nodes in ran (nde) in order to pre-

dom (nze) C dom (tle)
nde € P~ N

dom (tle) C dom (nde)
tlee P+ N

ran (nde) N (Queue U Bsk) = &
nre € P+ N

ran (tle) C Queue U Bsk

Figure 29: Invariant of Model 3

serve the injectivity of nde. Here is our new filter: N \ (Queue U Bsk U ran (nde)) as
indicated by event Enq1l.

The proof of this model required 83 lemmas of which 12 were proved interactively.

Abrial J.-R., Cansdll D.: Formal Construction ... 765

Enql =
any p,n where
peP
p ¢ dom (nde)
n € N\ (Queue U Bsk U ran(nde))
then
nde(p) :=n
Next(n) := Null
end

Figure 30: Event Enql of Model 3

6.5 Model 4: Introducing aFreeList

In this model, we introduce a free list F'ree together with the properties described in
the invariant shown in Figure 31. This allows us to strengthen and simplify the filtering

Free C N Free N Bsk =@

Free N Queue =@ Free N ran(nde) = @

Figure 31: Invariant of Model 4

mentioned in previous section by having Engl taking now the candidate node to be
enqueued simply within F'ree. Notice that we still have the basket Bsk within which
we throw away a node which is deleted from the Queue by event Deq_true (Figure
32). In order to prepare a future implementation of Bsk in the next refinement step,
we now suppose that event Deq_true also systematically puts a new node in the F'ree
list. This node is chosen in the set N \ (Queue U Bsk U ran (nde) U Free) in order
to maintain the previous invariants. This action of Deq_true seems to be magic at this
stage: we throw away (for ever) the removed node in Bsk and we simultaneously add
a new node in F'ree. But, again, we are still in an abstraction.

The proof of this model required 31 lemmas of which one was done interactively.

6.6 Model 5: Introducing Concrete Nodes

We are now ready to implement the basket Bsk. In fact, it is not really an implemen-
tation of Bsk as it will completely disappear at this stage. Notice that it is absolutely
necessary to have Bsk disappearing as it grows indefinitely. So, what we are giving

766 Abrial J.-R., Cansdll D.: Formal Construction ...

Deq_true =
any p,n where
peP
tld(p) # hdd(p)
hdd(p) = Head
n € N\ (Queue U Bsk U Free U ran (nde))
then
Head := nxd(p)
tld .= {p} < tld
hdd := {p} < hdd
nxd == {p} < nad
Queue := Queue \ {Head}
Bsk := Bsk U {Head}
Free := Free U {n}
Return := true
end

Figure 32: Refinement of Event Deq_true in Model 4

here is a means of calculating Bsk rather than storing it. We shall also see how we can
generate a new node in F'ree while deleting a node from the Queue. The idea of this
refinement is to introduce a set C' of concrete nodes. We also define two total functions
from N to C' and from N to N. The direct product of these two functions is injective:
given a member ¢ of C' and a natural number we obtain at most one member n of V.

cnode € N —C
cnode @ count € N — C x N
count € N —N

Figure 33: Some Invariant of Model 5

Notice that we might have a finite number of concrete nodes C', whereas the set
N of abstract nodes is infinite. The next invariant shown in Figure 34 is fundamental:
it defines Bsk for nodes with the same cnode as nodes which are members of the set
Queue U Free U ran(nde): nodes in Bsk are exactly those nodes with smaller
count. The node n to be chosen by Deq_true (Figure 35) to be put in Free is then one
with the same cnode as H ead but with a count which is just count(Head) + 1.

According to the abstraction this node n must not be a member of the set Queue U
Bsk U Free U ran (nde). Suppose it is a member of Queue U Free U ran (nde),

Abrial J.-R., Cansdll D.: Formal Construction ... 767

m € N

n € Queue U Free U ran(nde)
YV (m,n) - | cnode(m) = cnode(n)

=

m € Bsk < count(m) < count(n)

Figure 34: The fundamental invariant of Model 5

Deq_true =
any p,n where
peP
tld(p) # hdd(p)
hdd(p) = Head
nenN
cnode(n) = cnode(H ead)
count(n) = count(Head) + 1
then
Head := nxd(p)
tid = {p} < tid
hdd := {p} < hdd
nxd := {p} < nxd
Queue := Queue \ {Head}
Free := Free U {n}
Return := true
end

Figure 35: Refinement of Event Deq_true in Model 5

then, according to the invariant, Head (which has a smaller count that n) must be in
Bsk, which is impossible. Therefore n is not a member Queue U Free U ran (nde).
Now suppose that n is a member of Bsk, then since Head is clearly a member of
Queue U Free U ran (nde) then, according to the invariant, count(n) must be strictly
smaller than count(H ead), which is not the case. As a consequence, n is nota member
of the set Queue U Bsk U FrreeUran (nde): itis indeed consistent with the abstraction.

We must now prove that old Head will “automatically” go in Bsk when n has been
put into F'ree. This will certainly be the case because n is now in Queue U Free U
ran (nde) and has a count that is larger than that of Head. As can be seen, the variable
Bsk, which was a useful abstraction, has now completely disappeared.

768 Abrial J.-R., Cansdll D.: Formal Construction ...

The proof of this model required 35 lemmas of which 11 were done interactively.

6.7 Model 6: Removing Abstract Nodes

This last model is just a technical refinement where we now make the abstract set
N completely disappearing. We only have concrete nodes, and each such node has a
unique counter. In this refinement all variables are changed and become “concrete”. We
now eventually re-translate the final obtained sequential atomic actions into pseudo-
code programs (Figure 36). As can be seen in this figure, it may seem that C'count is
only assigned but never used. In fact, it is not the case as the comparisons are now made
in the various instances of C'AS between concrete nodes together with their counters.

The proof of this model required 29 lemmas of which 16 were proved interactively.

7 Other Works

E. Yahav et M. Sagiv [YS03] have proved these algorithms by using a model checker
based on Abstract Interpretation and a three-valued logic. The algorithms are encoded
in Java together with the five properties that the queue must maintain. The connectivity
property of the list is defined by saying the “Tail is reachable from Head”. It is not clear
whether this property really states that all nodes in the queue can be reached from the
Head. Such properties have been checked using the 3VMC Model Checker which was
developed by E. Yahav. The initial configuration allows to specify the number of en-
queuing processes and that of dequeuing processes. One of these two numbers has to be
bounded whereas it is not necessary for the other. The advantage of their approach is that
the verification is completely automatic on the the Java representation of the algorithms.

Another approach of the same algorithms has been undertaken by S. Doherty et
al [DGLMO04]. They used abstraction and proofs. They model the algorithms using two
automata (within the framework of 1/0 Automata) with a state for each line of the
original Michael and Scott pseudo-code programs. Then they construct an abstraction
of these automata in order to realize the main steps of the algorithms: one enqueue with
adapt and one dequeue. The queue is modeled in the form of a sliding window working
with an infinite sequence. As a consequence, the ABA problem does not exist and the
five basic properties of the queues are maintained. In order to prove the correctness
of the concrete automata with respect of their respective abstractions, they used both
techniques of backward and forward simulations. This generated 1900 lemmas, which
were proved using PVS.

8 Conclusion

In this paper, we have presented a complete reconstruction of Michael and Scott concur-
rent queue algorithms as defined in [MS96]. Our final result slightly differs from theirs.

Abrial J.-R., Cansdll D.: Formal Construction ... 769

loop
chdd := C'Head,
ctld := CTail;

cnxd := C'Next(chdd);
if chdd # ctld then
if CAS(CHead,chdd,cnzd) then
Ccount(chdd) := Ccount(chdd) + 1;
Cfree := Cfree U {chdd};
return(true)
end
elsif cnazd # CNull then
CAS(CTail, ctld, cnad)
elsif CTail = ctld then
return(false)
end
end

cnde :€ CFree;
CNext(cnde) := CNull;
loop
ctle := CTail,
cnze ;= Next(ctle);
if cnze # CNull then
CAS(CTail, ctle, cnxe)
esif CAS(CNext(ctle),cnze,cnde) then
break
end
end

Figure 36: Final versions of Dequeue and Enqueue using CAS

The difference is first on the Dequeue operation which could not be refined to exactly
obtain their algorithm. This is because we impose an abstract serialization of the three
operations Dequeue, Enqueue and Adapt corresponding to the end of these opera-
tion executions. In our version, the Dequeue operation returns false when indeed the
queue is empty, whereas in Michael and Scott it is possible that the operation returns
false while the queue is not empty anymore (although it was empty when the operation
Dequeue was called). Note that the serialization of the end of the three operations is
important in the proof process: it is this very property that is proved to be maintained
across the various refinements done during the design. The second difference is that we

770 Abrial J.-R., Cansdll D.: Formal Construction ...

link the counters to the nodes, not to the pointers to the nodes as do Michael and Scott.
It results in only one incrementation of the counter, namely when a node is returned to
the free list.

The overall development required to prove 329 lemmas of which 64 were proved
interactively yielding 80% of automatic proofs.

Acknowledgments

We would like to thank R. Bornat for introducing us to this example. We had many
discussions with him on this subject and more generally on Separation Logic. We also
want to thank L. Voisin for his careful readings of several versions of this paper.

References

[Abr96] J.R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University
Press, 1996. ISBN 0-521-49619-5.

[Abr03] J.R. Abrial. Event Based Sequential Program Development: Application to Con-
structing a Pointer Program. In Dino Mandrioli Keijiro Araki, Stefania Gnesi, edi-
tor, FME 2003: Formal Methods, volume 2805 of Lecture Notesin Computer Science,
pages 51-74, Pisa, Sept 2003.

[AC03a] J.-R. Abrial and D. Cansell. Click’n’prove : Interactive proofs within set theory. In
David Basin et Burkhart Wolff, editor, 16th International Conference on Theorem
Proving in Higher Order Logics - TPHOLS 2003, Rome, Italy, volume 2758 of Lec-
ture notes in Computer Science, pages 1-24. Springer, Sep 2003.

[ACO3b] J.-R. Abrial and D. Cansell. Click’n’prove (“la balbulette”), Sep 2003.
http://www.loria.fr/~cansell/cnp.htm.

[ACMO03] J.-R. Abrial, D. Cansell, and D. Méry. A mechanically proved and incremental
development of ieee 1394 tree identify protocol. Formal Aspects of Computing,
14(3):215-227, Apr 2003.

[Cle04] ClearSy. B4free. Feb 2004. http://www.b4free.com.

[DGLMO04] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a practi-
cal lock-free queue algorithm. In David de Frutos-Escrig and Manuel Nufez, editors,
Formal Techniques for Networked and Distributed Systems - FORTE 2004, 24th IFIP
WG 6.1 International Conference, Madrid Spain, September 27-30, 2004, Proceed-
ings, volume 3235 of Lecture Notes in Computer Science, pages 97-114. Springer,
2004.

[MS96] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-Blocking and
Blocking Concurrent Queue Algorithms. In Proceedings of the 15th Symposium on
Principlesof Distributed Computing, pages 267—75, Philadelphia, Pennsylvania, May
1996.

[YS03] E. Yahav and M. Sagiv. Automatically verifying concurrent queue algorithms. In
Byron Cook, Scott Stoller, and Willem Visser, editors, Electronic Notesin Theoretical
Computer Science, volume 89. Elsevier, 2003.

