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Abstract: In this paper, we present a novel framework TESTAF to support automatic 
generation and execution of test cases using object-oriented formal specifications. We use 
IFAD VDM++ as the specification language, but the ideas presented can be applied equally 
well to other object-oriented formal notations. The TESTAF framework requires a VDM++ 
specification for a class, a corresponding implementation in C++, and a test specification, to 
generate and execute test cases, and evaluate the results. The test specification defines valid test 
sequences in an intermediate specification language based on regular expressions. The 
framework uses the formal specification of the class, and the test specification to generate 
empty test shells, which are then filled in with the test data to create concrete test cases. The 
test data for a method are generated from the input space defined by the method pre condition 
and the class invariant. The TESTAF applies boundary value analysis strategy to generate the 
test data. A test driver then executes the implementation with the test data, and uses a 
conjunction of method post condition and the class invariant as a test oracle to evaluate the 
results, while reporting failed test cases to the user. 
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1 Introduction 

Using formal methods can help avoid specification errors, ambiguities, and 
misinterpretations in early phases of software life cycle. Unlike natural languages, 
formal languages are based on sound mathematical principles, and allow aspects of 
the specification to be rigorously demonstrated using mathematical proofs. However, 
the use of formal specification methods provides no guarantee that the 
implementation will conform to the specifications. A formal proof of correctness, 
although possible, is not cost-effective for most software projects because of the 
complexity of large software systems. Even after a formal proof, testing is usually 
required to build confidence in the system being developed [Meudec, 98]. Therefore, 
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need for rigorous testing is not eliminated by the use of formal methods. In fact, 
formal methods and testing complement each other. 
 However, even for the most trivial systems, exhaustive testing is impossible due 
to the explosive size of input space, which makes it necessary to find ways to identify 
a representative set of test cases. For large and complex software systems, manually 
generating such a set of test cases, executing them, and comparing the results with 
expected outputs can be a tedious and time-consuming process. Fortunately, testing 
from formal specifications can be automated: several researchers have proposed 
techniques for automatic generation of test cases using formal specifications, e.g., 
[Dick, 93] [Stocks, 96] [Meudec, 98] [Liu, 02]. Some other related works include 
[Van Aertryck, 97] [Atterer, 00] and [Helke, 97]. 
 Considerable amount of research effort has been directed towards automatic 
generation of test suites from formal specifications, such as Z notation, the B method, 
and the VDM-SL specification language. The object-oriented dialects of formal 
notations help write a specification that uses the same concepts as the implementation 
in an object-oriented language, and hence provides a good basis for generation of test 
cases. 
 In this paper, we present a novel framework TESTAF that automates generation, 
selection, and execution of test cases from IFAD VDM++ [IFAD, 99] specifications. 
Although we use VDM++ as the specification language, the approach used in our 
framework can be generalized to other object-oriented formal notations as well. The 
major reason to choose VDM++ as the specification language was that it allows 
method pre and post conditions as well as class invariant to be explicitly specified. In 
contrast, if Z notation (or an object-oriented dialect of Z) is used as the specification 
language, the preconditions for operation schemas would have to be calculated. 
 The TESTAF framework requires a VDM++ specification, a corresponding 
implementation in C++, and a test specification, to generate and execute test cases, 
and evaluate the results. The test specification defines valid test sequences in an 
intermediate specification language based on regular expressions. The TESTAF first 
matches classes, their attributes and methods in the specification with corresponding 
classes, attributes and methods in the implementation, and stores the mappings in a 
file. This process is semi-automated – the TESTAF automatically generates the 
mappings, however the user is required to confirm or edit the mappings if needed. 
Alternatively, the user can manually create the mappings file for use by the TESTAF. 
 Then, TESTAF uses formal specification and the test specification to generate 
empty test shells. A test shell contains method sequences and templates for input data. 
The test data for test shells are generated from the input space created from method 
pre condition and class invariant of each method to be tested. Test data are selected 
from the generated input space using boundary value analysis, and filled into the test 
shells. A test driver then executes the implementation with test data, and uses method 
post condition and the class invariant as test oracle to evaluate the results, while 
reporting the failed test cases to the user. 
 The rest of this paper is organized as follows: section 2 surveys related work by 
other researchers; section 3 describes the working of the TESTAF framework in 
detail; section 4 presents a case study to show effectiveness of the TESTAF; and 
finally section 5 concludes the work. 
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2 Related Work 

In this section, we present an overview of related works, and discuss how our 
framework differs from other closely related works. 
 Several researchers have proposed techniques to automatically generate test cases 
from formal specifications. However, most of the research in this area has focused on 
testing from non object-oriented formal specifications. 
 One of the well-known works in this area is a methodology proposed by Dick and 
Faivre to convert VDM-SL precondition expressions into a disjunctive normal form 
(DNF), so that a solution to each disjunct represents a solution to the entire expression 
[Dick, 93]. The state space generated by the precondition is then exhaustively 
searched using a Prolog tool to generate the test cases. In [Helke, 97], the authors 
describe the use of a theorem prover tool Isabelle to automate generation of test cases 
from Z specifications encoded in Isabelle/HOL. The tool converts Z predicates to 
DNF, eliminates unsatisfiable disjuncts, and generates valid test cases by searching 
the state space. 
 Meudec proposed a method to generate test cases from VDM-SL specifications 
by converting the pre and post condition expressions into DNF, partitioning the DNF 
into equivalence classes and using boundary value analysis to generate test cases from 
the equivalence classes [Meudec, 98]. The approach is based on parsing VDM-SL 
expressions, and is implemented in [Atterer, 00]. 
 In [Hörcher, 95], an overview of testing based on Z is given, and a technique to 
transform Z operation schemas to DNF is proposed to generate test cases. However, 
the author emphasizes the need to automate test evaluation because of the vast amount 
of data to be processed. Mikk describes a test evaluation tool to support automatic test 
evaluation, by transforming Z schema predicates into executable forms which are then 
compiled to boolean-valued C functions [Mikk, 95]. 
 All of the above works focus on techniques to automate testing from non object-
oriented formal specifications. However, works focusing on testing from object-
oriented formal specifications are relatively fewer. In [Carrington, 94] and [Stocks, 
96], a test template framework has been proposed which uses the Z notation to 
generate test templates. This work has been further extended in [Carrington, 00] for 
specification-based class testing. The authors have shown their proposed framework 
to be flexible and by allowing test generation strategy to be specified. However, their 
framework has not been fully implemented. 
 The above work has also been further extended for object-oriented specifications 
in [Liu, 02]. It is based on ObjectZ notation, and can be partially automated. The 
proposed framework in their work generates a valid input space (VIS) for class 
methods, and applies a strategy on VIS to generate test data. Valid sequences of 
execution of methods are determined by constructing a finite state machine (FSM) for 
the class under test. 
 Legeard and Peureux present a case study on generating test sequences for Smart 
Card GSM 11-11 standard [Legeard, 04]. The test generation method used in the case 
study is based on the B notation, and is implemented in the B Testing Tools. Their 
approach is based on computation of all the boundary states for the B machine (a 
boundary state is defined as a state in which at least one state variable has the 
minimum or maximum value), and generating a test path for each boundary state. The 
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test paths (called preambles) ensure that a boundary state is reached from the initial 
state. The operation to be tested is then invoked from each boundary state and the 
final state is examined. The authors have demonstrated that the test generation method 
gives a wide coverage (compared with manually generated tests) and saves 30% of 
test design time. 
 In contrast to the Legeard and Peureux’s work [Legeard, 04], the TESTAF 
framework presented in this paper supports testing of a message sequence, as well as 
an individual method of the class. When testing an individual method, it is only 
required that the class be in a correct state. The TESTAF achieves this by setting the 
appropriate values for the instance variables, rather than executing the preamble test 
path as in [Legeard, 04]. This approach saves the time required to compute and 
execute the test path. 
 In Legeard and Peureux’s work, the preamble is computed automatically using a 
best-first search algorithm on a constrained reachability graph. A major limitation of 
this approach is that it is based on the assumption of uniformity on the domain of the 
path. Another limitation is that only the first path discovered by the algorithm is used 
as preamble. As there can be multiple paths (possibly infinite) leading to a boundary 
state from the initial state, the single path coverage may not be adequate. The 
TESTAF, in contrast, requires the user to manually specify the test paths to be tested, 
using a formal notation based on regular expressions. This makes the TESTAF more 
flexible, as the user can specify all valid test paths or a subset of it. 
 In [Boyapati, 02], a framework, Korat, has been presented that uses Java 
Modeling Language (JML) predicates to generate the input space, and a Finitization 
class to bound the input state space. The bounded state space is searched and invalid 
objects, that do not satisfy a repOk method, are discarded. The repOK() method 
returns true if an object of the class under test is correctly represented, otherwise it 
returns false. The authors have implemented their proposed framework, and have 
shown it to be efficient and effective, but its main limitation is that it is Java-specific. 
 In contrast, the TESTAF framework is flexible enough to be easily generalized 
for other model-based formal notations and implementation languages. 

3 Architecture of the TESTAF 

The test automation framework consists of four main components (Fig. 1), i.e. 
 

a) configuration matcher 
b) predicate parser 
c) test generator, and 
d) the test driver 

 
 It requires a VDM++ specification, a corresponding implementation, and a test 
specification. The test specification contains valid sequences of operations defined in 
an intermediate language based on regular expressions [Fletcher, 94], and is defined 
manually by the user. To start the testing, the user selects the specification class and 
the corresponding implementation class to be tested. The configuration matcher 
matches the class configuration in VDM++ specification with that of the 
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implementation. The purpose of this step is to match the class name, instance variable 
names, and method signatures in the formal specification with those of the 
implementation. Output of the configuration matcher is a file that contains mappings 
between names used in the specification and the names used in implementation. 
 

 

Predicate 
Parser 

VDM++ 
Specification 

Test 
Results 

Test 
Specification 

Generated 
Code 

Test 
Driver 

Test 
Generator

Implement-
ation 

Symbol 
Table 

Test 
Cases 

Config 
Matcher 

Config 
File 

 

Figure 1: Architecture of the TESTAF 

 The predicate parser constructs a method entry predicate and a method exit 
predicate for each method in the class.  The entry predicate is formed by a 
conjunction of the method precondition and the class invariant predicates. Similarly, 
the exit predicate is a conjunction of the method postcondition and the class invariant 
predicates. The parser then generates C++ code for both entry and exit predicates of 
each method. The generated code for entry predicate is used to filter the input data for 
a method, while the generated code for exit predicate is used to evaluate the results of 
method execution. The parser creates a child wrapper class as a subclass of the CUT 
(class under test), and includes the generated code as public methods in this class. The 
parser also creates a symbol table for the method precondition, which records variable 
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names and their boundary values. This is used by the test generator to generate test 
data. 
 The test generator generates empty test shells from the test specification, and the 
configuration file, which are then filled with test data. The test data are generated 
from the symbol table created by the parser, and filtered by the method entry 
predicate. 
 Finally, the test driver executes the test cases on the implementation by 
instantiating the child wrapper, and evaluates results by executing code for the 
method postcondition and the class invariant. In the following subsections, we 
describe the working of each component of the framework. 
 In this section, we use an IFAD VDM++ specification for a class NNcomplex (a 
simple abstraction of the non-negative complex numbers) and its corresponding 
implementation as a running example to show how the TESTAF generates and 
executes test cases. The VDM++ specification for NNcomplex class and an 
implementation in C++ are shown in Fig. 2 and Fig. 3 respectively. 
 The class invariant (re>=0) & (im>=0) specifies that both real and imaginary 
components of the complex number must be non-negative. Four methods called add, 
subtract, multiply, and divide have been defined for the NNcomplex class, to perform 
the basic arithmetic operations on an NNcomplex object with an integer value. 
 The precondition for each method ensures that the result of operation will be a 
complex object with both real and imaginary components as non-negative. 
Precondition for the divide operation also prevents division of the complex object by 
zero. 

3.1 Matching Specification with Implementation 

In order to generate valid test cases for a class implementation, not only types of its 
attributes and method signatures are required but also names of attributes and 
methods must be known. As the names used in the implementation may be different 
from those used in the formal specification, the test generator must maintain 
mappings between the two to allow test generation from the formal specification. 
 The configuration matcher component of the TESAF is responsible for mapping 
names used in the specification with those of the implementation. This process is 
automated, however the user is allowed to modify or manually create the mappings 
file. 
 The configuration matcher first matches class names, by comparing number and 
types of attributes and method signatures. For instance, class A in specification 
matches with class B in the implementation if both A and B have the same number 
and types of attributes, as well as the same number of methods with matching 
signatures. 
 Class attributes are matched by their types. Likewise, method names are matched 
by their signatures (i.e., number and types of parameters). The table in Fig. 4 below 
shows how configuration matcher matches VDM++ types with those of C++. 
Currently, the TESTAF supports only the VDM++ types shown in Fig. 4. In the 
matching process, C++ type qualifiers (long, short, signed, unsigned) are ignored if 
type name is specified, otherwise the type name is assumed to be int (the default type 
in C++). 
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class NNcomplex 
  instance variables 
    re : real; 
    im : real; 
 
  inv (re>=0) & (im>=0); 
 
  operations 
    init : () ==> () 
    init () == ( re := 0; 
                 im := 0; ) 
 
    add : int ==> NNComplex 
    add(num) == ( re := re+num; 
                  return self; ) 
    pre num >= -re; 
    post re = re~+num; 
 
    subtract : int ==> NNComplex 
    subtract(num) == ( re := re-num; 
                       return self; ) 
    pre num >= re; 
    post re = re~-num; 
 
    multiply : int ==> NNComplex 
    multiply(num) == ( re := re*num; 
                       im := im*num; 
                       return self; ) 
    pre num >= 0; 
    post re = (re~*num) and (im = im~*num);
 
    divide : int ==> NNComplex 
    divide(num) == ( re := re/num; 
                     im := im/num; 
                     return self; ) 
    pre num > 0; 
    post re = (re~*num) and (im = im~*num);
 
end NNcomplex 

 

Figure 2: VDM++ Specification for NNcomplex class 

 The strategy of matching specification with implementation using types of 
attributes and method signatures works well in most cases. However, it may fail if 
two or more attributes in a class have the same type and scope, or two or more 
methods have the same signature and scope. For this reason, the TESTAF prompts the 
user to confirm each mapping before it is saved to the mappings file. Moreover, the 
file is saved in text format, and the user is allowed to modify its contents later. 
 Fig. 5 shows mappings file generated by the configuration matcher for the 
NNcomplex class. 
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class Complex { 
  private: 
    float re; 
    float im; 
 
  public: 
    void init() { 
      re = im = 0; 
    } 
 
    Complex add(int x) { 
      re += x; 
      return this; 
    } 
 
    Complex subtract(int x) { 
      re -= x; 
      return this; 
    } 
 
    Complex multiply(int x) { 
      re *= x; 
      im *= x; 
      return this; 
    } 
 
    Complex divide(int x) { 
      re /= x; 
      im /= x; 
      return this; 
    } 
} 

 
 

Figure 3: Implementation of the NNcomplex class in C++ 
 

 
VDM++ Type 

Mapped to 
(C++ Type) 

bool bool 
int int 
nat int 
nat1 int 
real float, double 
rat float, double 
char char 

quote type enum type 
seq and seq1 types array type 

map type array of struct 
object reference 

type 
object reference 

type 

 
Figure 4: Mappings of VDM++ types to C++ types 
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Figure 5: Mappings identified by the configuration matcher 

3.2 Predicate Parsing 

A formal specification in VDM++ contains pre and post conditions for each method 
of the class under test (CUT). The predicate parser constructs method entry and exit 
predicates for each method by forming a conjunction of method pre and post 
condition predicates with the class invariant predicate, as shown below: 
 
 method_entry_predicate = method_precondition ∧ class_invariant 
 
 method_exit_predicate = method_postcondition ∧ class_invariant 
 
 In addition to the method precondition and class invariant, a method entry 
predicate also includes type constraints. For instance, if an input parameter of the 
method, or an instance variable is of type nat, then it is implicitly implied that its 
value cannot be negative. The method predicates are parsed into parse trees using a 
context free grammar for VDM++ expressions. The TESTAF implements a simple 
LR parser to parse the expressions. 

3.2.1 Generating Code for Method Predicates 

From the parse tree, the parser generates C++ code to evaluate each method predicate. 
The idea of converting a predicate expression into a parse tree and generating C code 
from the tree, has been described in [Nadeem, 04]. The parser produces boolean-
valued C++ functions named classname_methodname_pre() and 
classname_methodname_post() for each method in the CUT. Code generated for the 
Complex class is shown in Fig. 6 below. This code is used by the test generator and 
the test driver to filter the input data, and to evaluate the results, respectively. 
 

class NNcomplex -> Complex 
 
  attributes 
    re -> re 
    im -> im 
 
  methods 
    init() -> init() 
    add(int) -> add(int) 
    subtract(int) -> subtract(int) 
    multiply(int) -> multiply(int) 
    divide(int) -> divide(int) 
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bool Complex_init_pre(float re, float im) { 
  bool result = true; 
  result = result && ((re >= 0) && (im >= 0)); 
  return result; 
} 
 
bool Complex_init_post (float re, float im) { 
  bool result = true; 
  result = result && ((re >= 0) && (im >= 0)); 
  return result; 
} 
 
bool Complex_add_pre(float re, float im, int x) { 
  bool result = true; 
  result = result && (x >= -re); 
  result = result && ((re >= 0) && (im >= 0)); 
  return result; 
} 
 
bool Complex_add_post (float re, float re_old, float im, int x) { 
  bool result = true; 
  result = result && (re == re_old+x); 
  result = result && ((re >= 0) && (im >= 0)); 
  return result; 
} 
 
bool Complex_subtract_pre(float re, float im, int x) { 
  bool result = true; 
  result = result && (x >= re); 
  result = result && ((re >= 0) && (im >= 0)); 
  return result; 
} 
 
bool Complex_subtract_post (float re, float re_old, float im, int x) { 
  bool result = true; 
  result = result && (re == re_old-x); 
  result = result && ((re >= 0) && (im >= 0)); 
  return result; 
} 
 
bool Complex_multiply_pre(float re, float im, int x) { 
  bool result = true; 
  result = result && (x >= 0); 
  result = result && ((re >= 0) && (im >= 0)); 
  return result; 
} 
 
bool Complex_multiply_post (float re, float re_old, float im, float im_old, int x) { 
  bool result = true; 
  result = result && ((re == re_old*x) && (im == im_old*x)); 
  result = result && ((re >= 0) && (im >= 0)); 
  return result; 
} 
 
bool Complex_divide_pre(float re, float im, int x) { 
  bool result = true; 
  result = result && (x > 0); 
  result = result && ((re >= 0) && (im >= 0)); 
  return result; 
} 
 

 
Figure 6: Code Generated by Predicate Parser  

 
 A predicate in VDM++ is a well-formed logical expression that involves 
 

- clauses (relational sub-expressions) 
- universal and existential quantifiers 
- set membership sub-expressions 
- logical connectives 
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 At the present, the TESTAF supports only VDM++ predicates involving clauses, 
set membership sub-expressions, and logical connectives. A quantified expression 
involves evaluation of a boolean expression with multiple bindings of several 
variables. Because of the complexity of converting such an expression to a C++ 
equivalent, we have omitted the quantifiers from the current version of TESTAF. The 
table in Fig. 7 shows C++ expressions generated by TESTAF for various types of 
predicates. 
 

VDM++ Predicate C++ Expression 
a=b a==b 
a<b a<b 
a>b a>b 
a<=b a<=b 
a>=b a>=b 
a<>b a!=b 
not a !a 
a and b a && b 
a or b a || b 
a=>b !a || b 
a<=>b a==b 

a in set S (a==s1) || (a==s2) || (a==s3) ... 
where s1, s2, s3, ... are elements of S 

a not in set S (a!=s1) && (a!=s2) && (a!=s3) ... 
where s1, s2, s3, ... are elements of S 

 
Figure 7: C++ boolean expressions for VDM++ predicates 

3.2.2 Constructing the Symbol Tables 

For each method in the CUT, a symbol table is constructed that stores instance 
variables, method arguments and their boundary values. The boundary values are 
determined from method entry predicates. The test generator uses symbol tables to 
generate test inputs for methods. For the add method of the Complex class, the 
TESTAF generates the symbol table shown in Fig. 8 below. 
 

Var Type Rel. Op. Boundary 
Value 

re float >= 0 

im float >= 0 

x int >= -re 
 

Figure 8: Symbol Table for add() method  

 As the boundary value of x in Fig. 8 is dependent on the value of re, so the test 
generator must first generate test values for the variable re. A variable may have more 
than one boundaries if it appears in more than one clauses of the predicate expression. 
For instance, in the predicate expression (a>10) & (a<20), the variable a has two 
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boundary values, i.e., 10 and 20. For such variables, there are multiple rows in the 
symbol table. 

3.3 Generating Test Cases 

The test generator component of TESTAF is composed of three smaller components, 
i.e. 
 

a) test shell generator 
b) test data generator, and 
c) test case generator 

 
 In this subsection, we describe the working of these components. 

3.3.1 Generating Test Shells 

As the correct behavior of a class method may depend not only on the current state of 
the class object, but also on the correct sequence of messages passed to the object 
[Binder, 99], the TESTAF uses a test specification to determine the valid message 
sequences. However, if the correct behavior of a class is not dependent on its message 
sequences – as is the case in non-modal, or quasi-modal classes [Binder, 99] – then 
the test specification may be omitted. In this case, the TESTAF will independently 
test each method. 
 The test specification contains valid sequences of method calls in an intermediate 
specification language that extends the notation of regular expressions. This 
intermediate language has been described in [Fletcher, 94] and is based on the work 
of [Kirani, 94]. For instance, test specification for the NNcomplex class can be written 
as given in Fig. 9 below. 
 

 SeqSpec(NNcomplex) ⇒ init ⋅ ProcessComplex 
ProcessComplex ⇒ (add, subtract, multiply, divide)* 

 

Figure 9: Test Specification for the NNcomplex class  

 This states that any valid sequence begins with the init method, followed by 
ProcessComplex, where ProcessComplex is any combination involving zero or more 
calls to the methods add, subtract, multiply, and divide. The ⋅ (dot) operator specifies 
that the operations init and ProcessComplex must be invoked in sequence. The * 
operator specifies that the operations add, subtract, multiply, and divide can be 
repeated zero or more times. The test shell generator determines valid test sequences 
from this test specification and constructs test shells. A test shell is a sequence of test 
templates, where a test template consists of a method name followed by its parameter 
types. The test shell generator uses mappings from the configuration file to determine 
method names in the CUT, and saves the generated test shells in a file. 
 The algorithm employed by TESTAF to generate valid message sequences from a 
test specification is given in Appendix A. For instance, the following three test shells 
are constructed from the message sequences generated from the above expression. 
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 BEGIN TEST 1 
  init <> 
  add <int> 
 END TEST 
 
 BEGIN TEST 2 
  init <> 
  add <int> 
  subtract <int> 
 END TEST 
 
 BEGIN TEST 3 
  init <> 
  subtract <int> 
  multiply <int> 
  add <int> 
  add <int> 
 END TEST 

3.3.2 Generating Test Data 

The test data generator determines method inputs for each method in the CUT. 
Method inputs consist of parameters of the method, including the implicit this 
parameter. It uses the symbol table (section 3.2) to generate test values for method 
inputs, and the code for method entry predicate to filter the test values. Using the 
boundary value analysis strategy, the TESTAF generates the following test values for 
the add method (Fig. 10). 
 For instance, for the variable re, the boundary value is 0, therefore the generated 
test values are 0, 1, and 5. While the values 0 and 1 are at the boundary, the value 5 is 
randomly generated from the space re > 1. Similarly, test values are generated for the 
variables im and x. A total of 27 sets of test values are thus formed (Fig. 10) for the 
add method. Each of the generated test sets is then executed on the method entry 
predicate Complex_add_pre() to test if it satisfies method entry predicate or not. The 
unsatisfiable test sets are eliminated. In our example, all 27 test sets are satisfiable. 
Unsatisfiable test sets may result if there are variables with multiple boundary values. 
For variables with multiple boundaries, all boundaries are used to generate test data. 
However, a test set contains only a single value for each variable. The generated test 
data are used by the test case generator to construct the concrete test cases. 

3.3.3 Constructing Concrete Test Cases 

The test case generator is responsible for filling the test data in empty test shells. For 
each input parameter of a method, the test data generator produces multiple test values 
using boundary value analysis. A test set is defined as a set of values of input 
parameters for a method. The test sets for a method are formed by taking a cross 
product of test values for the input parameters. The generated test sets are then filtered 
by executing them on the code for the method entry predicate. 
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 1: re = 0,   im = 0,   x = 0 
2: re = 0,   im = 0,   x = 1 
3: re = 0,   im = 0,   x = 9 
4: re = 0,   im = 1,   x = 0 
5: re = 0,   im = 1,   x = 1 
6: re = 0,   im = 1,   x = 9 
7: re = 0,   im = 8,   x = 0 
8: re = 0,   im = 8,   x = 1 
9: re = 0,   im = 8,   x = 9 
10: re = 1,   im = 0,   x = -1 
11: re = 1,   im = 0,   x = -1 
12: re = 1,   im = 0,   x = -1 
13: re = 1,   im = 1,   x = 0 
14: re = 1,   im = 1,   x = 0 
15: re = 1,   im = 1,   x = 0 
16: re = 1,   im = 8,   x = 12 
17: re = 1,   im = 8,   x = 12 
18: re = 1,   im = 8,   x = 12 
19: re = 5,   im = 0,   x = -5 
20: re = 5,   im = 0,   x = -5 
21: re = 5,   im = 0,   x = -5 
22: re = 5,   im = 1,   x = -4 
23: re = 5,   im = 1,   x = -4 
24: re = 5,   im = 1,   x = -4 
25: re = 5,   im = 8,   x = 6 
26: re = 5,   im = 8,   x = 6 
27: re = 5,   im = 8,   x = 6 
  

Figure 10: Test values generated for add() method  

 For each method in a test shell, the generator generates valid test sets. The empty 
test shells are then filled in with all possible combinations of test sets for its methods, 
to form the concrete test cases. 
 
Accessing private variables 
 
As mentioned in section 3.3.2, the inputs to a method are not only its explicit 
parameters, but also the implicit this parameter, which represents state of the current 
object. When testing a method, the current object’s state may also have to be set by 
setting values of its instance variables. By the principle of encapsulation, the instance 
variables of a class are kept private, so we must add getter and setter methods to the 
class under test to access and modify values of its instance variables. 
 Setting values of instance variables is required only when testing an individual 
method – the object must be in a correct state to accept the message. For example, the 
add message can be accepted only when the real and imaginary components of 
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Complex object have defined values, and are non-negative. However, when testing a 
message sequence, the instance variables are not required to be set. For instance, a 
valid message sequence requires add message to be preceded by init message, which 
will ensure correct object state. 
 The TESTAF framework supports both individual method testing, and a message 
sequence testing. 
 
Testing an individual method 
 
When testing an individual method, the values of instance variables re and im are set 
via setter methods. For instance, to test the add method of Complex class, using test 
values of Fig. 10, the following test cases are generated: 
 
 BEGIN TEST add.1 
  set_re <0> 
  set_im <0> 
  add <0> 
 END TEST 
 
 
 BEGIN TEST add.2 
  set_re <0> 
  set_im <0> 
  add <1> 
 END TEST 
 
 BEGIN TEST add.3 
  set_re <0> 
  set_im <0> 
  add <9> 
 END TEST 
 
 etc. 
 
 The number of test cases increases exponentially if there are methods with 
multiple parameters, because, in such a case, all possible combinations of values of 
parameters are used to generate the test cases. 
 
Testing a message sequence 
 
When testing a message sequence, the object state is not required to be explicitly set – 
the correct state of the object for each method in the sequence is ensured by its 
preceding messages. For the example Complex class, using test values from Fig. 10, 
and test shell 1, the following test cases are generated: 
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 BEGIN TEST 1.1 
  init <> 
  add <0> 
 END TEST 
 
 BEGIN TEST 1.2 
  init <> 
  add <1> 
 END TEST 
 
 BEGIN TEST 1.3 
  init <> 
  add <9> 
 END TEST 

3.4 Test Driver 

For the purpose of testing, a test class can be derived from the CUT as suggested in 
[Turner, 93]. The derived class is called a child wrapper. It inherits all the attributes 
and methods from the CUT. The extra routines required for testing are added to the 
child wrapper class, rather than patching an existing class of the system. The test 
driver instantiates the child wrapper, and invokes its methods to be tested. 
 The TESTAF implements the strategy described above, i.e., it creates a child 
class of the CUT and adds its testing methods. Under this mechanism, the class that 
actually gets tested is the child wrapper rather than the CUT. However, the methods 
under test are actually implemented in the CUT, so they get tested. This strategy relies 
heavily on the programming language’s inheritance mechanism. 
 The child wrapper class contains the following additional methods, used for 
testing: 
 

load(TestCase tc) – used to load a test case from the file; tc is the test case 
number. 

execute()  – used to execute a loaded test case. 
 
 
 The test driver instantiates the child wrapper to create a test object, and then 
executes each test case with the test object. The execute() method of child wrapper 
invokes each method in a test case in sequence. For instance, for the test case 1.3 of 
section 3.3.3, the actual method calls made by execute() are: 
 
  init() 
  Complex_init_post() 
  add(9) 
  Complex_add_post() 
 
 After execution of each method, the method’s exit predicate (described in section 
3.2) is evaluated, and the results are logged in a file. For failed test cases, the 
execute() method also logs values of variables for which exit predicate failed. 
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4 Case Study 

In this section, we present a case study that demonstrates effectiveness of TESTAF 
using an example of specification for an address book that maps names to addresses. 

4.1 Setup for the Case Study 

Setting up the case study for TESTAF requires a VDM++ specification of the CUT, 
an implementation for the CUT, and a test specification for the CUT. In Fig. 11, and 
Fig. 12, we present a VDM++ specification, and an implementation, respectively, for 
the AddressBook case study. 
 

Figure 11: VDM++ Specification for an AddressBook class  

class AddressBook 
  types 
    Name = seq of char; 
    Address = seq of char; 
 
  instance variables 
    book : map Name to Address; 
 
  operations 
    init : () ==> () 
    init () == ( book := {|->}; ) 
 
    insert : Name * Address ==> () 
    insert(name, addr) == 
          ( book := book munion {name |-> addr}; ) 
    pre name not in set dom book; 
    post name in set dom book & 
         book(name) = addr; 
 
    update : Name * Address ==> () 
    update(name, addr) == 
          ( book := book ++ {name |-> addr}; ) 
    pre name in set dom book; 
    post book(name) = addr; 
 
    delete : Name ==> () 
    delete(name) == ( book := {name} <-: book; ) 
    pre name in set dom book; 
    post name not in set dom book; 
 
    lookup : Name ==> Address 
    lookup(name) == ( return book(name); ) 
    pre name in set dom book; 
 
end AddressBook 
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Figure 12: An Implementation of the AddressBook class in C++ 

class AddressBook 
  private: 
    struct AddrBook { 
      char[20] Name; 
      char[50] Address; }; 
 
    AddrBook[100] book; 
    int top;  // keeps track of number of entries in 
              // the address book 
 
  public: 
    void init () { top = -1; } 
 
    void insert(char[] name, char[] addr) { 
      top++; 
      book[top].Name = name; 
      book[top].Address = addr; 
    } 
 
    void update(char[] name, char[] addr) { 
      int i=0; 
      while ((book[i].Name != name)&&(i<=top)) i++; 
      if (book[i].Name==name) 
        book[i].Address = addr; 
    } 
 
    void delete(char[] name) { 
      int i=0; 
      while ((book[i].Name != name)&&(i<=top)) i++; 
      if (book[i].Name==name) { 
        while (i<top) { 
          book[i].Name = book[i+1].Name; 
          book[i].Address = book[i+1].Address; 
          i++; 
        } 
        top--; 
      } 
    } 
 
    char[] lookup(char[] name) { 
      int i=0; 
      while ((book[i].Name != name)&&(i<=top)) i++; 
      if (book[i].Name==name) 
        return book[i].Address; 
    } 
 
end AddressBook 
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 Using the intermediate specification language described in [Fletcher, 94], the 
valid sequences of execution for the AddressBook class were defined by the 
specification given in Fig. 13 below. 
 

 SeqSpec(AddressBook) ⇒ init ⋅ ProcessAddressBook 
ProcessAddressBook ⇒ ((insert ⋅ update* ⋅ delete)* ↔ (lookup)*) 

 
 

Figure 13: Test Specification for the AddressBook class 
 

 This specification is interpreted as follows: a test sequence begins with a call to 
init, followed by ProcessAddressBook, where ProcessAddressBook has two parts: 
 

- the first part (insert ⋅ update* ⋅ delete)* states that every valid processing of 
address book begins with insert operation, which may be followed by zero 
or more calls to update operation, which in turn is followed by an optional 
call to delete – and the whole sequence can be repeated zero or more times. 
The ⋅ (dot) operator specifies that the operations insert, update*, and delete 
can only be invoked in a sequence. A sequence may, however, omit the 
delete operation, or both update* and delete operations. The * operator 
specifies that the operation can be repeated zero or more times. 

 
- the second part consists of the lookup operation, which may be called at any 

time during the first part. The ↔ operator specifies that the operation(s) 
following it can be invoked at any time. The * operator specifies that the 
lookup operation can be called any number of times. 

 
 To summarize, the following constraints are imposed on message sequences that 
can be sent to an AddressBook object: 
 

- every message sequence begins with the init message, and this message can 
be sent only once. 

 
- the lookup message can be sent any number of times anywhere after the init 

message 
 

- in any valid sequence there will be at least as many insert messages as 
delete messages – a delete message can only appear in a sequence if a 
corresponding insert message has appeared. 

 
- update message can appear any number of times, but it must be preceded by 

at least one insert message. 

4.2 Results and Discussion 

The TESTAF read the test specification from a text file, and generated empty test 
shells. Some of the test shells generated by TESTAF are shown below: 
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 BEGIN TEST 1 
  init <> 
  insert <char[], char[]> 
  delete <char[]> 
  lookup <char[]> 
 END TEST 
 
 BEGIN TEST 2 
  init <> 
  lookup <char[]> 
  insert <char[], char[]> 
  insert <char[], char[]> 
  update <char[], char[]> 
 END TEST 
 
 BEGIN TEST 3 
  init <> 
  insert <char[], char[]> 
  lookup <char[]> 
  update <char[], char[]> 
  delete <char[]> 
 END TEST 
 
 The generated test shells were saved. The test generator then generated the test 
data for each method using the symbol table produced by the parser. The boundary 
value analysis strategy was applied to generate the test data. For instance, for the 
delete operation, the precondition is: 
 

name in set dom book 
 
 This states that the value of name must exist in the domain of the map book. For 
character strings, there is no value at the boundary – all values are either in the 
boundary, or out of boundary. So the test generator computes domain of the book, 
then selects a random value from the domain, and assigns to the variable name. For 
the insert operation, the precondition is: 
 

name not  in set dom book 
 
 So, a valid value for name would be any value which is not already in the domain 
of book. Initially, the AddressBook is empty, so the first insert message can accept 
any value for the name parameter. 
 The generated test sets for each method were then filtered by method entry 
predicates, and concrete test cases were formed. The test driver executed all the test 
cases on the implementation and reported no bugs. The results of execution were 
logged in a file. 
 The tests generated and executed by the TESTAF for the case study covered all 
possible message sequences (as specified in test specification) with loop coverage of 
up to two iterations. This is due to the default setting of loop coverage in TESTAF, 
which can be changed if greater coverage of the loops is required. Each message 
sequence was tested with all generated test values. 
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 Increasing the loop coverage exponentially increases the number of test cases, 
since each loop iteration gets tested with all possible test values generated for the 
input variables. Furthermore, an iterative message can appear at multiple positions in 
a message sequence, and there can be more than one iterative messages in a test 
specification, resulting in the generation of multiple message sequences. For instance, 
the message lookup() in the case study can appear anywhere in a message sequence. 
 The boundary value analysis used to generate test values ensures that each 
method is tested at the boundary values of its inputs where there are greater chances 
of errors. However, for the character strings there are no values at the boundaries – 
each value is either in the boundary or out of the boundary. In the AddressBook case 
study, the inputs to all the methods (except the init() method) were character string 
type parameters, which resulted in a significantly lower number of generated test 
cases. This was because only one input value was generated for each input variable. 

5 Conclusion and Future Work 

In this paper, we have presented and demonstrated a framework TESTAF that 
automatically generates test cases from a VDM++ specification, executes the test 
cases on the implementation, and evaluates the results. Test cases for a method are 
generated from a conjunction of its precondition and the class invariant predicates, 
which define the input space of the method. Results are evaluated by evaluating the 
conjunction of method postcondition and the class invariant predicates. 
 The major contribution of this work is the presentation of a framework that 
integrates most of the testing activities, at the unit testing level. The framework allows 
automated testing of a class with minimal human intervention. The TESTAF 
framework uses VDM++ as the specification language, and C++ as the 
implementation language, but its design is flexible enough to allow support for other 
specification and implementation languages in the future. 
 We have tested our framework using various specification/implementation 
classes as the inputs, and found that it effectively generates, and executes test cases. A 
representative case study showing effectiveness of the framework is given in section 4 
of this paper. 
 The quality of specification-based testing is, however, limited by the quality of 
the specification itself. The goal in specification-based testing is to demonstrate that 
the implementation conforms to the specification. However, if the specification is 
incorrect, or does not meet user requirements, then demonstrating that an 
implementation conforms to the specification would not be of much use. Another 
issue pertaining to the specification-based testing is that the functional specifications 
usually describe what the system must do when valid inputs are given (or certain 
conditions are satisfied), but they usually omit a description of what the system 
should do when invalid inputs are given. For this reason, only positive testing can be 
performed. The TESTAF also uses method precondition and class invariant to filter 
the generated test data for a method, therefore only positive test cases are generated. 
 An obvious direction for the future work is to enhance the framework to allow 
testing of class interactions and hierarchies. We believe that the TESTAF can be used 
as a solid foundation for making such enhancements in the future. 

982 Nadeem A., Jaffar-ur-Rehman M.: TESTAF: A Test Automation Framework ...



 

References 

[Atterer, 00] Atterer, R.: “Automatic Test Data Generation from VDM-SL Specifications”; 
Diploma thesis; The Queens University of Belfast, April 2000. 

[Binder, 99] Binder, R.V.: “Testing Object-Oriented Systems: Models, Patterns and Tools”; 
Addison-Wesley Object Technology Series, 1999. 

[Boyapati, 02] Boyapati, C., Khurshid, S., Marinov, D.: “Korat: Automated Testing Based on 
Java Predicates”; ACM ISSTA 2002. 

[Carrington, 94] Carrington, D., Stocks, P.: “A Tale of Two Paradigms: Formal Methods and 
Software Testing”; ZUM ’94, Z User Workshop, Springer-Verlag, pp. 51-68, 1994. 

[Carrington, 00] Carrington, D., MacColl, I., McDonald, J., Murray, L., Strooper, P: “From 
Object-Z Specifications to Classbench Test Suites”; Journal on Software Testing, Verification 
and Reliability, Vol. 10, No. 2, pp. 111-137, 2000. 

[Dick, 93] Dick, J., Faivre, A.: Automating the Generation and Sequencing of Test Cases from 
Model-based Specifications. In Proceedings of FME ’93: Industrial-Strength Formal Methods. 
Pages 268-284, Odense, Penmark, 1993, Springer-Verlag. 

[Fletcher, 94] Fletcher, R. S.: “Testing of Object-oriented Software using Formal 
Specifications”; Masters Thesis, Department of Software Development, Monash University, 
April 1994. 

[Helke, 97] Helke, S., Neustupny, T., Santen, T.: “Automating Test Case Generation from Z 
Specifications with Isabelle”; in proceedings of the 10th International Conference of Z Users, 
1997, Springer-Verlag. 

[Hörcher, 95] Hörcher, H.M.: “Improving Software Tests using Z Specifications”; in 
proceedings of 9th International Conference of Z Users, 1995, Springer-Verlag. 

[IFAD, 99] “VDMTools: The IFAD VDM++ Language”; IFAD, Forskerparken 10A, DK-
5210, Odense M., 1999; http://www.ifad.dk. 

[Kirani, 94] Kirani, S., Tsai, W. T.: “Specification and Verification of Object-oriented 
Programs”; Technical Report, Computer Science Department, University of Minnesota, 
Minneapolis, December 1994. 

[Legeard, 04] Legeard, B., Peureux, F.: “Generation of Test Sequences from Formal 
Specifications: GSM 11-11 Standard case study”; The Journal of Software Practice and 
Experience, Wiley-InterScience, 2004. 

[Liu, 02] Liu, L., Miao, H., Zhan, X.: “A Framework for Specification-Based Class Testing”; in 
proceedings of the 8th IEEE International Conference on Engineering of Complex Computer 
Systems (ICECCS’02), 2002. 

[Meudec, 98] Meudec, C.: “Automatic Generation of Software Test Cases From Formal 
Specifications”; Ph.D. thesis, The Queen’s University of Belfast, May 1998. 

[Mikk, 95] Mikk, E.: “Compilation of Z Specifications into C for Automatic Test Result 
Evaluation”; in proceedings of the 9th International Conference of Z Users, 1995, Springer-
Verlag. 

[Nadeem, 04] Nadeem, A., Rehman, M. J.: “A Framework for Automated Testing from VDM-
SL Specifications”; in proceedings of the 8th IEEE-INMIC Conference (INMIC 2004), Lahore, 
Pakistan, December 2004. 

983Nadeem A., Jaffar-ur-Rehman M.: TESTAF: A Test Automation Framework ...



 

[Stocks, 96] Stocks, P., Carrington, D.: “A Framework for Specification-Based Testing”; IEEE 
Transactions on Software Engineering, vol. 22, no. 11, pp. 777-793, Nov. 1996. 

[Turner, 93] Turner, C. D., Robson, D. J.: “A Suite of Tools for the State-based Testing of 
Object-oriented Programs”, TR-14/92, Technical Report, Computer Science Division, School 
of Engineering and Computer Science (SECS), University of Durham, Durham, England, April 
1993. 

[Van Aertryck, 97] Van Aertryck, L., Benveniste, M., Le Métayer, D.: “CASTING: A Formally 
Based Software Test Generation Method”; Proceedings of the 1st International Conference on 
Formal Engineering Methods (ICFEM’97), 1997. 

984 Nadeem A., Jaffar-ur-Rehman M.: TESTAF: A Test Automation Framework ...



 

Appendix A: Test Sequence Generation Algorithm 
 
The following algorithm is implemented in the TESTAF to generate valid test 
sequences from a test specification. The following points may be noted about the 
algorithm: 
 

- the * operator in a test specification implies that the message (or message 
sequence) can be repeated any number of times in a valid sequence – 
however, in the algorithm, we repeat the message up to two times only, to 
avoid generation of infinite number of test sequences. 

 
- the function insert(TSset1, TSset2) constructs a set of test sequences by 

forming all possible combinations in which test sequences of TSset2 are 
inserted into test sequences of TSset1. 

 
- The + operator in the algorithm is used as separator to separate two 

consecutive messages in a test sequence. 
 
function generateTestSeqs (S : TestSpecification): set of TestSeq { 
  

TSset : set of TestSeq; 
 TSset := [ ]; 
  

if (S is in set of message names) 
 TSset := TSset U S; 

 
 else if (S is of the form S1 , S2) then 
  TSset := TSset U generateTestSeqs(S1) 

U generateTestSeqs(S2); 
 
 else if (S is of the form S1 ⋅ S2) then 
  TSset := TSset U generateTestSeqs(S1) 

U generateTestSeqs(S1+S2); 
 
 else if (S is of the form S1*) 
  TSset := TSset U generateTestSeqs(ε) U generateTestSeqs(S1); 
     U generateTestSeqs(S1+S1); 
 
 else if (S is of the form S1 ↔ S2) { 
  TSset1, TSset2 : set of TestSeq; 
  TSset1 := generateTestSeqs(S1); 
  TSset2 := generateTestSeqs(S2); 
  TSset := insert(TSset1 , TSset2); 

} 
 
 return TSset; 
} 
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