Journal of Universal Computer Science, vol. 11, no. 6 (2005), 1040-1053
submitted: 19/3/04, accepted: 10/2/05, appeared: 28/6/05 © J.UCS

Domain Extenders for UOWHEF: A Finite Binary Tree
Algorithm

Palash Sarkar
Cryptology Research Group
Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road
Kolkata 700108, India
palash@isical.ac.in

Abstract: We obtain a finite binary tree algorithm to extend the domain of a universal
one-way hash function (UOWHF). The associated key length expansion is only a con-
stant number of bits more than the minimum possible. Our finite binary tree algorithm
is a practical parallel algorithm to securely extend the domain of a UOWHF. Also the
speed-up obtained by our algorithm is approximately proportional to the number of
Processors.

Key Words: UOWHF, hash function, binary tree.
Category: E.3, Data Encryption.

1 Introduction

Universal one-way hash functions (UOWHF) were introduced in [5] by Naor and
Yung to prove that secure digital signatures can be based on one-way, 1-1 func-
tions. A UOWHEF is a family of functions {hy }rex for which the following task
of the adversary is computationally infeasible. The adversary has to choose a x
from the domain, is then given a random k € K and subsequently has to find a y
such that x # y but hg(z) = hi(y). Intutively, a UOWHF is a weaker primitive
than a collision-resistant function, since the task of the adversary is more diffi-
cult, i.e., the adversary has to commit to the string = before knowing the actual
hash function hj, for which the collision has to be found. Simon [10] has shown
that there is a oracle relative to which UOWHFs exist but collision resistant
hash functions do not exist. See [6] for a survey on hash functions and [11] for
some properties and reductions between different kinds of hash functions.

The study of UOWHF was later undertaken by several authors. Bellare and
Rogaway [1] showed that it is possible to build practical and provably secure
“hash-then-sign” schemes, where the hashing is done using a UOWHF. The
paper also addresses the problem of constructing UOWHFs. Like most basic
cryptographic primitives it is virtually impossible to define a family {hj}reix
and prove it to be a UOWHEF. The idea suggested in [1] is to use one of the
standard hash functions like SHA or RIPEMD in a keyed mode and assume it

Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm 1041

to be a UOWHEF. It seems more reasonable to make this assumption when the
domain is a short string rather than an arbitrarily long string. This leads to the
question of extending the domain of a UOWHF while preserving the UOWHF
property.

The Merkle-Damgard algorithm [2, 3] is a well known method of extending
the domain of a collision-resistant hash function. However, as shown in [1] this
method does not work in the case of a UOWHF. Several constructions for ex-
tending the domain of a UOWHEF is presented in [1]. These constructions assume
the existence of a UOWHF {hy, }rexc, with hy : {0,1}™ — {0,1}™ and show how
to construct a UOWHF {H,},cp where the input to H, can be a very long
message. The constructions have an associated key length expansion of |p| — |k|.
One of the major goals in extending the domain of a UOWHF is to minimise
the expansion of the key length.

Shoup [9] provides a modification of the Merkle-Damgard algorithm to ex-
tend the domain of a UOWHF. The Merkle-Damgard construction and hence the
Shoup construction is a sequential algorithm. A tree based scheme for extending
the domain of a UOWHF was presented in [1]. For binary trees the scheme can
be used to hash a message of length L = 27 (n —m) — (n—2m) using a full binary
tree of height 7" and 27 — 1 processors, where the base UOWHF takes as input a
message of length n and produces a digest of length m. The key length expansion
made by the algorithm is 2m (7T — 1). In a recent work [7], an improved binary
tree based construction has been presented which makes a key length expansion
of m(T + |log(T —1)]) bits for T' > 2. The main disadvantage of both the above
binary tree algorithms is that the number of processors grows with the length of
the message. See Table 1 in Section 6 for a comparison of different algorithms.

We obtain a binary tree algorithm for which the key length expansion is a
constant number of bits more than the minimum possible. This is made pos-
sible by using a finite binary tree of processors in contrast to [1, 7] where the
height of the binary tree increases with the length of the message. Thus our
algorithm yields a practical parallel algorithm for securely extending the domain
of a UOWHEF. Another important consequence of using a finite binary tree is the
fact that for moderately long messages the speed-up over sequential (Shoup’s)
algorithm is equal to the number of processors. Thus our algorithm makes effi-
cient use of resources. We note that the speed-up obtained in [1, 7] is logarithmic
in the number of processors.

The finite binary tree algorithm is built using ideas from several existing
work. The basic algorithm has been used to extend the domain of a collision
resistant function in [8]. To this algorithm we add the masking techniques of [9]
and [7]. The masking technique of [7] is itself built around the masking tech-
niques of [9] and that of [1]. We show that all these techniques fit together nicely
to provide a correct domain extender for UOWHF's.

1042 Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm

2 Preliminaries

Let {hi}rex be a keyed family of hash functions, where each
hy : {0,1}™ — {0,1}™. Consider the following adversarial game.

1. Adversary chooses an = € {0,1}".
2. Adversary is given a k which is chosen uniformly at random from K.
3. Adversary has to find y such that y # = and hg(z) = hi(y).

A strategy A for the adversary runs in two stages. In the first stage 4815 the
adversary finds the 2 to which he has to commit in Step 1. It also produces some
auxiliary state information o. In the second stage Aﬁnd(a:, k,o), the adversary
either finds a y # x such that hi(z) = hi(y) or it reports failure. Both 484€SS
and Aﬁnd(x,k,a) are probabilistic algorithms. The success probability of the
strategy is measured over the random choices made by A816SS and Afind (z,k,0)
and the random choice of k in Step 2 of the game. We say that A is an (¢, a)-
strategy if the success probability of A is at least e and it invokes the hash
function hy at most a times. In this case we say that the adversary has an (¢, a)-
strategy for {hg}rex. We say that {hi}rex is a universal one way hash family
(UOWHF) if the adversary has a negligible probability of success with respect
to any probabilistic polynomial time strategy.

In this paper we are interested in extending the domain of a UOWHF. Thus
given a UOWHF {hy}reic, with hy : {0,1}™ — {0,1}™ and a positive integer
L, we would like to construct another UOWHF {H,},cp, with H, : {0,1}F —
{0,1}™. We also consider the following situation. Given a UOWHF {hy}rex
where hy : {0,1}" — {0,1}", we construct a UOWHF {H,},ep where H} :
Uz, "{0,1}* — {0,1}™. Since we require n > 2m, we have n —m > m. For
practical applications m is at least 64 bits, hence messages upto length 264 can
be hashed by Hj. This is sufficient for any conceivable purpose.

We say that the adversary has an (e, a)-extended strategy for {H,}pep if
there is a strategy B for the adversary with probability of success at least € and
which invokes the hash function h;, at most a times. Note that H), is built using
hi, and hence while studying strategies for H, we are interested in the number
of invocations of the hash function hy,.

The correctness of our construction will essentially be a Turing reduction.
We will show that if there is an (e, a)-extended strategy for {H,},ep, then there
is an (€1, a1)-strategy for {hy}rei, where a; is not much larger than a and € is
not significantly less than e. This will show that if {ht}rex is a UOWHF, then
sois {Hp}pep.

The key length for the base hash family {hy}reic is [log, |K|]. On the other
hand, the key length for the family {H,},ep is [logs |P|]. Thus increasing the
size of the input from n bits to L bits results in an increase of the key size by an

Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm 1043

amount [log, |P|]—[log, |K|]. From a practical point of view a major motivation
is to minimise this increase in the key length.

3 Known Algorithms

We briefly discuss sequential and binary tree based domain extending algorithms
for UOWHFs.

3.1 Sequential Algorithm

The Merkle-Damgard construction [3, 2] is a well known construction for ex-
tending the domain of a collision resistant hash function. However, Bellare and
Rogaway [1] showed that the construction does not directly work in the case of
UOWHEF. In [9], Shoup presented a modification of the MD construction. We
briefly describe the Shoup construction.

Let {ht}rek, he : {0,1}" — {0,1}™, K = {0,1}¥ be the UOWHF whose
domain is to be extended. Let x be the input to H, with || = n + r(n — m).
We define p = kl|uo||pe1]] - - - ||pi—1 where I =1+ |logr| and p; are m-bit binary
strings called masks. The increase in key length is Im bits. The output of H,, is
computed by the following algorithm. For integer i, define v(i) = j if 2/|i and

2+ .
Algorithm SeqUOWHF
1. Let @ = xo||z1||2z2]| . . . ||z, where |zo] =n and |z;| =n—m for 1 <i <.

2. Define zg = hy(xo)-
3.For 1 <i<r,define s; = z;_1 & pj and z; = hy(s;||z;) where j = v(i).
4. Define z, to be the output of Hy(x).

For the sake of simplicity we do not include an initialisation vector. The function
hi is invoked (r+1) times and the algorithm requires [log,(r+1)] = 1+ |log, r|
masks. This algorithm was initially described in [9] and in [4] it was shown that
the number of masks required is the minimum possible for any such sequential
construction to be correct.

3.2 Tree Based Algorithm

Extending the domain of a UOWHF using a full binary tree of processors have
been considered in the literature [1, 7]. A full binary tree of 27 — 1 processors
numbered P, ..., Pyr_; is used. The length of the message = to be hashed is
|z| = L =2T"1n+ (271 —1)(n—2m). Let T7 = (V, A7) be the full binary tree
of 27 — 1 processors, where Vy = {1,...,27 — 1} and Ar = {(i, [(i/2)]) : 1 <
i < 2T}, We set a; = (i,[(i/2)]) and so Ay = {as,...,a,r_,}. There is a set
M of m-bit masks and a function ¢ : A7 — M, which assigns an m-bit string

1044 Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm

to each arc of Tp. The algorithms of [1] and [7] have the same general form and
differ only in the description of M and . We first describe the general form of
the algorithm.

Algorithm TreeUOWHF

1. Write & = zq||z2]| . . . ||zar_1, where |z1]| = ... = |xor-1_4| =n — 2m
and |zor-1] = ... = |xyr_;| = n.
2.For i =2T-1 ... 2T — 1, do in parallel
Zi = hk(ml)

si = z; ® P(a;).
3.For j =T — 1 downto 2 do
For i = 277! to 29 — 1 do in parallel
zi = h(s2i||s2i41|s)-
si = z; ® P(as).
4. Output hy(s2||ss||z1) as the output of Hy(z).

To complete the description of Algorithm 1 we have to define M and ¢. We do
this separately for [1] and [7].
Bellare and Rogaway [1] : In this case
M = {oy,...;ar_1,51,...,87-1} and ¢(a;) is defined as follows: ¢ (a;) =
aryi—; if i = 0mod 2; and v (a;) = Bre1— if i = 1 mod 2. Here | = level(i),
ie, 2l <i< 2t —1.
Sarkar [7] : In this case M = {aq,...,ar_1,80,...,0r—1} where r = 1 +
[logy (T — 1)) and ¢(a;) is defined as follows: ¥(a;) = By (r41-1) if i = 0 mod 2;
and ¥ (a;) = aryi1—; if i = 1 mod 2. Here again | = level (7).

Note that the Bellare-Rogaway algorithm requires 2(T" — 1) masks whereas
Sarkar’s algorithm requires 7'+ |log, (T — 1) | masks.

4 Finite Binary Tree Algorithm

Let {ht}rer, hr = {0,1}"* — {0,1}™ be a UOWHF whose domain is to be
extended. For our finite binary tree algorithm we require n > 2m. A set of 2!
processors Py, ..., Pyt 1 will be used in the algorithm. Define §(t) = 2tn + (2¢ —
(n —2m) = 2t(2n — 2m) — (n — 2m) and A(t) = 2!=In + 2071 (n — 2m) =
2t=1(2n — 2m). The message = is of length |z| = L. We assume that L > 4(¢).
Otherwise we choose a t' € {1,...,t — 1}, such that L > §(¢') and use only 2¢'
of the 2! processors. We define Z = {0,...,2t"t — 1}, £ = {2t ... 2t — 1}.
We first define three parameters ¢:(L),r:(L) and b (L). If L > 6(t), then
q:(L) and r;(L) are defined by the following equation:
L —6(t) = q(L)A(t) + r¢(L), where ri (L) is the unique integer from the set
{1,...,A(®)}. If L =6(t), then (L) = r¢(L) = 0. Define b:(L) = [(r¢(L)/(2n —
2m))]. We will usually write g,r and b instead of g (L), ri(L) and by(L) respec-
tively.

Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm 1045

The message = is padded with b(2n — 2m) — r many 0’s to ensure that the
length becomes §(t) + gA(t) + b(2n — 2m). The maximum number of 0’s that
are padded is (2n — 2m) — 1 and is independent of the message length. The
algorithm goes through R = g+t + 2 rounds. In round 1, each processor gets an
n-bit substring of the message = as input and produces an m-bit output. Also in
rounds 2 to R and for 2! <4 < 2! — 1, each processor P; gets as input either
an n-bit substring of the message x or the empty string () and correspondingly
produces as output either an m-bit string or the empty string ().

Forl< j < Rand0<i<2~'—1,inround j processor P; reads the outputs
of processors P»; and Ps;4; in round j — 1. Thus the same set of processors is
used in each round. However, for convenience of description of our algorithm, we
will consider R copies of the set of processors, denoted by P; j, 0 < i < 2f—1 and
1 < j < R. Thus we consider a directed graph D = (V, A), where V = {P;; :
0<i<2t-1,1<j<R}and

A= U U {(Pij—1, P j), (Poitr,j-1, Pij)}

0<i<r 1<j<R

where 7 = 2!=1 — 1. Since the outdegree of each vertex of D is at most one,
we label the arcs as 4;; (0 < i <20 —1,1< j < R-1), where 4;; =
(Pi7j7PL(i/2)J,j+1)- For 0 <i < 2t=1 — 1 and 1 <j<R-1,we denote by Zij
the m-bit string which is the output of processor P; ;. It is assumed that z; ; is
associated with the arc A; ;. Let M be a set of m-bit masks and 9 : A — M be
an assignment of these masks to the arcs of the processor graph D = (V, A).
Each of the processors P;; is given a string u;; as input. For 1 < j <

R — 1, define UList; = (ugj,...,ust_1 ;) and U; to be the concatenation of
all the strings in UList;. The strings Uj;’s are obtained from the message and
x =U]|...||Ur-1||Ur, where the lengths of the strings u; ;’s and Ug is defined
as follows. (See [8] for correctness of this formatting algorithm.)
|UR|:{n—2mifb>0;)
0 otherwise.
(n if(j=1)or(2<j<qg+1andié€L);
n ifj=¢+2and 2071 < i< 27 b1
0 if j=qg+2and 2071 + b <i <2
lui il =<0 ifg+2<j<Randie€c/L
n—2mif2<j<qg+2andie€Z
n—2mifg+2<j<Rand0<i<K; —1;
0 ifg+2<j<Rand K; <i<2-'—1.)

\

Here K; = 257! +k,, where s = R—j and ks = L%J For0<i<2i—1

and 1 < j < R—1, the strings z; ;s are either m-bit strings or the empty string.

1046 Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm

If z; ; is an m-bit string, then define
sij = Zi,j ®Y(4ij), (1)

We are now in a position to define the parallel UOWHEF algorithm (PUA).

Parallel UOWHF Algorithm PUAgt,w)
(a) Casel (j=1and 0<i<2'—1):%1=hg(ui).

(b) Case 2 (j>1and 2071 <i<2t—1):
zij = b (uiz) if |ugj| = n;
=) otherwise.
(c) Case 3 (j>1land 0<i<271—1):
Zij = hi (82051 lls2i1,5-1]|wig) if Jui ;] =n —2m;
= 22i,j—1 otherwise.
(d) return zppg.
end PUA

Note that for each j (1 < j < R), all the processors P; ; can operate in parallel
to produce the strings z; ;.

4.1 Definition of M and v

Algorithm PUA depends on the set of masks M and the map ¢ : A — M. Here
we present our set of masks and our definition of 1. Recall that v(i) = j if 27|i
and 2/*1 |4, Also I = level(i) is such that 2/~! < i < 2! — 1. The set of masks M
is the union of two disjoint sets of masks My and M; defined as follows: My =
{mo,...,mc_1}, where c = 1+ |log,(R — 1)]; My = {a1,...,as Bo,---,Bd-1},
where d = 1+ |log,(t — 1)]. Thus |M| =2+t + |log,(R — 1) + [log,(t — 1)].
The assignment of masks to the arcs is defined in the following manner.
V(Aij) =myg ifi=0;

=1 ifi=1mod2, | =level(i);

= Bu41-1y if i >0and i =0mod 2, [= level(i).
The assignment actually consists of two parts. In the first part, arcs of the type
Ap1,A0,2,...,Ag r—1 are assigned masks according to the Shoup algorithm (see
Section 3.1). The rest of the arcs are divided into rounds. Arcs A4; ;, and A4, j,
get the same mask for s > 0 and 1 < j1,j2 < R—1. The arcs for a fixed round are
assigned masks using the algorithm of Sarkar from Section 3.2. Thus the mask
assigment algorithm combines the mask assignment algorithms of [9] and [7].

4.2 Definition of {Hp}pep

The UOWHF family {H,},ep is defined from the hash family {ht}rex using
algorithm PUA(t, z) in the following manner.

H,(z) = PUA(t, z). (2)
Here p = k|| M, where M is the concatenation of all the masks used by PUA(t, z).

Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm 1047

4.3 Coping with Different Size Trees

The output of H,(z) depends on the parameter ¢ which is the depth of the pro-
cessor tree. Thus the output can be correctly recomputed only if the receiver has
access to a binary tree of 2¢ processors. This is clearly an undesirable situation.
The way out of this situation is to have an algorithm where it is possible to
simulate a binary tree of 2! processors with a binary tree of 2t" processors for
any t' in {0,...,t — 1}. In fact, it is possible to perform such a simulation. For
collision resistant hash functions the simulation algorithm has been presented
in [8]. The same algorithm will also work in the case of UOWHEF. Hence we do
not present the simulation algorithm in this paper.

4.4 Speed-Up Over Sequential Algorithm

The number of invocations of hj depends on the length of the message length L.
Let (L) denote the number of invocations of hy, for a message of length L. Then
(L) = (L + bs(L)(2n — 2m) — r¢(L)). The value of n(L) has been computed
in [8] and is given by n(L) = (¢(L) + 2)2" + 2b;(L) — 1. The same value also
applies to the present case.

As shown in [8], n(L) is also the number of invocations required in the se-
quential algorithm. The number of parallel rounds is ¢;(L) + ¢ + 2. Hence com-
pared to the sequential construction, the tree construction is faster by a factor

_ L) _ (g+2)2'42b—1 20(qg+2) ot
of SF = qz_(t+)2 =l q)-|-t+2 .Ifb > 0, then SF > q_f_q2+t) =0 The param-

eter ¢ grows linearly with the length of the message whereas ¢ is fixed. Hence
for moderately large messages, the speed-up is almost linear in the number of

processors.

5 Security Reduction for {Hp},cp

Theorem 1. If there is an (e, N)-extended strategy for {Hp}pep, then there is
an (ﬁ,N + 2n(L)) strategy for {hi}rex, where hy : {0,1}" — {0,1}™ and
H, : {0,1} — {0,1}™. Consequently, if the family {hy}rex is a UOWHF, then
the family {Hp}pep is also a UOWHF.

Proof. Our proof is a reduction. We assume that there is an (e, a)-extended
strategy B for the family {Hp},ep and construct an (ﬁ, N + 2n(L)) strategy
A for the family {hy}rei. Thus if {Hp}pep is not a UOWHF then {ht}rex is
also not a UOWHEF. The contrapositive of this statement gives us the desired
result. We now turn to the actual reduction. The strategy A has two parts,

A8uess and Afind The algorithm A8U€SS is as follows.

1. Run B&UeSS to obtain a string x of length L and state information o .

1048 Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm

2. Randomly choose an I,J (0 < T <2 —1,1<J < R) such that
the string ur j # ().

3.1If |ur, 7| = n, then set w = ur, ;.

4.1f |ur,7| = n — 2m, then randomly choose two m-bit strings wo, w1
and set w = wol|w1||ur,J.

5. Output string w and state information o = (01,1, J).

After ABY®SS produces an n-bit output w, the adversary is given a random k € K.

Now the adversary runs the algorithm Afind given below.

1.If I and J are such that |ur j| = n, then define all the masks in M
randomly.
2.If I =0, then run mask defining algorithm MDEF 1 to define all
the masks in M.
3.If I > 0, then run mask defining algorithm MDEF 2 to define all
the masks in M.
4.Let M be the concatenation of all the masks in M and set p = k|| M.
5. Run Bﬁnd(a:,p, 01) to obtain string z'.

6. Run algorithm PUA on z' and store all the intermediate values
0.3
7.If lurg| =n, w =wury #uj ; and 21 5 = 2} ;, then

ug 5, 2 ; and s ;.
return uy,y and uf ;.

8.1f |ur g| =n — 2m, w = wol|wi||ur s # SI21,J71||SI2[+1,J71||UII,J and
21,0 = Z},J,
then return w and sb; ; (|85, 7 1 ||u] ;-

9. Else return failure.

The task of the mask defining algorithms is to define the masks so that the
input to processor Pr ; is the string w. If |ur s| = n, then w = ur ; and so
the masks are defined randomly. On the other hand, if |ur ;| = n — 2m, then
w = wo||w1||ur,y, where wy and wy are m-bit random strings. In this situation,
we would like to have wy = s27,7—1 and w; = s2741,7—1. However, the algorithm
pfind produces the string = before knowing the key p. The key p can only be
determined after the key k& becomes known. Thus after & is revealed, the masks
in M are defined so that wy = sor, ;-1 and w; = Sar41,7-1. The key for the
algorithm Bfi"d is then determined to be k|[M. While defining the masks we
must ensure that each mask is chosen according to the uniform distribution on
the set of m-bit strings. We now describe the two mask defining algorithms.
The algorithm MDEF 1 does the following. First it randomly defines the
masks ay,...,a; 1. Then it does a partial run of the algorithm PUA in the
following manner. It operates each processor P; ; for i > 0 and 1 < j < R. (Note
that since the masks my,...,m.—1 are as yet undefined, it is not possible to
operate Py ; for any j.) This partial execution of the algorithm defines all the

Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm 1049

strings z; 5 for 1 < J < R. MDEF 1 now defines ay = w1 ® z1,5_1. Once oy is
defined, all the strings s; ; can be defined, since s1 ; = 21,; B Y(A41,j) = 2i; P .
Now we consider the operation of Py 1, Po2, . .., Po,r to be a sequential operation.
FOI'j > 1, the inputs to P()J' are sg,j—1,51,j—1 and Uuo,j- Of these the inputs S1,5—1
and ug ; are already known. So we have to define the inputs sg ;1 for j > 1.
Moreover, we have to ensure that sg ;1 = w;. This is exactly the problem for the
sequential construction of UOWHF given in Section 3.1. Now the mask defining
algorithm presented in [4] is used to correctly define the masks myg,...,m._1.

The first step of Algorithm MDEF 2 is to randomly define the mask a; and
the masks my, ..., mq—1. Let L = level(I). There are two cases to consider: (a)
L < J and (b) L > J. We first describe Case (a).

In Case (a) we have L < J and no processor P;; with j < J — L will
be used in defining the masks in My \ {at}. In this situation, for i > 1, we
merge all processors P; ; for J — L < j < J into a single processor P;. Then the
algorithm becomes the binary tree based UOWHF algorithm of Sarkar described
in Section 3.2. The mask defining algorithm of [7] is used to properly define the
masks in this case.

In Case (b), it will not be possible to descend L steps in the tree starting from
Pr y. After J steps we will reach round 1. The mask defining algorithm of [7]
uses the algorithm of [4] along certain paths in the full binary tree. In this case
such paths will not be complete. However, it is not difficult to verify that this
makes the task of mask definition easier. The details are quite straightforward
and hence are omitted.

Thus in both Cases (a) and (b) it is possible to properly define the masks
in the set M. Further, any mask is either chosen to be random or is obtained
by XOR with a random string. Hence each mask is chosen independently and
uniformly at random from the set of all m-bit strings, which shows that M is a
random string.

To complete the proof we need to lower bound the probability of success.
Supppose that = and 2’ produce a collision for H,. Then using a backward in-
duction it is possible to prove that for some I, J;, processor Py, ;, must produce
a collision for hy. (Details of this backward induction for collision resistant func-
tion can be found in [8].) The probability that (I,.J) = (I, Jy) is ﬁL) Since the
probability that z and ' provide a collision for H,, is at least ¢, it follows that
the success probability for finding a collision for hy is at least n(fL). Strategy B
invokes hy, at most N times and strategy A invokes hy at most 27(L) additional
times. a

6 Comparison to Previous Algorithms

In Table 1 we compare the performance of the different known algorithms with
PUA. The comparison is for messages of length L = 27 (n —m) — (n — 2m) with

1050 Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm

Parameter |Seq. [9]| [1] [7] PUA
processors| 1 2T —1 2T —1 2t

masks T |2(T —1)|T + [log(T — 1)]|~ I'(T,¢t)

speed-up 1 % % A(T,¢)

Table 1: Comparison of domain extenders for UOWHF. Here I'(T,t) =T + 2 +

Llog(t — 1)) and A(T,t) = gy

T > 2. The parameters n and m are constant and hence L grows as T' grows. For
the purpose of comparison we assume that Algorithm PUA uses 2! processors
where t is a constant less than T'—1. Table 1 clearly shows the superiority of PUA
over previous binary tree algorithms in terms of key expansion and efficiency of
speed-up.

6.1 Comparison of Key Length Expansion

The key length expansion is m times the number of masks used. Hence it is
sufficient to compare the number of masks used by the different algorithms.
First we compare the number of masks used by Algorithm PUA to the number
of masks used by Algorithm SeqUOWHF.

Theorem 2. Let x be a message of length L and Ny be the number of masks
required by Algorithm PUA to hash x. Further, let No be the lower bound on the
number of masks required by any algorithm in A to hash x. Then

t—2 t—1
log({1+ ——= | <Ny —Ny—|log(t—1)] <2+e+log|l+ ——
s (1+523) < - liogte - 1) s(1+255)

where € K 1, and t is the height of the binary processor tree used by PUA.

Proof. From Section 4.1, we have Ny =2+t + |log(R — 1) + [log(t — 1)].

For Algorithm SeqUOWHF, the number of masks used is Ny = 14 |log(r—1)],
where r is the number of times the hash function hj is invoked. The number
of times the hash function hy is invoked by PUA is n;(L) = (¢ +2)2¢ +2b — 1
(see Proposition 4.4). Also it has been proved in [8] that this is the number
of times the hash function hy will be invoked by SeqUOWHF. Hence Ny =
1+ [log(n:(L) — 1)]. Thus

Ny — Ny =(2+t+ [log(R—1)]|log(t —1)])
—(1 + [log(m(L) — 1)])
=(2+t+ [log(g+t+1)] + [log(t —1)])
—(1+ [log(2'(q +2) +2b—2)])

Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm 1051

The parameter b is either 0 or equal to [5—=5—], where r ranges from 1 to
A(t) = 2071 (2n—2m). Hence 0 < b < 2!71. Thus we have 1+ |log(2!(¢+2)—2)| <
Ny <1+ |log(2%(q + 3) — 2)]. From this we get log(2f(q +2) —2) < Na < 1+
log(2!(g+3)—2). We can write this as t+log(¢g+2)—e < Ny < t+1+log(g+3)—0
where ¢ = —log(1 — m) and o = —log(1 — m) Clearly, ¢,0 < 1.
Thus we have

1+ |log(g +t+1)] —log(g+3)+0 < Ny — Ny — [log(t —1)]

and
N1 — Ny, — [log(t—1)] <2+4¢+ [log(g+t+1)] —log(g+2).

This gives

log <1+ ;T?%) <Ny — Ny —|log(t—1)| <2+¢+log <1+2—+;>
which is the required result. O

The height ¢ of the binary tree is independent of the message length and
is a constant for a particular implementation. For moderately long messages,
Algorithm PUA requires at most |log(t — 1)] + 2 more masks than the minimum
possible number of masks. Consequenly PUA makes only a constant amount of
key length expansion compared to the best algorithm in the class A.

We now compare the number of masks used by PUA to the number of masks
used by TreeUOWHF. For TreeUOWHF we use the mask assignment procedure
used by Sarkar [7] (see Section 3.2) and not the assignment procedure used by
Bellare and Rogaway [1]. This is because the number of masks required in the
first case is less than the number of masks required in the second case.

Theorem 3. Suppose = is a message of length L = 27 (n —m) — (n — 2m) and
TreeUOWHF uses a processor tree of height T > 2 to hash x. Suppose PUA is
used to hash x using a processor tree of size t < T — 1. Let A and B be the
number of masks used by TreeUOWHF and PUA respectively. Then A — B >
[log(T — 1)] — [log(t — 1)] — 2 — [log(1 + £7%)]
Proof. The number of masks used by TreeUOWHF is A = T + |log(T — 1)]
for T > 2 (see [7]). The parameters ¢ and r of PUA are determined as follows:
L—6(t) = (2T =2 (n—m) = ¢2!(n—m) +r, where ¢ = 27"t —3 and r = A(2).
The number of masks required by PUA is B = 2+t+ [log(t—1) |+ [log(g+t+1)| =
2+t+ |log(t—1)| + [log(2T=t +t —2)].

Note that log(27 "+t —2) =T — t +log(1 + #r=). Using this in B, we get
the required result. O

Note that the parameter T' grows with the length of the message while ¢ is
a constant. Hence the difference A — B grows with the length of the message,
which means that compared to TreeUOWHF, algorithm PUA becomes more and
more efficient as the length of the message grows.

1052 Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm

7 Variable Length Inputs

Given a UOWHF {h}rex, where hy : {0,1}" — {0,1}"™, we construct a
UOWHF {H;},ep, where H* : U {0,1}* — {0,1}™. This can handle vari-
able length messages with maximum length 2"~™. Since we require n > 2m,
we have n —m > m. Practical digests must be at least 64 bits long and hence
{H}}pep can handle messages of maximum length 2% which is sufficient, for any
conceivable purpose. We note that [1] provides a method for tackling variable
length inputs based on the use of two keys.

The definition of {H}},cp is based on Algorithm PUA. Suppose Algorithm
PUA uses a binary processor tree of height ¢ and a set of masks M to extend
the domain of a UOWHF {hy }rex. Let M be the concatenation of all the masks
in M. Let p = k||M and let = be a message of maximum length 27~™. Then
{H}pep is defined in the following manner:

H(x) = hi(PUA(E, 2)|[bing, —m (|2])), (3)

p

where bing (i) denotes the k-bit binary representation of i, 0 < i < 2¥. The idea
is to compute the output z of PUA(t, z), concatenate |z| as an (n —m)-bit binary
number to z and apply Ay to the resulting n-bit string w.

Theorem 4. Let A be an (¢, N)-extended strategy for {H, }pep, with

H: U2, " {0,1} = {0,1}™.

p

Then there is an (', N + N'+2)-strategy B for {hy}rek, where € > W and

N'" < n(2"~™). Consequently, if {hi}rex is a UOWHEF then so is {H}pep.

Proof. We have to describe the two stages of the adversarial strategy B for
{hi}rex. The Algorithm B8YeSS ig sgame as B8Y®SS in the proof of Theorem 1.
B8UESS first invokes ABY®SS to obtain a string z of length L < 2"~™ and then
outputs an n-bit string v and some state information s. The adversary is then
given a random k € K. Now the algorithm Bfind has to be described. The first
task of BN is to define the masks in M as in the proof of Theorem 1. Then
p = k|| M is the key for the hash function Hy. Bfind now invokes AN with =
and p to obtain a string x’. Suppose and ' provide a collision for H; with
probability at least e. If |x| # |z'|, then bin,_,,(|z]) # bin,_n(|2'|) and we
immediately have a collision for hj. On the other hand, if || = |2, then as in
the proof of Theorem 1, we obtain a collision for h; with probability at least
ﬁL). Also the number of times hy, is invoked is at most IV plus twice the number
of times hy is invoked to compute H,. The number of times hj, is invoked to
compute H, is equal to one plus the number of times Ay, is invoked by Algorithm
PUA(t, z) which is equal to 1 4+ n(L). This gives us the required result. O

Sarkar P.: Domain Extenders for UOWHF: A Finite Binary Tree Algorithm 1053

References

10.

11.

M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHF's
practical. Proceedings of CRYPTO 1997, pp 470-484.

I. B. Damgard. A design principle for hash functions. Lecture Notes in Computer
Science, 435 (1990), 416-427 (Advances in Cryptology - CRYPTO’89).

R. C. Merkle. One way hash functions and DES. Lecture Notes in Computer
Science, 435 (1990), 428-226 (Advances in Cryptology - CRYPTO’89).

I. Mironov. Hash functions: from Merkle-Damgard to Shoup. Lecture Notes
in Computer Science, 2045 (2001), 166-181 (Advances in Cryptology - EURO-
CRYPT’01).

M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
aplications. Proceedings of the 21st Annual Symposium on Theory of Computing,
ACM, 1989, pp. 33-43.

B. Preneel. The state of cryptographic hash functions. Lecture Notes in Computer
Science, 1561 (1999), 158-182 (Lectures on Data Security: Modern Cryptology in
Theory and Practice).

P. Sarkar. Construction of UOWHF: Tree Hashing Revisited. TACR e-print server,
2002/058, http://eprint.iacr.org.

P. Sarkar and P. J. Schellenberg. A Parallelizable Design Principle for Crypto-
graphic Hash Functions. JACR e-print server, 2002/031, http://eprint.iacr.org.
V. Shoup. A composition theorem for universal one-way hash functions. Proceed-
ings of Eurocrypt 2000, pp 445-452, 2000.

D. Simon. Finding collisions on a one-way street: Can secure hash function be
based on general assumptions?, Lecture Notes in Computer Science - EURO-
CRYPT’98, pp 334-345, 1998.

D. R. Stinson. Some observations on the theory of cryptographic hash functions.
TACR preprint server, http://eprint.iacr.org/2001/020/.

