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Abstract: A recent renewed interest in hypercube interconnection network has been 
concentrated to the more scalable version known as a fat cube. The paper introduces several 
router models for fat nodes and uses them for cost comparison of both the hypercube and fat 
cube topologies. Analysis of time complexity of collective communications is done next and 
lower bounds on the number of communication steps are derived. Examples of particular 
communication algorithms on the 2D-fat cube topology with 8 processors are summarized and 
described in detail. The performed study shows that a large variety of fat cubes can provide 
much desired flexibility, trading cost for performance and manufacturability. 

Keywords: Interconnection networks, fat cube topology, router architecture, collective 
communications 
Categories: H.3.1, H.3.2, H.3.3, H.3.7, H.5.1 

1 Introduction  

One of the greatest challenges faced by designers of digital systems at present is 
optimizing the communication and interconnection between system components. As 
more and more processor cores and other large reusable components have been 
integrated on the single silicon die (MPSoCs, Multiprocessor Systems-on-Chips, 
[Jerraya, 05]), many of traditional multiprocessing techniques are modified or 
developed anew. The interconnection network, a fundamental component of every 
parallel system, and communication algorithms are no exceptions. E.g. buses, the 
former main means to connect the components, cannot scale to higher numbers of 
communication partners. Besides, long global wires become undesirable due to their 
low and unpredictable performance, what makes also the reuse of buses difficult. 
Buses are therefore being replaced by crossbars and by direct interconnection 
networks. For example, a high-speed crossbar switch is used in Niagara 
microprocessor chip [Geppert, 05] to connect 8 Sparc 4-way SMT microprocessor 
cores to a shared second-level cache. Among direct interconnection networks, 
traditional orthogonal topologies are also modified for performance-driven 
environments [Puente, 00]. Basically direct networks converge on the use of pipelined 
(wormhole) message transmission and source-based routing algorithms and the major 
difference between them are in topology.  
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Recently the research opened up in a Network on Chip (NoC) area, encompassing 
the interconnection/communication problem at all levels, from physical to the 
architectural to the OS and application levels [Jantsch, 03]. Packet switched networks 
suggested for NoC were up to now based either on 2D-mesh or on a fat tree topology 
[Jantsch, 03]. A novel on-chip communication architecture that can meet the 
performance requirements of network processors SoCs uses Octagon topology 
[Karim, 02]. However, aggressive on-chip communication demands not only of 
networking SoCs, but also SoCs in several other domains, can hardly be fulfilled by 
this network due to difficult scalability beyond 8 processors, suffering either wiring 
complexity or low performance in collective communications. In what follows we do 
not want to introduce a new topology, but rather look at possibilities of a derivative of 
the well-known topology: the fat cube. To the authors’ knowledge, analysis of 
communication properties of this topology has not appeared in literature yet. 

Binary hypercube topology is characterized by P = 2d nodes, naturally organized 
in d dimensions, where d is also the node degree. The worst-case distance between 
two nodes, network diameter D, is logarithmic, D = d = log P. The hypercube 
topology is node and edge symmetric, what simplifies the design of parallel 
algorithms tremendously. Computation can start in any node and the source code 
remains the same. Optimal algorithms for collective communication operations exist 
in almost all communication models. This is why the hypercube topology is 
commonly considered the best topology there is from the algorithmic and 
communication viewpoint. The hypercube topology can simulate efficiently almost 
any other topology, too. The only drawback is its non-constant (logarithmic) degree d 
= log P and consequently a high number of communication channels and only partial 
scalability, as the number of nodes P is restricted to powers of 2. 

Topologies derived from the binary hypercube, such as cube-connected cycles 
and wrap-around or ordinary butterflies [Dally, 04] eliminate the drawback of non-
constant node degree. They are constructed by expanding the hypercube vertices into 
cycles or linear arrays and have a small constant degree and the logarithmic diameter 
as before. The bisection width 2d = P/d is slightly worse than the value P for 
hypercube and so is the scalability, since the number of processors is P = d2d, i.e. only 
8, 24, 64, etc. 

Another useful alternative is much better scalable topology called a “fat cube”. 
The vertices of the hypercube are again expanded, but now into sets of processors 
connected by the crossbar switch inside the router. Scalability is improved since the 
node can contain any number of processors, P = m2d P, m = 1, 2, 3, … The node 
degree grows more slowly than in hypercube, d = log (P/m) and the bisection width 
can be adjusted by multiple links between nodes. Due to these favorable features has 
the fat cube topology been recently used e.g. in commercial DSM NUMA machine 
Origin 3000 (SGI). Also Opteron processors produced by AMD have hyperlinks on 
the chip ready for fat cube connection [Keltcher, 03]. Fat nodes (8 CPUs per node) 
have been used in Swiss-T1 cluster with K-ring network [Gabrielyan, 04]. The fat 
cube topology is also expected to appear in future networking systems for MPSoCs, 
because its mapping into 2-D space is easier than in the case of the “thin” hypercube. 

Whereas the properties of the ordinary hypercube are well known, no theoretical 
results are available for fat cubes. The paper analyzes, for the first time, the 
complexity of several collective communication patterns on a fat cube network. The 
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rest of the paper is the original research done by authors and it is organized as 
follows: In Section 2 we define the fat cube topology and four distinct router models. 
Section 3 presents the details of hardware cost calculation. Then we look at 
complexity of collective communications on the fat cube in Section 4. Section 5 is a 
case study involving all the important collective communications on several models 
of the 8-processor fat cube. Finally, Section 6 concludes this paper. 

2 Fat cube and router architecture 

Let us recall notation introduced above and establish some new notions related to the 
fat cube topology. Drawings of two instances of this topology are shown in Figure 1. 
We use the following parameters (the logarithm has an implicit base 2):  
 

• d – dimensionality of the fat cube/hypercube, it is equal to the number of 
external input or output ports per router  

• d´– dimensionality of the hypercube with P = dm2 vertices, d´ = ⎡log P ⎤ = 
d + ⎡log m ⎤ (log is the binary logarithm) 

• D – network diameter 
• m – number of processors per fat node, an integer greater than 1 
• P –  processor count P = m2d (the fat cube), P = 2d (the hypercube)  
• f – multiplicity of external links 
• L – the number of external links in a fat cube network L = fd2d−1 
• C(n,k) = n!/[(n−k)!k!]  

    

  a)                b) 

 

= CPU 
 

= router 

  

 

Figure 1: Examples of fat cube networks:  
a) P = 16, m = 4, d = 2, f = 2   b) P = 16, m = 2, d = 3, f = 1 

The design of communication algorithms depends strongly on the model used to 
describe the parameters of the underlying communication hardware. These models 
have to address key characteristics of interconnection networks, such as switching 
technique, channel type, message combining capability and a router model. The 
possible options in communication architecture are: 

 

946 Kutalek V., Dvorak V.: On Complexity of Collective Communications...



1. SF | WH |  CS |  VCT – store-and-forward, wormhole, circuit, and virtual-
cut-through switching techniques 

2. HD |  FD | S – half-duplex, full-duplex, simplex link type 
3. NC | C – non-combining/ combining model capable or not, combining or 

extracting partial messages with negligible overhead 
4. one-port (1) | all-port (*) | all-output -port (b) | d-port (d) router model. 

 
The router model for fat nodes deserves some explanation, because it is a certain 

generalization of the router model used in connection with thin nodes. In the simplest 
case processors are connected to the router by a single link as in Fig. 1. This so called 
one-port model (“1”) allows each of m or less processors to send a message either 
outside to a remote processor or to the local processor inside the same node, Fig. 2. 
All-output-port model (“b”) is one-port model with possible broadcast facility to all 
output ports (external and internal). The broadcasting processor could simultaneously 
receive one message from outside, too. Model “b” will be treated separately only for 
one-to-all broadcast communication. In other communication patterns its behavior is 
identical to 1-port model. In d-port model (“d”) each processor can send up to d 
distinct messages simultaneously, either outside or locally. In the last all-port model 
(“*”), each processor can simultaneously send up to (d + m – 1) distinct messages to 
all d dimensions and to all m – 1 remaining local processors. This model is rather of 
theoretical interest only because of a high router cost. The traditional hypercube may 
use only three special cases of the above router models defined by m = 1 and f = 1. 
Under these conditions models “d” and “*” become identical and are known as the 
all-port model.  

 
 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

1 b d 
* 

Figure 2: Router models for fat nodes (m = 2, d = 2, P = 8, f = 1) 
1) one-port model    b) all-output-port model    d) d-port model   *) all-port model 

3 Cost of a fat cube network 

The cost of the interconnection network has two components: the external links cost 
CL and the router cost CR. If we disregard manufacturability, the external link cost CL 
can be taken simply as the number of these links CL = L = fd2d–1. The router cost 
given mainly by the cost of a×b crossbar switch with a input ports and b output ports 
is commonly taken as ab; in our analysis routers have square crossbars with a = b. 
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Let us compare the fat cube cost C and hypercube cost C′ and let us find under 
which condition is the fat cube network cheaper. If both the networks have the same 
number of processors P = P’, then 

mddorPmP dd log22 ' +=′=′==  (1) 

   
The lower link cost LL CC ′≤  of the fat cube 

11''1 222 −−− ′=′≤= dd
L

d
L mddCfdC  (2) 

 
implies fd ≤ md´, what holds true because dimensionality of the fat cube is always 
lower than that of a hypercube with P nodes and because mostly mf ≤ . 

The cost CR of all routers together depends on the type of the port model. Table 1 
compares the total router cost CR and CR´, the product of input and output port counts,  
pin = pout. Of course, we are interested especially in fat cubes with some cost 
advantage, i.e. when CR ≤ CR´. By making use of relation (1) we can transform the 
condition of a lower cost into inequalities involving parameters m, f and d:  

 

(1)   
22 )log1()( mdmdfm ++≤+  

(3) 

(d)    
222 )log(4)( mdmfmd +≤+  

(4) 

(*)    [ ] 22 )log(4)1()( mdmmmfmd +≤−++  
(5) 

 
Table 2 shows some numerically obtained solutions of inequalities (3) – (5) for f = 1 
and 2.  
 

  Fat cube Hypercube (m = f =1) 

Model pin = pout Router cost (CR)    pin = pout CR
´ 

1 (m+df) 2d(m+df)2 (1+d´) 2d´(1+d´)2 

d d(m+f) 2dd2(m+f)2 2d´ 2d´ 4 d´ 2  

* d(m+f)+ m(m-1) 2d(d(m+f)+m2–m)2 2d´ 2d´ 4 d´ 2 

Table 1: Total router cost in fat cube (CR) and hypercube (CR
´) topology 

f = 1 1 d * 
m = 2 d∀  d ≤ 16 d ≤ 4 
m = 4 d∀  d ≤ 8 never 

m = 8 d∀  d ≤ 5 never  

 f = 2 1 d * 
m = 2 d = 1 d ≤ 2 never 
m = 4 d∀  d ≤ 6 never 

m = 8 d∀  d ≤ 3 never  

Table 2: Conditions ensuring that a fat cube be cheaper than the hypercube 

For example, both fat cube networks at Fig. 1 (model 1) are cheaper then 
hypercubes (model 1) with  the same number  of  processors P.  Now  the  question  is  
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Table 3: CCs on a hypercube, lower bounds τCC  on time complexity 

 
what will be the impact of this lower hardware cost, if any, on communication 
performance. We will therefore investigate the performance of collective 
communications on a fat cube in the next section. 

4 Complexity of collective communications on a fat cube 

Collective communications (CCs) are frequently used in all parallel algorithms. In a 
phase parallel model [Hwang, 98] a parallel program is executed as a sequence of 
phases of three types, parallelism phase (process management), local computation, 
and interaction phase (communication, synchronization or aggregation). Collective 
communications are most important and if their overhead is excessive, performance 
degrades rapidly with the processor count. When we refer to „collective 
communications”, we will assume communications involving all processors. Seven 
types of such collective communications are: OAB (One-to-All Broadcast), OAS 
(One-to-All Scatter), AOG (All-to-One Gather), AOR (All-to-one reduce), AAB (All-
to-All Broadcast), AAR (All-to-all Reduce) and AAS (All-to-All Scatter), [Duato, 

03]. Since complexities of some communications are similar (AOG ∼ OAS, AOR ∼ 

OAB, AAR ∼ AAB), we will focus only on 4 basic types (OAB, OAS, AAB, AAS). 
Each communication may be investigated with all possible model options, what gives 
too many distinct cases to explore. Therefore only the most important of them will be 
analyzed.   

In the rest of the paper we assume that the communication proceeds in 
synchronized steps. In one step of CC, a set of simultaneous packet transfers take 
place only between adjacent nodes (SF networks) or along complete disjoint paths 
between source-destination node pairs (WH networks). Complexity of collective 
communication will be determined in terms of the number of these communication 
steps τ(CC, G); if network graph G is clear from the context, we will omit its symbol 
G.  This figure of merit does not take into account the message length or its variations 
from one step to another. Before analyzing communications on a fat cube, let us 
review the lower bounds on number of steps τCC in a hypercube network, Table 3. 
Lower bounds for all CCs on the SF hypercube are reachable by known optimal 
algorithms. However, an asymptotically optimal algorithm for OAB  is not  known on  

 

SF hypercube WH hypercube  
CC 1-port all-port 1-port   all-port  

OAB log  P (= d) D (= d) log  P (= d) ⎡log d+1 P ⎤ = ⎡d/log ( d+1)⎤ 
AAB P – 1 ⎡(P – 1)/d⎤ P – 1 ⎡(P – 1)/d⎤ 
OAS P – 1 ⎡(P – 1)/d⎤ P – 1 ⎡(P – 1)/d⎤ 
AAS d P/2 P/2 P – 1 P/2 
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the all-port WH hypercube; the lower bound τOAB can be reached only for d ≤ 6 by the 
double-tree algorithm. Other known algorithms are nearly optimal (e.g. algorithm Ho-
Kao, [Duato, 03] ). 

In the following subsections we want to generalize the above results for the fat 
cube topology with restriction to non-combining SF models with FD links.  

4.1 One-to-all broadcast (OAB) on a SF fat cube 

This CC is not influenced by the type of the links (HD / FD) or message 
(non)combining. Since just one message propagates in the network, we will consider 
only simple links (f =1), even though multiple links could help in some way. On the 
1-port fat cube we have the same lower bound as on the hypercube: 
 

Theorem 1. Complexity of OAB on the 1-port fat cube is lower bounded by  
τOAB = ⎡ ⎤Plog . This lower bound can be reached for all f, d, and m. 

 Proof. The theorem holds for a hypercube; it is well known that by making use 
of the binomial spanning tree [Duato, 03] we can reach all nodes in d = log P steps. 
The fat cube with P = m2d processors requires additional ⎡ ⎤mlog  steps to inform 

local processors inside nodes. This intra-node communication may be overlapped 
with inter-node communication except the last node. The multiple external links have 
no influence on this, so that d + ⎡ ⎤mlog = ⎡log P⎤ steps will always be needed, q.e.d. 

 
For example in 1-port, 12-CPU fat cube network (d = 2, m = 3) we need 4 steps, 

the same number as for 16-CPU fat cube or hypercube. 
 Better OAB performance than in the hypercube can be obtained with more 

complex routers (d, b, *) in the fat cube network. In general, complexity of OAB on a 
k-port network defined by graph G is given by the larger of two values: D and  
⎡logk+1 P⎤, τOAB = max [D, ⎡logk+1 P⎤ ]. For b- and d-port router models there are d 
external ports available for OAB and either component may dominate; diameter D = d 
dominates over ⎡ ⎤Pd 1log +  if 

[ ] ddm 2/)1( +≤ .                                                            (6)                                           
This condition is satisfied in the grey area in Tab. 4 where is the lower bound better 
than in the equivalent hypercube (with the same processor count P) because the 
diameter of the fat cube D = d is always lower than that of the equivalent hypercube.  
 

           

       b- and d-model                    *-model
d  /  m 2 4 8 2 4 8
1 2 3 4 2 3 4
2 2* 4 5 2 2 2
3 3* 3 3 3 3 3
4 4* 4* 4 4 4 4  

Table 4: Lower bound τOAB = max [D, ⎡logk+1 P⎤ ] as a function of d and m; τOAB = D 
in grey cells, asterisks denote values reachable according to Theorem 2. 
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If we consider *-model, there are d+m−1 ports available for OAB and diameter D 
dominates ⎡logd+1 P⎤ if dd mmd 2)( ≥+  or equivalently if d > 1 and m is arbitrary, 

see Table 4. 
The lower bound τOAB = D = d on the 1-port fat cube with simple edges (f = 1) 

can also be reached in models “d” and “*” if md ≥ ; otherwise we need additional 
steps to complete local OAB communication within certain nodes as given by 
Theorem 2: 

 
Theorem 2. Complexity of OAB on NC SF fat cube measured by the number of 

communication steps is 
d)  τOAB = d + ⎡logd+1 ⎡m/d⎤ ⎤   
*, b) τOAB =  d (if m ≤ d) or d+1 (if m > d). 
 
Proof. First we shall prove 
Lemma 1. The number of links between adjacent levels i and i + 1 of a broadcast 

tree in the d-dimensional fat cube network is C(d – 1, i). 
 
Proof. The statement is valid for i =0, see Figure 3. Assuming that there are 

dC(d−1, i−1) links coming to the level i, we should prove that there are dC(d − 1, i) 
links coming to level i+1. Indeed, subtracting incoming links from all links incident 
with nodes at level i, we get   
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Figure 3: Number of nodes and links in a broadcast tree of a fat cube network 
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To prove Theorem 2, let us start with step 1, when the source processor at level 0 
sends a message along all dC(d−1, 0) = d external links to all C(d, 1) level-1 nodes. 
The source processor will inform remaining m−1 local processors in one more step 
(step 2) since d > m−1. In step 2 all informed level-1 processors will propagate the 
message to all C(d, 2) level-2 nodes. Since, according to Lemma 1, there are dC(d−1, 
1) external lines from level 1 to level 2, i.e. 2-times more than the number of level-2 
nodes, two processors in each node can be informed simultaneously. Again, 
remaining local processors will be informed in the next step 3, since d > m−2. 

Similarly, informed processors at level (i−1) will propagate the message to 
dC(d−1, i−1) processors at level i, what gives dC(d−1, i−1)/C(d, i) = i newly informed 
processors in each node. From a certain level i on, it will hold true i ≥ m, so that all m 
processors in each node, starting at level i, will be informed simultaneously. In the 
worst case it will happen just at the last level if i = d = m. However, if we will have i 
= d < m, some additional steps will be needed. Having m-d processors in each node 
still uninformed, each of d informed processors can distribute the message within the 
subset of  ⎡m/d⎤ local processors in ⎡ ⎤⎡ ⎤dmd /log 1+  steps (d-port model) or in  

1 step (*-model, because d+m−1 > m−d). Adding up d steps of inter-node 
communication (where simple links (f = 1) are sufficient) and the above extra steps of 
intra-node communication, we get the desired result. 

Finally, model-b router is designed for fast OAB and if the message enters a 
node, it is distributed to all d + m − 1 output ports in the same step, regardless the 
relation between m and d. We therefore have, even with simple links, τOAB = d +1, 
q.e.d. 

Theorem 2 provides a remarkable result, because it says that at least for OAB we 
can get in some cases better performance (asterisks in Table 4) and in many cases also 
a lower cost (see Table 2) than with the equivalent hypercube. 

4.2 All-to-all broadcast (AAB) on a SF fat cube 

The lower bound τAAB is easily found from the number of messages that each 
processor has to receive (all receive simultaneously) and the number of its input ports 
as 

τAAB = P −1, ⎡ ⎤dP /)1( − , and  ⎡ ⎤)1/()1( −+− mdP                              (7) 

for   “1”, “d”, and “*” router models, respectively. Optimal AAB algorithms for a 
hypercube matching the lower bounds are based on a Hamiltonian cycle (1-port 
model) and on so called time-arc-disjoint spanning trees – TADTs (all-port and *-
models). All processors can use such broadcast trees synchronously with no conflicts. 
SF and WH switching give equal results, HD links can simulate FD links with 
slowdown two or sometimes better. The following Theorem 3 establishes complexity 
of AAB, namely upper bounds τAAB in case that we do AAB among nodes first and 
then inside the nodes. As we will see later, due to a possible partial overlap of both 
the inter- and intra-node communications  in models d and *, lower bounds τAAB can 
be reached under certain conditions.  
 
Theorem 3. Complexity of AAB on the NC SF fat cube measured by the number of 
communication steps is 
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1) τAAB = τAAB = P −1 
d) τAAB = ⎡ ⎤ ⎡ ⎤ mPdmmdfdmP //)1(),min(/)( −+−   

*) τAAB = ⎡ ⎤ mPmdmfdmP /)1(,min(/)( +−+− .   

Proof. 
1) We can use cyclic rotation of messages along the ring formed by the 

Hamiltonian cycle, m processors in the node are incorporated into that cycle. In the 
first step all P processors are just sending their message along the cycle and in 
following P−2 cycles they keep receiving and re-sending other messages.  Multiple 
links cannot make it faster, because processors are connected to the router with a 
simple link.  

d) Using a generic TADT rooted in every node we will perform AAB among 
nodes. Each node broadcasts ”super-messages” consisting of m distinct messages to 

)12( −d  remaining nodes. In each “super-step”, m messages stored in m node 

processors are transferred between adjacent nodes. There are )12( −d  super-messages 

destined for one node,  fd incoming links to a node from all dimensions and md input 
links to node processors. Therefore not more than min (fd, md) distinct messages can 
arrive to one receiver node simultaneously. Each super-message is thus sent in not 
less than ⎡m/ min (fd, md) ⎤ steps. At the end will each processor have P/m distinct 
messages (including its own original message) to share with other local processors. 
As the local AAB among m nodes can be done on the router crossbar as m−1 
permutations, d permutations at a time, the result is  

τAAB = )12( −d ⎡m/min (fd, md) ⎤ + ⎡ dm /)1( − ⎤ P/m = 

⎡ ⎤ ⎡ ⎤dmmdfdmP /)1()),min(/)( −+−  P/m,           (8) 

q.e.d.  
*) The same reasoning as in d) except that there are now m( d+m−1) input links to a 
node. Local AAB, m−1 permutations, and d messages to external links can be 
combined into one step as each processor is connected to the crossbar by d+m−1 
links. By taking x = min(fd, m(d+m−1)) we have 

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ,//)(

/)1/()1(/)(

mPxmP

mPmdmxmPAAB

+−=
=−+−+−=τ     (9) 

q.e.d.  
Provided that we have a practical model “d” with f < m, then md−fd ports are free 

during inter-node communication and can be used for broadcasting messages within 
the node. As there are (P−m)/(fd) steps of inter-node communication, (P −m)(m− f)/f 
out of total  m[((2d−1)+1)(m−1)] = P(m−1) internal pairwise communications can be 
hidden. Remaining ffmmPmP /))(()1( −−−− pairwise communications can be 

done, md of them at a time, on md ports. With the previous inter-node communication 
it will require  
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steps.  
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For model “*” with fd < m(d+m−1) we can, similarly as under case d), overlap 
inter- and intra-node communications with the result 
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Contrary to OAB, combining is relevant to the complexity of AAB. There is a 
straightforward approach (Gather – Scatter) to combining AAB on the fat cube: one 
representative processor in each node gathers messages from all local peers and then 
AAB takes place among these representative processors with combined messages. At 
the end the representatives extract and distribute individual messages to local peers. 
We will not analyze complexity in detail, but interestingly, combining AAB can 
sometimes be faster on the fat cube than on the hypercube, [Kutalek, 05].  

4.3 One-to-all scatter (OAS) on a SF fat cube 

This CC has similar complexity as AAB in many models, the lower bound τOAS  is 
easily found from the number (P – 1) of distinct messages that each processor has to 
now send (all processors send simultaneously) and the number of its input ports as  

τOAS  = P −1, ⎡ ⎤dP /)1( − , and  ⎡ ⎤)1/()1( −+− mdP    (12) 

for 1, d, and * router models, respectively. Optimal OAS algorithms for a hypercube 
matching the lower bounds are based on a Hamiltonian cycle (1-port model) and 
again on time-arc-disjoint spanning trees TADTs (models d and *). Regardless of 
whether we have SF or WH switching, an optimal algorithm requires a broadcast tree 
with sub-trees of approximately equal size. TADTs do not fulfil this requirement and 
must be slightly modified. The construction of such trees is known and will not be 
repeated here. The generic TADT tree can be rooted in any source processor and 
using FF strategy, messages are pipelined within the sub-trees.  HD or FD switching 
do not influence τOAS, rather the number of distinct messages that can be sent by the 
source processor in one step is important. In the fat cube topology we perform OAS 
among nodes first, then OAS inside nodes. Theorem 4 gives related upper bounds 
τOAS; for m = f =1 we get the lower bounds for the hypercube as a special case.  

 
Theorem 4. Complexity of OAS on NC SF fat cube measured by the number of 

communication steps is 
1) τOAS = τOAS = 1−P   
d) τOAS = ⎡ ⎤ ⎡ ⎤dmmdfdmP /)1(),min(/)( −+−    

*) τOAS = ⎡ ⎤ 1))1(,min(/)( +−+−− mdmfddmP    

 
Proof. 
1) We can use cyclic rotation of messages along the ring formed by the 

Hamiltonian cycle, going through all processors of one node and then to the following 
node and through all its processors, etc. We use the farthest node first strategy (FF), 
sending the message to the most remote processor first and going on with messages 
for processors closer and closer to the source. We cannot use more than f = 1 external 
link, because each processor has only one internal link and both the external and 
internal links are connected in the Hamiltonian cycle.  Therefore in the (P – 1)-th step 
all processors will get their messages, q.e.d. 
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d) The FF strategy is now used in TADT for OAS among nodes. There 
are )12( −d super-messages from source node destined for other nodes. In each super-

step, m messages are transferred between adjacent nodes. There are fd outgoing links 
from a node in all dimensions and md output links from processors, so not more than 
min (fd, md) distinct messages can be sent by source node simultaneously. Each 
super-message is thus sent in ⎡m/min (fd, md)⎤ steps.  Local OAS in the source node 
requires ⎡ ⎤dm /)1( −  steps, because the source processor can emit d messages at a 

time. Altogether  
τOAS = ⎡m/min (fd, md)⎤ )12( −d ⎡ ⎤ =−+ dm /)1(  

⎡ ⎤ ⎡ ⎤dmmdfdmP /)1(),min(/)( −+− ,  

q.e.d. For simple links (f = 1) this bound comes to τOAS = ⎡(P−1)/d⎤  = τOAS. 
 
*) The same reasoning as in d), only different number of links. The source 

processor can emit all m−1 local messages together with d external messages 
simultaneously in one step as it has d + m − 1 output ports. Therefore if x = min(fd, 
m(d+m−1)), then  

τOAS = ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 1/)()1/()1(/)( +−−=−+−++−− xdmPmdmdxdmP , q.e.d. 

Let us note that for simple links (f = 1) this bound can be simplified to 
τOAS = ⎡ ⎤ =+−− 1/)( ddmP ⎡ ⎤dmP /)( − . 

4.4 AAS on a SF fat cube 

The lower bounds τAAS will be determined later. Let us recall only that the optimal 
AAS algorithm for the all-port hypercube matching the lower bound τAAS = P/2 (see 
Table 3) runs according to a schedule that specifies triplets (step number, dimension, 
relative address RA of source and destination processors) in a way that avoids 
conflicts; an example is at Fig. 7. Algorithms exist for a construction of such 
schedules and resulting scheduling tables [Edelman, 91] and prove the elegance of 
hypercube topology: in d-port model all links are used in both directions in all steps! 
AAS lower bounds for HD and FD links differ again by factor of two (model NC). 
Theorem 5 concerns FD links and establishes complexity of AAS, namely upper 
bounds τAAS in case that we do AAS among nodes first and then inside the nodes. In 
some cases can these bounds be further improved by overlapping both inter- and 
intra-node communications.   

 
Theorem 5. Complexity of AAS on NC SF fat cube measured by the number of 

communication steps is 
1) τAAS = ⎡ ⎤ )1()],min(2/[ −+ mfdmPmd   

d) τAAS = ⎡ ⎤ ⎡ ⎤dmfdmdPmd /)1()],min(2/[ −+    

*) τAAS = ⎡ ⎤)]),1(min(2/[ fdmdmPmd −+  + 1  

Proof. 
1) We can visualize AAS as a superposition of m-to-P scatter communications by 

all nodes, in which each processor in the node sends P-m distinct messages outside 
and m-1 messages inside the node. The block of m2 messages (a super-message) from 
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the source node (m source CPUs in one node, each of them sending m messages to a 
destination node) may stop over in intermediate nodes on the path to a destination 
node. Super-messages re-sent from intermediate nodes are to be taken as new super-
messages and k of such super-messages will be generated on the path from level 0 to 
level k of the broadcast tree. Counting up all such super-messages for all destinations 
at all levels of a broadcast tree we get the total count x 
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There will be m2-times more simple external messages. Each node (model 1) is 
able to receive (or send) up to min(m, fd) external messages in one step, so that inter-
node communication requires ⎡m2d2d-1/min(m, fd)⎤ = ⎡Pmd/[2min(m, fd)] ⎤ steps. The 
intra-node AAS among m processors can be implemented on the router crossbar as 
m – 1 permutations in m – 1 steps, and together we get the desired result on 1-port 
model, q.e.d. 

For m ≤ fd  the above result can be simplified to  
τAAS = )1(2/ −+ mdP .   (14) 

Not sooner than after 2/dP  steps will be m ports free for the intra-node AAS.  Eqn. 
(14) is thus also a lower bound since no shorter solution exists. If on the other hand 
 m > fd, we get     

τAAS = ⎡ ⎤ )1()2/( −+ mfPm .   (15)  

In this case a possibility exists to overlap the intra-and inter-node communication. For 
full overlap [Kutalek, 05] 

τAAS = τAAS = ⎡ ⎤)2/( fPm .    (16)   

 
d) The proof goes on along the same lines with a bottleneck of 

min (# internal links, # external links) = min (md, fd) 
external messages in one step. AAS among local processors, m-1 permutations on the 
crossbar, can be done at a rate d permutations in one step, so that ⎡(m−1)/d⎤ steps are 
needed, q.e.d.  Simplified bounds are: 

    if  m ≤ f:  τAAS = τAAS = ⎡ ⎤dmP /)1(2/ −+   and 

if  f  ≤ m:   τAAS = ⎡ ⎤ ⎡ ⎤dmfPm /)1()2/( −+ .  (17) 

 
Overlapping both global and local AAS is again possible in the latter case [Kutalek, 
05]. 

 
*) The same reasoning as above for model d. Since every processor has now 

additional m−1 links above d-port model, m−1 permutations can now be performed in 
one step, since ⎡ ⎤)1/()1( −+− mdm  = 1, q.e.d.  

If  f = m, we get  τAAS = P/2 + 1, but because in this case m−1 links to/from each 
processor are free during global AAS, we can combine 1 step of local AAS with any 
step of global AAS without interference between them, so that τAAS = τAAS = P/2. 
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Combining models can also be considered; combining messages in a super-step 
can be done as in the case of AAB, using Gather – Scatter algorithm. Again, 
combining AAS can sometimes be faster on the fat cube than on the hypercube, 
[Kutalek, 05].  

5 Examples of collective communication on the 8-processor, 2D-
fat cube   

Here we will demonstrate communication algorithms on the small fat cube with the 
following parameters: d = m = 2, P = 8, f = 1, non-combining nodes, full duplex links, 
store and forward switching. 

5.1 One-to-all broadcast 

According to Theorems 1 and 2, OAB will take not more than 3, 2, 2, and 2 steps on 
1, b, d, and * router models. Routing schedules with these models are shown in Figure 
4. Router model “b” behaves like model “*” only in OAB communication, in other 
communications like model “1”. Whereas 3 OAB steps are always needed in 8-
processor hypercube, 2 steps will do in the fat cube topology (model d, b, and *). 
Routing follows exactly the algorithm described in proof of Theorem 2. Only in the 1-
port model does the routing proceed according to the spanning binomial tree with 
1+1+2+4 processors informed in 3 steps. Doubling the number of informed 
processors keeps going the same way on the interconnections as on the router crossbar 
(if m >2).   

 

1

2

2

3 3

33

“1“ “d“ “*“ 
  

Figure 4: OAB communication on the SF fat cube 

5.2 All-to-all broadcast 

Theorem 3 states that we are able to complete AAB in 7 steps with all 1, d, and * 
router models, but if we manage to overlap inter- and intra-node communication, the 
lower bounds for d and * routers, i.e. 4 and 3 steps, can be reached. (From now on we 
do not mention model “b” explicitly, as it behaves like model “1”). The case of 1-port 
router model is easy when we use the Hamiltonian path. In case of d-port model, the 
optimal algorithm with the full overlap of the global and local AAB is shown at 
Figure 5, reaching the lower bound τAAB = 4 steps. . The path of every message from 
source to destination processors, divided into 4 steps, is described in Table 5. 
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a) b)  

Figure 5: AAB communication on the d-port SF fat cube 
a) steps 1 and 2  b) steps 3 and 4 

               destination processors
message step 1 step 2 step 3 step 4

1 →    2, 5 →    6, 8 →    7, 4 →    3
2 →    1, 3 →    4, 7 →    8, 6 →    5
3 →    4, 2 →    1, 6 →    5, 7 →    8
4 →    3, 8 →    7,5 →    6, 1 →    2
5 →    6, 1 →   2, 4 →    3, 8 →    7
6 →    5, 7 →    8, 3 →    4, 2 →    1
7 →    8, 6 →    5, 2 →    1, 3 →    4
8 →    7, 4 →    3, 1 →    2, 5 →    6  

Table 5: 4 steps of the AAB communication schedule    

5.3 One-to-all scatter 
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Figure 6: Farthest First message pipelining in OAS on the sample fat cube 
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The upper bounds given by Theorem 4 match the ideal lower bounds 7, 4, 3 in our 
running example for 1, d, and * router models, respectively. OAS in 7 steps with 1-
port model is easy using the Hamiltonian cycle. Two other models (d and *) are more 
interesting and the sequences of messages on various links are depicted in Fig. 6. In 
model “d“ the source keeps sending 2 messages into two sub-trees for 3 steps and 1 
more step is for OAS inside the source node. This extra step can be combined with 
any step in model “*“, so that Fig. 6 is sufficient for the both models. 

5.4 All-to-all scatter  

According to Theorem 5, we should be able to complete AAS on our example fat 
cube surprisingly with all types of routers in the same number of 9 steps. We shall 
start with the scheduling table for an all-port 2D-hypercube, Fig.7. AAS among nodes 
is scheduled in 2 super-steps. Considering now m2 = 4 messages in a super-message, 
there will be 4 steps in each super-step. AAS within nodes, in our fat cube only 
exchange of messages between two processors, can be done in 1 extra step (1-port 
model) or can be combined with any of previous 8 steps (d-port model and even more 
so *-model), because only one processor port is busy during inter-node 
communication. Thus 8 steps will do for *- and d-port model, but 9 steps will be 
needed for 1-port model. Multiple links would improve performance further. 

 
 

 

 

step 
  1 

step 
  2 00         01    → dim 0 

10          11     

dim 1 
  ↑ 

dim 0 dim 1
step 1 RA = 11 RA = 10
step 2 RA = 01 RA = 11

Scheduling table

RA = 11 
RA = 10 
RA = 01 

Relative 
Address 

RA= src⊕dst 

super- 

super- 

Figure 7: AAS communication on d-port SF 2D-hypercube and a scheduling table 

6 Results and conclusions 

Summary of CC complexities for various models of our sample fat cube and 
hypercube networks is in Table 6. All models of the SF NC fat cube with m = 2, f = 1 
and d = 2 are cheaper then the 8-processor hypercube (see Table 2) and their 
communication performance is the same or better in OAB and almost the same in 
OAS and AAB. The AAS communication is 25% faster on 1-port models, but twice 
as slower as on the hypercube on models “d” and “b”. 
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Table 6: Comparison of τCC for SF hypercube and fat SF cube networks with P=8 
processors. (HC = hypercube, FC = fat cube (m=2, d=2, f=1), asterisks denote 

reaching the lower bound) 

The above results concern only one particular fat cube network, but theorems 
derived earlier are suitable for comparison of other configurations as well. Generally 
we can make the following conclusions: 

1. Performance in OAB is the same in 1-port router models of fat cubes and 
hypercubes. 

2. OAB can be done faster on models b, d, and * thanks to the hardware 
branching capability built in the router (model b) or more processor ports for 
concurrent communications (models d and *). 

3. Performance in OAS and AAB are similar as in hypercube topology, but 
they could run faster if multiple links are provided. 

4. Router models with more ports have no advantage in AAS over models 1 
and b, because utilization of multiple processor ports is very low.  

5. Performance in AAS is given by the bisection width, which is only a half of 
the value in the hypercube. The same performance as in the hypercube can 
be obtained when multiple links are used. 

6. Router models “*” have almost no advantage over models “d”, because the 
amount of intra-node communication is much less than that of inter-node 
communication. Some overlap of these communications can be realized in 
AAB and OAS. 

7. If the hardware cost is a limiting factor, then a suitable fat cube can be found 
which is cheaper than the equivalent hypercube with the same number of 
processors and with not much (if any) performance degradation.  

8. The number of processors P in the fat cube configuration is not limited to 
powers of 2, but a power of 2 can be multiplied by an integer m. This may be 
more straightforward scaling than a partial hypercube. 

The future research should address WH fat cubes and other network topologies 
with fat nodes and links. Also other communication patterns should be studied, such 
as multicast and m-to-n broadcast or scatter. Also combining node models are of 
interest; partial results for SF switching have been presented in [Kutalek, 05]. The 
role of combining models for WH switching should still be clarified. The research in 
the above directions could help optimize communication architectures for application-
specific multiprocessor systems on chip, [Dvorak, 03]. 

NC/C NC models 
OAB OAS AAB AAS 

 
Model 

HC FC HC FC HC FC HC FC 
1 3 3 7 7* 7 7* 12 9* 

b 3 2 7 7 7 7 12 9 

d 3 2 3 4* 3 4* 4 8 

* 3 2 3 3* 3 4 4 8 
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