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Abstract: In an ideal world, where we could guarantee instantaneous, atomic data
transfer — whatever the type of the data being transferred — shared memory commu-
nication between two concurrent processes could be implemented directly using single
variables or registers, without any attendant access control policies or mechanisms. In
practice, asynchronous communication mechanisms may be used to provide the illusion
of atomic transfers of data while still allowing non-blocking reads and writes: that is,
reads and writes may proceed concurrently without interfering with each other. In order
to prove the correctness of such mechanisms, the natural approach would be to verify
them against the specification provided by an idealised register with atomic, instanta-
neous — and so sequential — transfers of data. Yet such a verification is complicated
by the fact that, in moving to the asynchronous communication mechanism from such
a specification, additional concurrency has been introduced and so the (visible) be-
haviours of the mechanism are not directly comparable to those of the register. In this
paper, we recall an extension of standard process algebraic refinement and show how
it may be used to verify the correctness of a particular asynchronous communication
mechanism, Simpson’s 4-slot. In so doing, we look at a number of issues which seem
significant in the consideration of correctness when the real atomicity of a specification
has been relaxed in the move from specification to implementation.
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1 Introduction

In an ideal world, where we could guarantee instantaneous, atomic' data transfer
— whatever the type of the data being transferred — shared memory commu-
nication between two concurrent processes could be implemented directly using
single variables or registers, without any attendant access control policies or
mechanisms. However, such atomic data transfers are not possible and if, for ex-
ample, a reading process and a writing process were allowed unconstrained access

! In this paper, we shall describe (sequences of) events as “atomic” (with respect to
each other) if their occurrences do not overlap in time and so their respective exe-
cutions cannot interfere with each other. This use of “atomic” is to be distinguished
from the all-or-nothing property which is implied by the A of ACID in the database
literature (see, for example, [24]). In fact, it is similar to the isolation described by
the I of ACID.
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to such a variable or register, interference would occur due to the overlapping of
read and write events.

Usually, if communication is to take place between two concurrent processes
via a shared memory area, some form of synchronization will be required in
order to avoid interference. Such synchronization may take the form of a critical
section or handshake communication. However, this may force one or both of
the communicating processes to wait or block while the other completes a data
transfer; this may be undesirable, particularly in a real-time environment. Even
a buffer is not fully asynchronous: if it becomes full, further writes will be blocked
until a read occurs and, if it becomes empty, further reads will be blocked until
a write occurs.

It is to solve this problem that asynchronous communication mechanisms
or ACMs have been introduced. Such mechanisms are characterised by the fact
that, if used by a single reader and writer, neither the reader nor the writer
will ever have to wait before it is allowed to interact with the mechanism. As a
result, a writer may always write to an ACM and the reader may always read
from it: that is, writes are destructive and may overwrite data already written,
while reads are non-destructive and so re-reading is allowed. In order to allow
such unconstrained access despite the reality of non-atomic data transfer, ACMs
combine some sort of access logic with multiple data slots. The multiple data
slots allow a read and a write to proceed concurrently without interfering with
each other, while the access logic ensures the reader and writer never access the
same slot at the same time. (The specific ACM we consider here is Simpson’s
4-slot mechanism from [22].)

Intuitively, any particular ACM, M, is intended to mimic the behaviour of an
idealised register, R. R stores a single value of the data type under consideration,
and reads and writes in R occur instantaneously — i.e. with zero duration —
and so atomically. Thus, accesses to R are sequential, since it is not possible for
reads and writes to proceed concurrently. Since M does allow reads and writes
to proceed concurrently, additional concurrency has been added in the move
from the specification R to the implementation M and so the atomicity of the
operations of R with respect to each other has been relaxed. We now consider
some of the issues which this relaxation of atomicity may raise with respect to
verification. (Note that we refer to the general process of introducing additional
concurrency in the move from specification to implementation as relazation or
refinement of atomicity.)

In general, M will be endowed with a procedural interface via which it com-
municates with the wider process in which it is embedded and it is possible to
give R the same interface: more specifically, a process may call the procedure
to write a value and on completion of the write the procedure will return; simi-
larly, a process may call the procedure to read a value from the mechanism and,
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on completion, the procedure will return the value read; moreover, all internal
processing is hidden from the outside world. Thus, if we consider the sequences
of observable events which may be performed by M or R, those sequences will
consist of only four different types of event (where relevant, of course, a par-
ticular type of event may transmit a number of different data values): an event
denoting a call to the write procedure, an event denoting a return from the write
procedure, an event denoting a call to the read procedure and an event denoting
a return from the read procedure. For the purposes of the discussion here, we
will denote these CW (a call to write), RW (a return from the write procedure),
CR (a call to read) and RR (a return from the read procedure).

In any sequence of events which may be performed by R, each call other than
the last in the sequence must be immediately followed by a matching return. Sim-
ilarly, a return from a particular procedure must be immediately preceded by the
corresponding procedure call. Thus, sequences such as (CW, RW, CR, RR, CR)
or (CW,RW,CW,RW) are possible for R. However, M may exhibit a wider
range of behaviours, since it allows reads and writes to proceed concurrently:
for example, (CW, CR, RR, RW) or (CW, CR,RW,CW,RW, RR) are possible
executions of M which are not possible for R. Hence, the relaxation of atomicity
which has occurred manifests itself in the observable behaviours of M and it is
this fact which complicates the verification task with which we are faced.

The traces model (see Section 2 for further details) is one of the simplest —
and least discriminating — models of (concurrent) process behaviour: it regards
the meaning of a process to be the set of finite sequences of observable events
which it can perform. An implementation process is regarded as correct if every
sequence of visible events which it can perform can also be performed by the
specification process under consideration. By virtue of the discussion above, it is
immediately obvious that such a notion is unsuitable for relating the behaviours
of M to those of R.

In order to address this problem, we use a variant of the traces model notion
of correctness called refinement-after-hiding (further details are given in Section
4). This addresses the problem of a mismatch of visible behaviours after the
occurrence of relaxation of atomicity by displacing the boundary at which we
assume process behaviours can be observed. Rather than comparing directly the
behaviours of M and R, we appeal to a different notion of correctness based
on the less strict requirement that the behaviours of the two processes may not
be distinguished when placed in appropriate process contexts (a context is sim-
ply a process with a “hole” into which another process — such as the ACM
under consideration here — may be plugged). In order to check for correctness
in practice, we define an interpretive mapping and verify that the interpreted
behaviours of M are contained in those of R. Using this notion of correctness,
we are able to show that the specific ACM which is considered here — the 4-slot
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mechanism — is a valid implementation of the idealised register, R. As well as
being an exercise in the application of refinement-after-hiding, this result is sig-
nificant in its own right: the asynchronous communication community tends not
to consider correctness in terms of an explicit specification process such as the
register, rather focusing on particular desirable properties of the behaviours of
ACMs (see Section 9 for further details). Thus, it was not initially clear that the
verification attempted here would actually succeed. Moreover, the verification
has some wider significance in terms of considering relaxation of atomicity in
general, which issue is discussed in Section 8. Note that, for reasons of space,
the presentation in this paper focuses on showing correctness in the traces model.
However, refinement-after-hiding is also defined in [2] in terms of more compli-
cated models which deal with deadlock and liveness properties; moreover, the
correctness of the ACM under consideration here has been shown in [2] in those
models as well (further details are given in subsequent sections).

Before proceeding, we make an important point regarding related work. The
verification problem described above is not unique in character and is faced in
some form in many different computing domains, for example that of database or
transaction-processing systems. In such systems, the main notion of correctness
used is serializability (see, for example, [1, 24]), which allows us to relate the
concurrent execution of a set of transactions performed by a system to some
sequential execution of the same set of transactions. However, serializability is
not suitable for the verification task considered here because it does not allow
the use of an explicit specification process. Moreover, it has no facility to model
explicitly any context into which we might place the ACM under consideration
and, in any case, has no notion of process composition. Hence, we would not be
able to consider the correctness of any wider network in which the ACM was
deployed. The problem of the correctness of the ACM is, however, typical of
those to which the correctness condition of linearizability ([10]) may be applied.
Section 9 contrasts our approach with that of linearizability and also looks at
other related work.

The remainder of the paper is organised as follows: Section 2 presents neces-
sary preliminary information; Section 3 presents and explains Simpson’s 4-slot
mechanism; Section 4 introduces refinement-after-hiding; Section 5 describes the
formal model of the 4-slot which we use in our verification; Section 6 details the
verification itself; Section 7 considers the issue of verifying processes which may
communicate with the 4-slot; Section 8 considers some issues raised by the suc-
cess of the verification; finally, Section 9 looks at related work. The treatment in
this paper is deliberately light in terms of technical details, so as to ease reading
and also due to space restrictions. A full account of the work described here can
be found in [2]. A general consideration of relaxation of atomicity can be found
in [3] in this volume.
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2 Preliminaries

We now give details of the process algebra CSP ([11, 19]), which is the formal
model of concurrent systems used in this paper. Note, however, that we give only
enough detail to support the material in the paper and the interested reader is
referred to [19] for a full treatment.

A CSP process may be regarded as a black box — that is, we are interested
only in externally observable behaviour — which can communicate with its ex-
ternal environment. Atomic instances of this communication are called events
or actions and we say that a process may engage in a particular event when it
is possible for it to communicate that event at some point during its lifetime.
Events in CSP occur on communication channels: for example, channel ¢ will be
given an associated type and we may then use it to communicate any event c.v
such that v is a value of the appropriate type. It is also possible to define ¢ as
a simple channel without any associated data content and so, in certain cases,
¢ may be used to denote the occurrence of an event. In CSP, an event occurs
only when all of its participants are ready to execute it and, as soon as all of
the participants are ready to execute an event, then it (or some other event)
must occur. Moreover, event, occurrences are instantaneous, as we abstract their
duration into single moments, and they are assumed to be non-overlapping as
we use an interleaving semantics.

CSP processes may be assigned a semantics in one of three different models,
the traces model, the stable failures model or the failures divergences model. Due
to limitations of space, we focus in this paper on the simplest of the three, the
traces model. However, as indicated above, refinement-after-hiding is defined in
[2] in terms of all three semantic models and the correctness of the ACM under
consideration here has been shown in [2] in all three models. In the traces model,
a process is denoted by a (possibly infinite) set of finite execution sequences
of wisible actions. For any process P, we denote the traces of P as 7P. That
@ is an implementation of (or refines) another process P in the traces model
means that 7Q) C 7P: i.e. every trace which () may exhibit is also possible for
P. This is denoted as ¢ J P. Note that a specification in CSP is presented
constructively as another process: both specifications and implementations are
described using the same language and are given the same behavioural semantics.
The traces model is suitable for considering issues of safety. Divergences — traces
after which a process may engage in an infinite sequence of internal actions —
are used to model the possibility of livelock. Trace/refusal pairs (failures) are
used to model the possibility of deadlock, where a refusal is a set of events
that a process may fail to offer after a given trace. The stable failures model
uses traces and failures to model processes, while the failures divergences model
uses divergences and failures. Refinement in both of these models equates to
containment of behaviours, as it does in the traces model.
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For any process P, aP — the alphabet of P — gives the set of events in which
that process may engage. The way in which alphabets are calculated is described
in [2]. The notion of alphabet is used both in the definition of refinement-after-
hiding in Section 4 and in the definition of parallel composition which is given
below (it is not used, however, when giving a CSP semantics to processes).

We now describe the subset of CSP operators which we shall need here. The
operators are introduced informally and are given without a formal semantics
as that is not needed here. A formal semantics of these operators may be found
in [19]. a — P (referred to as the prefix operator) gives the process which
first engages in the event a and then proceeds to behave like P. In a similar
vein, c?x — P, where ¢ is a channel and x is a variable, denotes the process
which is initially ready to engage in any event of the form c.v and which then
proceeds to behave as P but with the value v substituted for the variable x
in P. We use O to denote deterministic choice: P O () is a process where the
initial events of P and @ are offered simultaneously. If P is a process and A is
a set of events, then P\ A is the process which behaves like P with the actions
from A made invisible (\ is the hiding operator and \A hides the events in
A). Parallel composition P || @ models synchronous communication between P
and @ in such a way that they have to engage simultaneously in all actions in
aP N a@) — i.e. all actions which the processes have in common — while each
of them is free to engage independently in any action not in that set.? (We say
that the parallel composition synchronizes on the set of shared events or that
P and @ synchronize on those events.) Note that the interleaving operator, |||,
may be used to denote parallel composition when aP N a@) = & and so P and
@ are allowed to proceed in parallel completely independently of each other.
Recursion may be introduced using an equational definition of the form N = P,
where P may contain one or more instances of the process name N. The notation
N(xz) = P is used to represent the family of processes N(v), where v is a data
value and N (v) denotes the process P with all occurrences of the parameter
z replaced by v. We also use an operator which is not part of the standard
CSP syntax and which is, in fact, shorthand for a particular combination of two
operators already seen. The network composition operator, ®, is defined in the
following way: P®Q 2 (P || Q) \ (aPNa) (note that X £ Y means X is taken
to be equal to Y by definition). In other words, it allows us to model the fact
that two processes engage in communication between themselves but that no
other process may directly observe or share in that communication. As with the
parallel composition operator, ® would be parameterized in practice with a set

? In reality, the parallel composition operator, ||, used in [2] and described in [19] is
parameterized with a set of events, Y. Then, in the composition P ||y @, P and Q
have to engage simultaneously in all actions from Y while each is allowed to engage
independently in any action which is not in Y. In practice, we usually use this parallel
composition operator only in cases where Y = aP N a@ and so are able to simplify
its presentation for the purposes of this paper.
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of events, Y'; moreover, its definition would hide that set rather than aP N a@.

The semantics of processes in CSP is compositional in the sense that the cor-
rectness of a particular combination of processes may be verified by considering
in isolation the correctness of each of the processes to be combined. Thus, for
any binary operator, &, and processes @,Q’, P, P', that Q J P and Q' O3 P’
allows us to infer that (Q ® Q') I (P @ P'). (Note that this property holds in
all three models of process behaviour.)

The following notation and concepts will be useful in the remainder of the

paper, where ag,...,a, are events or actions, t,u are traces, 7,7’ are sets of
traces and f : T — T' is a mapping: ¢ = {(ai,...,a,) is the trace whose i-
th element is a;; moreover, events(t) = {ai1,...,a,} and, if n = 0, then ¢ is

the empty trace, denoted (); t o u is the trace obtained by appending u to ¢;
< denotes the prefix relation on traces, and ¢t < w if t < w and t # wu; [ is
monotonic if t,u € T and ¢t < u implies f(¢t) < f(u), and strict if () € T and
F()) = (). In this paper, the term “environment process” is used to mean a
process with which the ACM under consideration might be composed. A context
is simply a process with a “hole” into which another process, such as an ACM,
may be plugged. Note that we may turn an environment process into a context
by using the former as one of the arguments to a binary operator and leaving
a space where the second argument should go: this space functions as the hole
into which another process may be plugged.

3 Simpson’s 4-slot mechanism

We now introduce Simpson’s 4-slot mechanism, the verification of which is the
subject of this paper. The software version of the mechanism from [22] is given
in Figure 1. It is assumed to allow at most one read and one write to execute
concurrently (see the rendering of the 4-slot in CSP in Section 5). It contains
— as the name suggests — four data slots, arranged into two pairs of two slots.
Each of these slots stores a value of type datatype® and together they constitute
a 2-dimensional array, data, which is a global variable. The first dimension of the
array represents the pair, the second the two slots within that pair. Intuitively,
the writer tries to avoid the reader as it seeks to write into the mechanism,
while the reader chases after the writer in order to read the last piece of data
written (in the remainder of this paper, we use “writer” as shorthand for “write
procedure” and “reader” as shorthand for “read procedure”).

Three global variables — referred to as control variables — are used in order
to manage the behaviour of the reader and writer respectively. These are latest,
reading and slot. latest is a bit variable indicating the pair to which the writer
3 In the general case, datatype will be a complex type whose reading and writing are

not guaranteed to be atomic by the underlying system on which the 4-slot mechanism
is implemented.
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Global variables: reading, latest : bit
slot : array of bit
data : array of (array of datatype)

procedure write (item : datatype);

var  pair, index : bit;

begin
pair := not(reading);
index := not(slot[pair]);
data[pair, index] := item;
slot[pair] := index;
latest := pair;

end;

procedure read : datatype;
var  pair, index : bit;
begin
pair = latest;
reading := pair;
index := slot[pair];
read := data[pair, index];
end

Figure 1: Simpson’s 4-slot mechanism

last wrote, while slotfi] tells the reader which slot was last written to in pair
i. The bit variable reading tells the writer the pair from which the reader is
about to read or from which it has just read. Note also that pair and indezx are
variables that are local to the read and write procedures.

The behaviour of the reader is relatively straightforward to understand. It
ascertains the pair to which the writer last wrote and places this value in the
local variable pair. It then indicates to the writer that it is going to read from
this pair by storing the value in reading, before discovering the slot last written
to in the pair by interrogating the variable slot. Finally, it reads the data item
stored in data at the relevant pair and slot. Note that the data transfer from
data which represents this read will not occur atomically in the general case.

As indicated above, the writer aims to avoid the slot and pair combination
in which the reader finds itself. It first decides to write to the pair in which the
reader has not indicated an interest via reading (we assume that not(0) = 1
and not(1) = 0). It then decides to write to the slot in that pair which contains
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Global variable: data : datatype

procedure write (item : datatype);
begin
data := item,;
end;

procedure read : datatype;
begin
read := data;
end

Figure 2: A register

the oldest value. This means that it is impossible to immediately overwrite the
last data value written into the mechanism. It also means that the writer avoids
the reader in the event that the latter is reading from this pair. (This may
happen despite the efforts of the writer to choose the alternative pair due to
the arbitrary interleaving of the commands contained in the respective read and
write procedures.) The relevant data value is then written — non-atomically —
into the correct pair and slot combination. slot is updated to indicate which slot
was written to in the relevant pair before, finally, latest is updated to indicate
to the reader the pair in which the last write occurred.

As indicated above, executions of the read procedure and of the write pro-
cedure may proceed concurrently and so the commands they contain can be ar-
bitrarily interleaved. This is obviously necessary if we are to have non-blocking
— and so asynchronous — communication. And it is this fact of arbitrary inter-
leaving, along with the fact that data transfers are non-atomic, which leads to
the need for verification to ensure that the mechanism does, indeed, behave as
desired.

4 Introducing refinement-after-hiding

As indicated in Section 1, the 4-slot is intended to mimic the functionality of a
register despite the fact that we cannot guarantee atomicity of read and write
operations (see Figure 2 for a procedure-based representation of a register, where
it is assumed that the read and write procedures do execute atomically and so
only one procedure may be executing at any one time). We have already seen in
Section 1 that, despite the conformance of the 4-slot interface with that of the
register, we could not use standard CSP refinement to show that the 4-slot is
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a correct implementation of the register. This is an example of a more general
problem with process algebraic notions of correctness. In this section, we describe
this problem in more detail before going on to introduce one possible solution in
the form of the notion of correctness from [2] known as refinement-after-hiding.

4.1 Problems with standard process algebraic refinement

Process algebras, such as those in [16, 19], are intended for the description and
verification of concurrent systems. Since the primary focus with these formalisms
is on the interactions which occur between concurrent processes, their semantics
abstracts away from the internal behaviour of processes. In general, that one pro-
cess implements another means that — in some sense — all visible behaviours of
the first process must be possible for the second process (see definition of CSP
trace refinement in Section 2). As a result, standard process algebraic notions of
refinement can usually deal only with the case that the process of transforming a
specification to an implementation has wrought only internal, invisible changes.
This makes sense to the extent that notions of correctness should be concerned
with what a process does and not how it does it. However, it has certain conse-
quences for verification.

During the — software or hardware — development process, we take a spec-
ification and, through a process of reification, produce an implementation. It is
possible to reify the data structures of a specification to make them less abstract
and more suited to implementation; abstract specification behaviours may be
represented in a more concrete and so more implementable form; and we may
introduce additional concurrency not in evidence in the specification (such a
change is used in the move from the register to the 4-slot). Since data reifica-
tion is, by definition, internal, its effects do not manifest themselves directly in
terms of visible behaviours. However, both the decomposition of behaviours and
the relaxation of atomicity may manifest themselves externally and so in visible
behaviours, meaning that specification and intuitively correct implementation
cannot always be related using a process algebraic approach. For example, if
an implementation allows additional, visible interleaving of events which is not
possible for its specification, then process algebraic refinement cannot be used
directly to show correctness even if this additional interleaving does not give rise
to interference.

The usual approach taken to solve this problem is, before approaching ver-
ification, to compose component processes into networks such that all evidence
of decomposition of behaviours and of relaxation of atomicity becomes inter-
nal. Thus, we are able to verify the composite implementation process against
the corresponding composite specification process using a standard notion of
refinement. However, such an approach has implications for the state explosion
problem if we are to use model-checking in order to verify correctness. It also
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has implications in terms of verifying in isolation the correctness of a compo-
nent process which is used in a number of different contexts. For example, if
that component process contains bugs, some of them may only be discovered
when it is deployed in a particular network. On a similar note, modifications
to certain component processes within a particular network would necessitate
the re-verification of the whole network and that could reveal bugs in processes
other than those where the changes were made.

Figure 3: Relaxing atomicity for greater efficiency

We now sketch a small example which illustrates some of these issues. It
constitutes an instance where standard CSP refinement, fails to show correctness
but we do have correctness when placed in context; it will also be useful to us
as we introduce refinement-after-hiding. Figure 3 shows a specification network
and a corresponding implementation network, each consisting of two component
processes where the communication between those processes is hidden. The ab-
stract communication between the two processes in the specification network has
been rendered in the implementation network in a more concrete fashion using a
particular communication protocol. More specifically, the specification network
consists of LeftSpec and RightSpec, two single slot buffers which store and trans-
mit messages, and which are connected by a channel send. The specification
network, where communication on send is hidden, thus gives us a 2-slot buffer.
In the implementation network, messages received by LeftImpl on channel in
are split up into packets before being forwarded on either channel sendOne or
channel sendTwo. RightImpl then reconstitutes the packets into messages and
outputs them on channel out. Thus, both behaviour decomposition — the move
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from transmitting messages as monolithic entities to transmitting them as pack-
ets — and relaxation of atomicity — in the implementation, two packets from
the same message may be transmitted simultaneously — have occurred in the
move from specification to implementation component processes.

We can envisage full CSP definitions for LeftSpec, RightSpec, LeftImpl and
RightImpl such that the implementation network, where behaviour on the chan-
nels sendOne and sendTwo is hidden, has the same behaviour in a CSP sense
as the specification network, where behaviour on channel send is hidden. (The
implementation network is given by LeftImpl ® RightImpl and the specification
network by LeftSpec ® RightSpec.) Obviously, this is something which could be
shown using standard CSP refinement. However, we could not use standard CSP
refinement to show that LeftImpl implements LeftSpec, nor that RightImpl im-
plements RightSpec since we have used (visible) behaviour decomposition and
(visible) relaxation of atomicity in the move from specification component pro-
cess to corresponding implementation component process.

In order to address this problem, we note that the standard notions of correct-
ness have to effectively displace the boundary at which behaviours are observed
and must consider correctness only when a particular component process has
been placed in a context which hides or makes internal all direct evidence of be-
haviour decomposition and relaxation of atomicity. For example, when showing
the correctness of LeftImpl ® RightImpl using standard CSP refinement, we can-
not consider directly the behaviour of either LeftImpl or RightImpl in isolation:
it is only when they have been composed — i.e. when they have been placed in
context — that we can consider correctness. Thus, we do not allow our hypothet-
ical observer — who compares implementation to specification processes on the
basis of what can be observed of them — to look directly at component processes.
Rather, the observer may consider directly only networks of processes. We take
advantage of this intuition and place it on a more formal footing so that we are
able to consider in isolation the correctness of component processes which, for
example, have been derived through the (visible) relaxation of atomicity. (See
[3] in this volume for a more detailed discussion of the issue of observability.)

4.2 Refinement-after-hiding

In [2], building on the work in [4, 12, 13], we presented a notion of refinement
for CSP called refinement-after-hiding. This allows for a looser matching of im-
plementation behaviours against specification behaviours by introducing a more
discerning notion of visibility: events are regarded as visible only if they may
be visible in any final network of which the implementation may be a compo-
nent (it is in this sense that an observer may consider directly only networks
of processes). Moreover, those events which are not regarded as visible in this
weaker sense must be hidden during the construction of any such network. The
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former type of events are referred to as finally visible events and the latter as
finally invisible events; in general, finally visible events are the same for both
specification and implementation component processes. (In the example from
Figure 3, events on channels in and out would be regarded as finally visible and
those on channels send, sendOne and sendTwo as finally invisible.) The events
of any implementation are partitioned according to these two categories; by the
definition of refinement-after-hiding, finally visible events must be matched ex-
actly in the corresponding specification, while finally invisible events may be
matched much more loosely. For example, if (in.m, a1, ...,ay) is a trace of Left-
Impl, where aq, ..., a, are used to implement the sending of message m, then the
corresponding trace of LeftSpec would be (in.m, send.m). In practice, we use an
interpretive mapping in order to transform implementation behaviours and then
check for containment of those interpreted behaviours in the behaviours of the
specification. This use of an interpretive mapping and a looser matching of fi-
nally invisible implementation events reflects the idea that we are no longer able
to observe directly the behaviours of our component implementation processes.

A full description of how refinement-after-hiding is defined for all three CSP
semantic models may be found in [2]. Here, we simply give enough detail so
that the verification of the 4-slot in the traces model which is described in Sec-
tion 6 may be understood. Consider an implementation process, ), and the
corresponding specification process, P. In order to consider the correctness in
the traces model of ) with respect to P, we define a strict, monotonic extrac-
tion* mapping, extrg, which is used to interpret the traces of Q as traces of
P: when applied to t € 7Q), extrg gives back a trace which engages in events
from the specification process P. The fact of monotonicity means that receiving
more information regarding a particular implementation trace cannot reduce our
knowledge about the corresponding specification trace. We then verify that, for
every t € 7Q), extrg(t) € TP and denote this as @ 3" P, i.e. that Q refines-
after-hiding P. Note that eztrg may be defined in practice in terms of a number
of component mappings and also that it behaves as the identity mapping when
applied to behaviours consisting of finally visible events.

We are able to reclaim standard CSP (trace) refinement from refinement-
after-hiding using the following two conditions (Fuis is used here to denote the
set of finally visible events):

RAH1 If aQ C Fuis and Q 1™ P, then Q J P.

RAH2If Q; 3 P, for i = 1,2, then (Q; ® Q2) ™" (P, ® P»).

4 The term “extraction mapping” is used to indicate the fact that we eztract the
behaviours of the specification from those of the implementation.
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In other words, by RAH2 the notion of refinement-after-hiding is composi-
tional: in order to infer the correctness of a network we need only verify the
correctness of individual component processes. Moreover, by RAH1, if @) refines-
after-hiding P and @) engages only in finally visible events, then @) is correct
with respect to P according to standard CSP trace refinement. In terms of the
example processes from Figure 3, we could verify that LeftImpl 3" LeftSpec
and RightImpl 17" RightSpec using suitable extraction mappings. By RAH2,
we would then be able to infer that

(LeftImpl ® RightImpl) 3™ (LeftSpec ® RightSpec)
and so, by RAH1, that
(LeftImpl ® RightImpl) 3 (LeftSpec & RightSpec).

(Recall that LeftImpl ® RightImpl engages only in finally visible events, since all
other events have been hidden.)

Implicit in condition RAH2 are the restrictions imposed by refinement-after-
hiding on the implementation networks which we may build and verify. In partic-
ular, we may join component processes together using only the network composi-
tion operator and such compositions must synchronize on all shared events. The
use of network composition means that, after synchronizing in parallel on the
set of shared events, we hide those events and so make them internal. This use
of hiding is what makes it possible for us to build a network which engages only
in finally visible events: it is assumed that all processes which exhibit visible evi-
dence of relaxation of atomicity or of behaviour decomposition will be composed
with other processes in such a way that, as we build our final implementation
network, that visible evidence will be hidden. Condition RAH1 encapsulates the
idea that we may only observe directly the behaviour of processes which en-
gage only in finally visible events. In general, the component implementation
processes which we define will not obey this restriction and so may not be ob-
served directly; however, final networks built using these component processes
and the network composition operator will obey this restriction and so can be
observed directly. Note also that counterparts to RAH1 and RAH2 hold for the
notions of refinement-after-hiding defined in [2] in the stable failures and failures
divergences models.

Using refinement-after-hiding, we are able to show that the 4-slot is a valid
implementation of a register, and the extraction mapping used for this purpose is
described in Section 6. In order to carry out the verification, we take advantage
of a means described in [2] for automatic verification of refinement-after-hiding.
This approach uses the industrial tool FDR2 ([6, 19]) and so a model-checking
approach. Note that some small additional machinery is required when we verify
the correctness of any component process which communicates with the 4-slot
and this issue is discussed further in Section 7.
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5 Modelling the 4-slot and register in CSP

In order to verify the 4-slot using our notion of refinement-after-hiding, we need
to render both it and the register in CSP. In our modelling of the 4-slot, we
make some simplifying assumptions. Firstly, we assume that reads and writes
of the variables latest, reading and slot are atomic. In Simpson’s view, such an
assumption is justified and, once such a property has been assumed, a number
of authors — including Simpson himself — have shown that the 4-slot behaves
as if reads and writes to its data array were actually atomic (see Section 9.1 for
further discussion of this issue). We also take advantage of this latter fact and so,
in our CSP model of the 4-slot, reads and writes to the data array are atomic;
this simplifies considerably the extraction mapping which is needed to show
correctness. As a result of this latter simplification, our verification as presented
here is essentially concerned with the ordering of the data values which may be
transmitted by the 4-slot and with showing that they implement in some sense
the data transmissions which are possible for the register.

As indicated at the end of Section 4, the means of automatic verification
which we use in the verification of the 4-slot uses the model-checker FDR2. As
a result, it is necessary to choose a concrete data type to be written to and read
from (our CSP models of) both the register and the 4-slot. We have chosen a
subset of the integers, namely {0..5} — which we shall refer to as dataint —
because they are a basic type. Since we are carrying out model-checking, it is
also necessary to choose a finite type and the limits of the hardware on which
FDR2 was run dictated the size of the type used.

Six basic processes are used in the CSP representation of the 4-slot, full
details of which can be found in [2]. Here, we simply give enough detail so that
the interpretive mapping defined in Section 6 may be understood. There is a
process to represent each of the global variables latest, reading and slot, while
another process represents the data array. Finally, Reader and Writer from
Figure 4 are used to represent the read and write procedures respectively. In
Writer, the channel cw is used to represent a call to the write procedure and it
can communicate any value of type dataint: on the occurrence of cw.v, the value
v is stored in item and is subsequently written into the data array. The channel
rw is a simple channel with no explicit data content and is used to represent a
return from the write procedure. Channel cr in Reader is used to represent a
call to the read procedure. Channel rr is used to represent a return from the
read procedure and can communicate any value of type dataint; the occurrence
of rr.v indicates that the value v has been returned to the calling process.

Note that, in each of Writer and Reader, the events used to represent the
respective procedure bodies — i.e. all events other than the call and return
events — are taken directly from the description of the 4-slot given in Figure 1.
This is simply to make easier for the reader the task of relating the definitions
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Defining the write procedure:

Writer = cw?item—
pair := not(reading)—
index := not(slot[pair])—
data[pair,index] := item—
slot[pair] := index—
latest := pair—
rw— Writer

Defining the read procedure:

Reader = cr—
pair := latest—
reading := pair—
index := slot[pair]—
item := data[pair,index/—
rr.item— Reader

Figure 4: Defining the 4-slot procedures

of Writer and Reader to the definition given in Figure 1 and, in [2], Writer and
Reader are defined using events given in standard CSP syntax. We use IE to
denote the set of events used to represent the procedure bodies and note that
they are essentially those events from the 4-slot which are internal. Finally, note
that the description of the 4-slot in Figure 1 implies that there is a single action
— l.e. read := data[pair,indez] — which reads the relevant item from the data
array and returns it to the calling program. In the definition of Reader, we use
two separate actions to provide this functionality: this change makes cleaner
the CSP definition of the relevant processes and, in any case, it is unlikely that
read := data[pair,index] would execute atomically in practice. Moreover, since
the verification of the 4-slot is successful then the additional interleaving which
may have been introduced as a result of this change does not have any negative
impact.

We finally define the CSP representation of the 4-slot. FullF'Slot, defined as
follows,

FullFSlot = ((latest ||| reading ||| slot ||| data) || Writer) || Reader

combines the processes to represent the global variables of the 4-slot mecha-
nism with the processes which provide the functionality of the procedure calls.
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— Register £ Reg(0)

— Reg(z) = read.x — Reg(x) O write?y — Reg(y)

Figure 5: A CSP version of the register

Moreover, all events from [E — i.e. all internal events used to implement the
procedure bodies — are left visible. This representation of the 4-slot will be used
for verification as the internal events must be left visible for this purpose: see
Section 6 for further details. The process

FSlot = FullFSlot \ IE

then gives the CSP representation of the actual 4-slot. The only visible events
in which it engages are call and return events.

The CSP version of the register is presented in Figure 5. Since read and write
procedures may not occur concurrently in the register and because there is no
longer any need to ensure that the 4-slot and register representations in CSP have
the same interface, we represent reads and writes respectively as single events.
(The channels read and write are assumed to communicate values from dataint.)
The variable data from Figure 2 is represented as a parameter to the register
process and, since individual CSP events occur instantaneously and cannot occur
concurrently, we are guaranteed to have atomic transfers of data.

6 Verifying the 4-slot

We now move on to present the extraction mapping, ezrtrgg, which is used in
the verification of the 4-slot. Before doing this, we first note that the verification
itself is carried out with regard to FullFSlot — i.e. the 4-slot with all of its
internal events left visible — rather than with regard to FSlot. This is simply
because the traces of FSlot — consisting only of call and return events — do
not give enough information to allow us to reclaim the traces of Register via an
interpretive mapping. This is similar to the approach followed by linearizability,
where the internal events used to implement method bodies in concurrent objects
are made visible during verification (see [10] and Section 9.2). Section 7 then
shows how we reclaim the correctness of FSlot. Since extraction mappings are
strict and monotonic, we define eztrps in the following way. By the strictness
property, extrps({)) = (). For any trace ¢ € TFullFSlot such that ¢ # (), then
t = uo (a) for some trace u and event a. By the monotonicity property, we know
that extr ps(t) = extrrs(u)or for some trace r, where r may be the empty trace,
() (we say that we extract to r — or to the event/s which comprise r — on the
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occurrence of a). Thus, in order to define the mapping, we take u o (a) and must
decide which high-level event or events from the register the occurrence of a after
u represents. (Note we assume all events from FullF'Slot are finally invisible.)

In order to do this, there are two main factors which must be taken into
account. Firstly, we must extract to exactly one high-level write for each low-
level write which occurs® and, similarly, we must extract to exactly one high-level
read for each low-level read which occurs (moreover, the extracted event must
transmit the same data value as the corresponding low-level read or write). For
example, for each sequence of events used to represent a particular low-level
write in t € TFullFSlot, on the occurrence of exactly one of those events we will
extract to the occurrence of a high-level write which transmits the same data
value as the low-level write and on the occurrence of the rest of the events which
comprise that low-level write we will not extract to anything. This restriction
obviously makes sense intuitively; moreover, it is necessary when one comes to
consider the correctness of environment processes with which FSlot might be
composed (see [2] for further details). Note, however, that we never extract to
a high-level event on the occurrence of a call or return event. This reflects the
fact that such events do not provide any of the functionality of the procedures
with which they are associated. The second factor to take into account when
defining extrps is that we are mapping traces of FullFSlot to those of Register.
This means that any high-level read event to which we extract must transmit
the same data value as the last high-level write to which we extracted.

Mimicking the behaviour of the register after application of the mapping is
complicated by two main factors (detail on how the relevant situations may arise
can be found in Sections 6.2 and 6.3):

— A low-level read may actually read data written into FullF'Slot by a low-
level write that has not yet completed (that is, it has not yet updated both
relevant control variables to fully indicate where it wrote the data).®

— The slot and pair from which data is to be read on a particular low-level
read may be fully determined before their identity has been discovered from
the relevant control variables.

> We use low-level write to mean a particular execution of the events in FullFSlot
which implement the write procedure of the 4-slot; similarly, low-level read is used
to mean a particular execution of the events in FullF'Slot which implement the read
procedure of the 4-slot. A high-level write is then simply an event occurring on
channel write; a high-level read is an event occurring on channel read.

We regard a particular low-level read or write as having completed when it has
performed its last event prior to the relevant return event. At this point, the relevant
procedure execution has completed all of its work and the effects of that work will
be visible to subsequent procedure executions. Thus, a low-level write effectively
completes when it updates the control variable latest and a low-level read completes
when it reads the value from the appropriate slot in the data array.
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The first point has the consequence that we cannot always extract to a high-
level write event at exactly the point at which the low-level write has completed
(i.e. we cannot always extract on the occurrence of the event which updates the
variable latest). If we were to do this, the reader side may have already read and
extracted the value written and, at the specification level, we will get a trace
which apparently manages to read a value before it has been written. However,
we must also be careful not to extract the current write yet if the reader could
still read the value written by the previous write.

As soon as it is fully determined which slot and pair the reader will read from,
the value to be read is also fully determined. This is because the writer will not
be able to access the relevant slot of the data array until this read has finished,
since the 4-slot maintains the property of data coherence.” As a result, by the
second point given above, we may know exactly which value the reader is to
read before it has completed interrogating the necessary control variables. And
we must extract to a high-level read as soon as the value to be read is determined:
if we did not do this, the reader could wait until an arbitrary number of further
writes had been completed and extracted and only then complete and extract
this read. This would give the apppearance of reading an old value and so of
having more memory than the single slot of the register.

Before proceeding, it is also necessary to observe that the event on the oc-
currence of which we actually extract to a high-level write is not always the
same and depends on the way in which low-level reads and writes have been
interleaved; a similar comment applies with regard to extraction to high-level
read events.

6.1 An annotated 4-slot

Figure 6 presents an annotated version of the 4-slot mechanism, using numbers
to indicate positions within the read and write procedures (recall that “writer”
“write procedure” and “reader” as shorthand for “read
procedure”). These annotations are used both in the definition of the extraction
mapping and in its explanation. The call and return events do not appear in this

is used as shorthand for

annotated version of the mechanism since their occurrence does not provide any
of the information needed to define the extraction mapping and we never extract
to anything on their occurrence. We therefore assume that the mechanism is also
at position 1 with respect to a particular procedure when it is immediately prior
to a return from that procedure or immediately prior to a call to that procedure.
Before presenting the mapping, we consider in greater detail the points at
which a particular low-level read or write should be extracted. Note that the
" Data coherence is preserved if and only if a reader and writer may not simultaneously
access the same data slot in the 4-slot. It is this property which allows us to make

the simplifying assumption that reads and writes to the 4-slot data array are atomic.
(See discussion of related work in Section 9.)
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The Writer:
begin
1
pair := not(reading);
2
index := not(slot[pair]);
3
data[pair, index] := item;
4
slot[pair] := index;
5
latest := pair;
end;
The Reader:
begin
1
pair = latest;
2
reading := pair;
3
index := slot[pair];
4
item := data[pair, indez);
end

Figure 6: Simpson’s 4-slot mechanism annotated

following discussion is intended to provide intuition regarding the definition of
the mapping, rather than an exhaustive justification of its every clause.

6.2 Considering the writer side in more detail

We cannot extract a write by positions 2 and 3 in the writer, since the relevant
value has not yet been written into the mechanism. If the writer is at position
4, it is impossible for the reader to read what has just been written since data
coherence is preserved (again, see discussion of related work in Section 9). Finally,
we must have extracted once we have executed latest := pair: by this point, any
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new execution of the read procedure can read the value which has just been
written into the mechanism by the current write. This means that, if we have
not already extracted on the current write, we must do so on the occurrence of
latest := pair.

We therefore consider position 5 in the write procedure and the conditions
under which we need to have extracted a high-level write event by the time that
we reach it: in other words, when do we extract a write event on the occurrence
of slot[pair] := index. In general, we need to have extracted by this point if the
reader already knows, or can discover without any further writer action, the pair
into which the writer has just written. If this is the case, the reader can proceed
to find out which slot in the pair was written to and so read and extract the
value just written. This can happen in the following circumstances:

— If we have already extracted in the reader and the global variable latest
stores the same value as the variable pair in the writer. (The value of pair
in the writer tells us the pair which the writer has just written to.)

— If we are at position 1 in the reader and the global variable latest stores the
same value as the variable pair in the writer.

— If we are at position 2 or 3 in the reader but have not extracted yet, and the
value of pair in the reader is the same as the value of pair in the writer. (In
the corresponding conditional branches in the extraction mapping definition
given in Figure 7, we do not actually state explicitly the requirement that
the reader has not yet extracted. This is simply because, if the value of pair
in the reader is the same as the value of pair in the writer, then the reader
cannot have extracted yet (this issue is expained more fully in [2])).

Note that, by the detail below, the reader must always have extracted by the
time that it reaches position 4.

6.3 Considering the reader side in more detail

Recall that we will extract to a high-level read event as soon as we are certain of
the pair and slot combination from which we will read on the current low-level
read.

By position 2 in the reader, we know the pair we must read from. In order
for it to be fully determined by this point the slot from which we will read, it
has to be the case that the writer is unable to write again to this pair before we
have completed the current read. (If the writer could write to this pair again,
it would first write to the other slot of the pair, to which element the reader
could then be directed.) If the writer is to be unable to write to this pair, it is
necessary that the value of pair in the reader is the same as the value of reading.
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We therefore have to have extracted a read by position 2 in the reader — that is,
extracted on the occurrence of pair := latest — in the following circumstances:

— If the writer is at position 1 or position 5, and pair in the reader has the
same value as reading.

— If the writer is at positions 2, 3 or 4, the value of pair in the writer is not
the same as the value of pair in the reader and pair in the reader has the
same value as reading.

In order to check these conditions in practice, we use the value stored in latest
in place of that stored in pair in the reader: the conditions must be checked at
position 1, when pair has not yet been updated with the value of latest.

By position 3, we know the pair we will read from and have also indicated
this to the writer. We have to have extracted by position 3 if the writer is at
position 1 or position 5 or if the value of pair in the reader is not the same as the
value of pair in the writer. These conditions are essentially the same as those
given for position 2, when we bear in mind the fact that we have just assigned
the value of pair in the reader to reading.

Finally, we must always have extracted by position 4 since, at this point, we
know both the slot and pair of the data item which we shall read.

It can be seen from the above discussion that the position of the writer plays
a role in whether or not we extract a read event. And, in fact, the writer moving
to position 5 may necessitate the extraction of a read event. This means that
the event slot[pair] := index will, in some cases, be extracted to both a read and
a write event. This can be seen in the definition of the extraction mapping in
Figure 7.

6.4 Presenting the extraction mapping

We now proceed to define extrps. Before giving the definition of this mapping,
it is necessary to introduce some auxiliary notation.
— For any trace t € T FullFSlot:
e we take ezR(t) = yes if and only if we have already extracted a read

event during the current low-level read and take ezR(t) = no otherwise.

e we take ezW(t) = yes if and only if we have already extracted a write
event during the current low-level write and have exW (t) = no other-
wise.

— late gives the current value stored by the control variable latest.

— rp gives the current value of the variable pair in the reader and wrp gives
the value of the variable pair in the writer.
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— rPos gives the current position of the reader and wPos gives the current
position of the writer.

— rdng gives the value currently stored in the variable reading.
— slotli] gives the value currently stored at position i in the array slot.
— wVal gives the last value written into the mechanism.

— datali][j] gives the data value stored by the mechanism in pair i, slot j.
We then have that extrps(()) £ () and, for ¢ o (a) € T FullFSlot,
extrrs(t o (a)) £ extrps(t) ou,

where v is as defined in Figure 7. A brief comment is required on the clauses
used for the extraction of write events, since at first sight some of them may not
appear to be mutually exclusive. That they are mutually exclusive follows from
the fact that, if the reader is at position 1, then it cannot yet have extracted,
and, as observed above, the reader cannot yet have extracted if the value of pair
in the reader is the same as the value of pair in the writer.

Using the mapping extr ps and the means of automatic verification described
in [2], we were able to verify that FullFSlot 1" Register. We also show in [2]
that FullF'Slot refines-after-hiding Register in the stable failures and failures di-
vergences models. Verification of refinement-after-hiding in both of these models
reuses the mapping eztrpg, while the additional effort required to show correct-
ness is minimal. Thus, we have that the 4-slot is a valid implementation of the
register.

7 Verifying processes which communicate with the 4-slot

We face certain difficulties when attempting to use standard refinement-after-
hiding — the details of which were sketched in Section 4 — to show the cor-
rectness of any process with which the 4-slot might be composed. This is for a
number of reasons. To begin with, we have verified FullFSlot, a version of the
4-slot with all internal events left visible, while any environment process with
which the 4-slot would be composed would engage only in the relevant call and re-
turn events. This causes problems since the definition of refinement-after-hiding
requires that the extraction mapping extrpgs also be used when interpreting the
behaviours of any such environment process. In addition, although we verify
FullFSlot, it is the correctness of FSlot when placed in context in which we are
interested. Finally, the fact that a single extraction mapping — i.e. extrpg —
is used to interpret the behaviours of FullF'Slot causes problems with respect to



794

(1>

Burton J.: Relaxing Atomicity and Verifying Correctness ...

( (write.wVal)

(write.wVal)

(write.wVal)

(write.wVal)

(write.wVal, read.wVal)

(read.(data[late][slot]late]]))

(read.(data[late][slot]late]]))

(read.(data[rp][slot[rp]]))

(read.(data[rp][slot[rp]]))

L ()

if (a is slot[pair] := index) A
(rPos =1 A late = wrp)

if (a is slot[pair] := index) A
(exR(t) = yes A late = wrp)

if (a is slot[pair] := index) A
(rPos =2 V rPos = 3) A
(rp =wrp A rp # rdng)

if (a is latest := pair) A
(exW (t) = no)

if (a is slot[pair] := index) A
(rPos =2 V rPos = 3) A
(rp = wrp A rp = rdng)

if (a is pair := latest) A
(wPos =1 V wPos =5) A
(late = rdng)

if (a is pair := latest) A
(wPos =2 V wPos =3V
wPos = 4) A
(wrp ! = late A late = rdng)

if (a is reading := pair) A
(ezR(t) = no) A
(wPos =1 V wPos =5V
wrp ! = rp)

if (a is index := slot[pair]) A
(ezR(t) = no)

otherwise

Figure 7: Defining extrpg
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compositionality: in effect, we would need to compose FullF'Slot with the rele-
vant environment process before we could verify the latter. (A full account of
these problems may be found in [2].) Thus, work is described in [2] that builds
on and uses the standard notion of refinement-after-hiding and which does allow
us to verify processes which communicate with the 4-slot.

7.1 A solution to the problem

We first impose on any network to be verified the restriction that any component
process which is part of that network can communicate with at most a single
instance of the 4-slot. Any such process may, of course, communicate with other
processes and the network as a whole may contain multiple 4-slot instances. Con-
sider, then, an implementation process, IW, which communicates with the 4-slot
via the write procedure; the corresponding specification process, SW, commu-
nicates with the register using channel write. Consider also an implementation
process, IR, which communicates with the 4-slot via the read procedure; the
corresponding specification process, SR, communicates with the register using
channel read. Prior to verification, IW is composed in parallel with a small addi-
tional process to deal with the fact that it only engages in call and return events
from the 4-slot write procedure while all internal events are left visible when
the 4-slot itself is verified. We then (attempt to) show that the resulting process
refines-after-hiding SW. The verification of IR is treated in a similar manner.
Assuming that the respective verifications of IW and IR are successful, a result
is given in [2] which lets us infer that

(IW ® IR) ® FSlot 2" (SW @ SR) ® Register.®

Thus, we are able to verify the correctness of processes which communicate with
the 4-slot, we have reclaimed for such processes and the 4-slot the facility for
compositional verification given by RAH2 from Section 4, and we have derived
a correctness result stated in terms of FSlot rather than in terms of FullF'Slot.
(Full details on the approach described here, and on the relevant result and its
proof, can be found in [2].)

The reader might speculate at this point that, by imposing the restriction we
do, we are ruling out a class of systems that might expose errors in the 4-slot,
which errors are able to remain uncovered with our more restricted networks.
We make two points in relation to this. Firstly, the restriction is imposed for
a reason connected solely to the technical treatment of refinement-after-hiding,
namely that relevant environment processes have to be augmented before they
8 Note that IW ® IR synchronizes in parallel with FSlot on the read and write proce-

dure call and return events and then all communication between the two processes

is hidden. Note also that an equivalent result holds in the stable failures and failures
divergences models.
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— WriteEnviron = in?val — cw.val — rw — WriteEnviron
— ReadEnviron = cr — rr?val — out.val — ReadEnviron

— FourSlotEnviron = WriteEnviron ||| ReadEnviron

Figure 8: Environment processes for FSlot

are verified. Secondly, we do not restrict the way in which any relevant process
may interact with the 4-slot instance that it does communicate with: simply al-
lowing individual environment processes to communicate with multiple instances
of the 4-slot would not change the range of interactions possible with any sin-
gle instance. In other words, our environment processes are still general enough
that they may exercise all possible behaviours of the 4-slot. Nonetheless, further
work is needed to lift the restriction imposed here on the form of implementation
networks which use the 4-slot and which can be verified using refinement-after-
hiding.

7.2 Example environment processes

We now introduce some simple environment processes with which FSlot might
be composed. This allows us to present (the result of) a simple verification using
the approach described in this section, which then facilitates a consideration of
the sense in which the 4-slot may be regarded as “correct” (see discussion in
Section 8). Figure 8 describes these environment processes: their composition,
FourSlotEnviron, may take a value from dataint on the channel in, call the
write procedure from FSlot with this value as a parameter and then wait for
the write procedure to return; it may also call the read procedure in FSlot,
receive a value from FSlot via the return of that procedure and then output
the result on channel out. (Note that the channels in and out used here are
assumed to be different to those used in the definition of the processes from
Figure 3.) Figure 9 then defines corresponding specification processes with which
Register might be composed: they are essentially a pair of single-slot buffers to
be placed on the read and write channels respectively of the register. In respect of
the definition of FourSlotEnviron, we observe that WriteEnviron ||| ReadEnviron
is syntactically equivalent to WriteEnviron ® ReadEnuviron, since WriteEnviron
and ReadEnviron do not have any events in common. A similar comment applies
with respect to RegisterEnviron. Note also that the events on channels in and
out are regarded as finally visible.

Using the process of verification described in this section, we show that
WriteEnviron composed in parallel with the necessary additional process refines-
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— RegWriteEnviron = in?val — write.val — RegWriteEnviron
— RegReadEnviron = read?val — out.val — RegReadEnviron

— RegisterEnviron = RegWriteEnviron ||| RegReadEnviron

Figure 9: Corresponding environment processes for the register

after-hiding RegWriteEnviron and we also show that a similarly augmented
ReadEnviron refines-after-hiding RegReadEnviron (full details may be found in
[2]). Using the result described in Section 7.1, we are therefore able to infer that

FourSlotEnviron @ FSlot 1" RegisterEnviron ® Register.

Hence, since FourSlotEnviron ® FSlot engages only in finally visible events —
namely those on channels in and out — and by RAH1 from Section 4, we have
that

FourSlotEnviron ® FSlot 3 RegisterEnviron ® Register.

8 Discussion

The behaviours of the 4-slot could not have been related to those of a register us-
ing standard CSP refinement. However, by displacing the boundary at which we
directly observe behaviour from the level of component processes to the level of
networks of processes we have been able to establish the necessary relationship.
This fact is in evidence as we show in Section 7 that FourSlotEnviron ® FSlot
refines RegisterEnviron ® Register according to standard CSP refinement. In
essence, we may build an implementation of an (albeit restricted) network which
communicates data internally using a register by modifying in a suitable fash-
ion the necessary communication interface and then substituting the 4-slot for
the register. This is a significant result since the fact that the 4-slot has more
than a single memory slot may be made apparent to a user: a read may begin,
interrogate the necessary control variables and then wait for an arbitrary num-
ber of writes before completing, thereby appearing to read an old value. It is
not immediately clear that such behaviour should be permissible in any valid
implementation of a register, which has only a single memory slot. Nonetheless,
the result described in Section 7 indicates that, once the 4-slot and register have
been placed in suitable contexts and thereby all relevant communication hidden,
it is effectively impossible for an observer to distinguish between them.

This raises the question of why, for example, FourSlotEnviron ® FSlot should
refine RegisterEnviron ® Register in the traces model. From the definition of
the extraction mapping, extrrg, it can be seen that read and write procedures
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appear to take effect at a single point between the occurrence of their call and
return events. Indeed, it this possibility of abstracting an operation with du-
ration — in this case a procedure execution — to a computational effect at a
single instant which is crucial to our ability to define an extraction mapping (see
also the discussion of linearizability in Section 9.2 below). However, this means
that, if a read and write procedure are executing in parallel, we have no way
of knowing which will “take effect” first: i.e. will the read return the result of
this write or of an earlier write. In other words, since an observer of the 4-slot
can see only call and return events — i.e. that observer can only know when
a particular procedure execution has begun and when it has finished, rather
than knowing anything about its progress during that execution — there will
be a degree of non-determinism in the behaviour of the 4-slot as it appears to
that observer. In contrast, there is no such non-determinism in evidence in the
behaviour of the register, and reads and writes may not proceed in parallel in
that process. However, once Register has been composed with Register Environ
and thereby all inter-process communication hidden, all an observer can see are
events on channels in and out; similarly, once FSlot has been composed with
FourSlotEnviron, all that can be observed are events on channels in and out.
This adds non-determinism in the specification, since all we know of the spec-
ification network is whether or not a value has been provided for writing into
the register or whether a value read from the register has just been output to
the outside world. In other words, we cannot observe when a value is actually
written into or read from the register: thus, to our hypothetical observer, it is no
longer clear when exactly those writes and reads take effect whose occurrence is
implied by the occurrence of events on channels in and out. Moreover, placing
the 4-slot in context and hiding inter-process communication does not seem to
result in any additional non-determinism: we do not know when exactly reads
and writes to the 4-slot actually take effect but then we did not know this previ-
ously either. Thus, disallowing direct observation of the 4-slot and register and
allowing us only to observe their behaviours when placed in appropriate contexts
seems to have added sufficient non-determinism in the specification such that it
matches the non-determinism already exhibited by the 4-slot.

The above discussion is based on intuition regarding what happens when the
4-slot is composed with the simple environment given by FourSlotEnviron and
further work is needed to explore these issues more formally. Moreover, the main
focus in the above discussion is on the ordering of reads and writes in the 4-slot
and register respectively. Just as important is the way in which calls and returns
are dealt with in environment processes: for example, it is possible to define an
environment process which can detect the fact that the 4-slot is exhibiting addi-
tional concurrency not in evidence in the register. This can be done by allowing
the occurrence of two consecutive procedure calls in the environment without
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any associated returns — i.e. something which can only happen because the 4-
slot, allows reads and writes to proceed concurrently — to take us to a process
algebraic term which allows the execution of some distinguished event denoting
an error or which deals with output from the 4-slot in a different way to the way
it is dealt with after sequentially-executing procedure calls (see discussion in [3]
in this volume). The type discipline of uniform receptiveness described in [21]
deals with similar issues and it is necessary to explore further the role they play
in relation to relaxation of atomicity.

9 Related work

9.1 Standard approaches to verifying the 4-slot

The standard approach taken in the literature is not to consider correctness of
the 4-slot with respect to a register or, indeed, any explicit specification process.
Rather, certain intuitive properties are identified which it is felt must hold of
the 4-slot? if it is to work in an acceptable manner (see, for example, [5]). For
example, the property of data coherence is preserved if and only if a reader
process and a writer process may not simultaneously access the same slot in
the 4-slot data array. It is essentially a mutual exclusion property and is used
to guarantee that the 4-slot behaves as if reads and writes to the data array
were actually atomic. Other properties are concerned with how recently the
value which may be read by any low-level read was written into the mechanism
and the order in which data values are read from the mechanism. A number
of authors — [5, 8, 9, 17, 20, 23] — have considered the problem of checking
these conditions for the 4-slot. In particular, the property of data coherence has
been shown to be met under the assumption that the variables latest, reading
and slot will never suffer from metastability. The phenomenon of metastability
— see [5] for an explanation and a list of references — ensures that accesses to
these variables are not atomic in the general case. However, Simpson ([22]) takes
an engineering view and states that, in practice, it is possible to design and
implement underlying hardware so that metastability is a negligible problem,
from which the 4-slot can recover immediately in any case. As a result, he works
from the assumption that accesses to these variables are atomic and we take
advantage of this assumption in our modelling of the 4-slot in section 5.

9.2 Other approaches dealing with relaxation of atomicity

One of the best-known approaches from the literature which may be related con-
ceptually to refinement-after-hiding is action refinement, where the focus is on

9 These properties have been used in the verification of a number of different asyn-
chronous communication mechanisms.
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defining an operator to allow substitutition of precise, low-level behaviours for
high-level specification actions (see [7] for a survey). However, action refinement
suffers from the problem that, given a particular refinement mapping, only a sin-
gle implementation process may be derived from a given specification; moreover,
only a limited degree of relaxation of atomicity is possible. The notion of vertical
implementation, described in [18], uses an implementation relation parameter-
ized by a refinement mapping to address some of these problems of action re-
finement and is very close conceptually to refinement-after-hiding. Nonetheless,
refinement-after-hiding is based on the use of an abstraction mapping, rather
than on a refinement mapping which makes abstract behaviours more concrete.
It seems that using an abstraction mapping allows for the possibility of a wider
range of implementations for a given specification, although this is an issue which
needs further exploration. Moreover, relating the behaviours of the register to
those of the 4-slot using a refinement mapping seems to require at least one of
two things: either that different occurrences of the same events on channels read
and write in the register may be implemented in different ways depending on
the way in which the implementations of earlier read and write events have been
interleaved as the 4-slot executes; or that data refinement can be used in tandem
with the application of the refinement mapping to transform the single variable
of the register into the multiple data variables used in the 4-slot (with which data
variables the respective refinements of the register read and write events would
communicate). However, to the best of the author’s knowledge, neither of these
things is currently possible within the action refinement or vertical implemen-
tation approaches. We also comment briefly on the work described in [15] and
which uses the i/0 automaton model from [14] as a means of representing sys-
tems. This approach is concerned with the correctness of transaction-processing
systems and relies on the use of a wrapper process to hide direct evidence of
additional concurrent behaviour in any implementation process under consider-
ation. This use of a wrapper process is necessary since the i/o automaton model
cannot relate concurrent to sequential behaviours when those behaviours are to
be regarded as visible in the processes under consideration: in essence, it suffers
from the same problem as standard process algebraic refinement.

As stated in Section 1, the problem of the verification of the 4-slot is typical of
those to which the correctness condition of linearizability ([10]) may be applied.
Linearizability is a correctness condition for concurrent objects which allows us
to relate the behaviour of any such concurrent object to that of a sequential
specification object. If a concurrent object is correct with respect to the notion
of linearizability then it presents the illusion that each procedure or method it
provides appears to take effect instantaneously at some point between its call
and its return. It is in this sense that linearizability is apt to be related to the ver-
ification presented in this paper: this notion of each procedure execution taking
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effect at a single instant is used in the definition of extrpg, which is then used in
the verification of the 4-slot. However, there are a number of practical points of
difference between linearizability and refinement-after-hiding. Refinement-after-
hiding can deal with other types of component process than concurrent objects.
Linearizability is able to deal with systems composed of arbitrary concurrent
objects, while the work described in Section 7 dealing with the correctness of
environment processes with which the 4-slot might be composed currently only
works in terms of the 4-slot itself. Refinement-after-hiding could, of course, be
used to verify the relevant concurrent objects but further work is needed to allow
the verification of the processes with which they might communicate. A network
in the linearizability framework is given by a set of concurrent objects and a
set of sequential processes, each of which processes may access those concurrent
objects. In our framework, any individual process forming part of a larger com-
ponent environment process which is to be composed with the 4-slot can itself
exhibit concurrent behaviour; nonetheless, linearizability does allow individual
processes to interact with multiple instances of the same object. Linearizability
deals only with safety properties, while refinement-after-hiding is defined in all
three CSP semantic models and the correctness of the 4-slot has been shown
in all of them. Most significantly, the framework within which linearizability is
presented lacks a fully general model of computation — for example, there is no
general notion of process or of how processes may be composed — and this limits
its wider usefulness. (Further comments regarding linearizability can be found in
[3] in this volume; a fuller discussion of work related to refinement-after-hiding
can be found in [2].)

10 Concluding remarks

In this paper, we have shown that Simpson’s 4-slot mechanism is a valid imple-
mentation of a register and have also explored some of the wider issues which
pertain to verifications of this sort. However, much further work is needed to
develop a more general, easily usable and fully-formed notion of correctness to
be used when an implementation has been derived from a specification through
the use of relaxation of atomicity.
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