
Model Checking, Automated Abstraction, and

Compositional Verification of Rebeca Models

Marjan Sirjani
(Department of Electrical and Computer Engineering

University of Tehran
Karegar Ave., Tehran, Iran

and
School of Computer Science, IPM, Niavaran Sq., Tehran, Iran

msirjani@ut.ac.ir)

Ali Movaghar
(Department of Computer Engineering

Sharif University of Technology
Azadi Ave., Tehran, Iran

and
School of Computer Science, IPM, Niavaran Sq., Tehran, Iran

movaghar@sharif.edu)

Amin Shali
(Department of Electrical and Computer Engineering

University of Tehran
Karegar Ave., Tehran, Iran

shali@ece.ut.ac.ir)

Frank S. de Boer
(Department of Software Engineering

Centrum voor Wiskunde en Informatica
Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands

f.s.de.boer@cwi.nl)

Abstract: Actor-based modeling, with encapsulated active objects which communi-
cate asynchronously, is generally recognized to be well-suited for representing concur-
rent and distributed systems. In this paper we discuss the actor-based language Rebeca
which is based on a formal operational interpretation of the actor model. Its Java-like
syntax and object-based style of modeling makes it easy to use for software engineers,
and its independent objects as units of concurrency leads to natural abstraction tech-
niques necessary for model checking. We present a front-end tool for translating Rebeca
to the languages of existing model checkers in order to model check Rebeca models.
Automated modular verification and abstraction techniques are supported by the tool.

Keywords: actor model, reactive systems, model checking, modular verification, ab-
straction techniques.

Category: D.2.2, D.2.4

Journal of Universal Computer Science, vol. 11, no. 6 (2005), 1054-1082
submitted: 25/8/04, accepted: 4/6/05, appeared: 28/6/05 © J.UCS

1 Introduction

Formal verification approaches are used to ensure the correctness of concurrent
and distributed systems. A formal verification approach involves a behavioral
model to represent the behavior of the system, a specification language to em-
body the required properties, and an analysis method to verify the behavior
against the required properties [35, 18].

A behavioral model can be described by a modeling language or a program-
ming language. Modeling languages provide a high level, abstract description
language for designing software systems. As modeling languages do not need to
be implemented, they allow various degrees of formality. For example, UML de-
finitions [6] themselves do not provide a rigorous formal semantics. In practice,
their formal semantics is given by various tools supporting UML [20]. On the
other hand modeling languages like CSP [28], CCS [40], and I/O Automata [32]
come with a formal semantics which is used for analysis, like FDR [43] which
supports CSP. In general, existing modeling languages are often rather mathe-
matical and therefore difficult to use for software engineers, or, on the contrary,
rather informal, where supporting tools provide the formal semantics of at least
a subset of the language.

On the other hand, programming languages are associated to an execution
platform and are used for implementing and executing software systems. For
example, the Bandera Tool Set [1], and the Java PathFinder [26] are used to
analyze Java programs, whereas C programs can be analyzed by SLAM [4] and
MAGIC [17]. But programs implementing real systems are usually too heavy
and detailed, and applying formal verification approaches on the concrete level
is impossible. Hence, different abstraction techniques on both data and control
are needed to make the analysis process possible [22].

We also distinguish verification modeling languages, which are designed with
the intention of verifying software systems, like Promela [5] and SMV [2]. As
such they require a formal semantics on which the analysis process is build up. In
general, these modeling languages are designed to be suitable for applying model
checking techniques and are not necessarily based on a software development
paradigm. They are sometimes used as target languages for abstractions which
are generated from other modeling or programming languages, like in Bandera
Tool Set [1], and the Java PathFinder [26].

Most of the modeling languages require an explicit mapping between different
levels of abstractions: We either need to move to a higher level of abstraction
to analyze an executable program, or given a verified but abstract model, we
need to do some refinements to derive an executable program. Apart from the
problems which are raised by the difference in abstraction level of the model-
ing, programming, and verification modeling languages, there are also problems
in analysis processes. Two basic methods of analysis are model checking and

1055Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

deductive methods. Typically, model checking is performed by a software tool,
performing an exhaustive simulation of the model on all possible inputs and then
applying some analysis on it. In a deductive method, the problem is formulated
as proving a theorem in a mathematical proof system, and the modeler attempts
to construct the proof of the theorem, usually using a theorem prover as an aid.

Deductive methods need a high interaction with theorem provers and hence a
high expertise. Model checkers suffer from the state explosion problem, when the
number of system components grows. Property preserving abstractions, and also
compositional verification techniques are proposed as a solution. In abstraction
techniques we mainly ignore some of the details, and for that we somehow prove
that these details would not affect the properties which are of our interest. In
compositional verification techniques we use the conventional divide and conquer
strategy, to decompose the system into components, verify their properties, and
deduce the property of the system from the properties of its constituents. There
are some tools which support abstraction techniques, like Bandera [1] and the
tool explained in [29], and some which support special kind of compositional
verification, like Mocha [11].

In this paper we discuss an actor-based modeling language Rebeca (Reactive

Objects Language) which has a formal foundation, presented in [48, 51]. This
formal foundation provides a reference model for concurrent computation, based
on an operational interpretation of the actor model [27, 7]. Reactive systems
are modeled in Rebeca as a set of reactive objects (called rebec for reactive
objects), which are executed concurrently. Rebecs are encapsulated objects with
no shared variables and are instantiated from reactive classes. Communication
between rebecs are by asynchronous message passing. This model of reactive
systems makes Rebeca in particular suitable to serve as a platform for developing
object-based concurrent systems in practice.

Rebeca is also supported by Rebeca Verifier tool, as a front-end, which trans-
lates Rebeca codes into languages of existing model-checkers and thus, allows to
verify their properties [50, 49, 53]. Rebeca Verifier is an environment to create
Rebeca models, edit them, and translate them into SMV [2] or Promela [5]. Also,
the user can enter the properties to be verified at the Rebeca code level. The
temporal logic supported by the tool for specifying the properties is based on the
specification language of the back-end model checkers. The output code can be
model checked by NuSMV [2] or Spin [5] respectively. Modular verification and
abstraction techniques [11, 10, 30] are used to reduce the state space and make
it possible to verify complicated reactive systems. Based on a Rebeca model,
one can choose a subset of reactive objects in the model as a component. The
tool then automatically generates the component model, as a Rebeca model,
which can be translated to SMV and/or Promela as well. To build the compo-
nent model out of components, a general environment is simulated by allowing

1056 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

all possible interactions.

Figure 1: Rebeca: language, theory and the Rebeca Verifier tool

Figure 1 is a block diagram showing the language, verification approach, un-
der lined theories, and tool features, together with their relationships. In this

1057Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

paper our focus is on the tool and our experimental results. Interesting work has
been done on formalizing the actor model [9, 36, 55, 25], and there are other con-
current models supported by tools for modeling and verifying reactive systems,
but to the best of our knowledge little is done about the formal verification of
the actor model and automating it.

Outline of the paper. In the following section, we discuss the related work. Sec-
tion 3 explains Rebeca, its syntax and semantics, and the compositional verifi-
cation approach applied on it. Section 4, shows the architecture and implemen-
tation of Rebeca Verifier, the mapping algorithm to SMV and Promela and an
overview of abstraction and modular verification approach. A simple example is
used through the paper to explain Rebeca models, our approach in compositional
verification, and using the tool. More case studies and experimental results are
shown in Section 5. Section 6 is a short conclusion and an overview of our future
work.

2 Related Work

The NASA’s Java PathFinder [26] is a translator from a subset of Java to
Promela [5]. Its purpose is to establish a framework for verification and de-
bugging of Java programs based on model checking. The Bandera Tool Set [1] is
an integrated collection of program analysis, transformation, and visualization
components designed to allow experimentation with model-checking properties
of Java source code. Bandera takes Java source code and a specification written
in Bandera’s temporal specification language as input, and it generates a pro-
gram model and specification in the input language of one of several existing
model-checking tools including SMV, Spin, and Java PathFinder. SLAM [4] is
a Microsoft’s project for verification of C programs and debugging software via
static analysis. These tools in principle can be applied directly to the verifica-
tion of the actual implementation. However in practice such verification is only
possible after an application of certain various abstraction techniques [4, 15].
A methodology supported by a tool MAGIC is presented in [17], to verify C
programs against finite state machine specifications. The approach is composi-
tional, trying to decompose the verification of large systems into subproblems of
manageable complexity.

In [29], the implementation of a tool is described which translates SDL-
specificationsto DTPromela (the discrete time extension of Promela). They as-
sumed that the system is working in a timed chaotic environment, and they
used some abstraction techniques to embed the environment into system. The
abstraction techniques are similar to our method in the compositional verifica-
tion approach.

1058 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

RML (Reactive Module Language) [13], proposed by Alur and Henzinger, is a
formal modeling language based on shared variables and synchronous computa-
tion. RML is supported by the model checker Mocha [11] and a subset of linear
temporal logic is used to specify its properties. RML supports compositional
design and compositional verification approach which is assume-guarantee.

Process algebras, such as CCS [38] and CSP [28], are modeling languages
for communicating concurrent systems. Process-algebra terms serve as denota-
tions of specifications and implementations alike, and the correctness is typi-
cally proved by showing that an implementation refines a specification. FDR
(Failures/Divergences Refinement) is the proof and analysis tool for CSP [43].
Input-output automata for modeling asynchronous distributed systems [33, 34]
are introduced by Lynch and Tuttle. They showed how to construct modular
and hierarchical correctness proofs for their models.

Object-oriented modeling languages are proposed for representing reactive
and concurrent systems. Actor model and POOL (Parallel Object-Oriented Lan-
guage) [14] are two examples of these languages. Actor model is assumed as the
first agent-based language introduced by Hewitt [27], and then developed as a
functional concurrent object-based language [7, 9]. Actor model is powerful in
modeling [39] and rich in theory [55, 54]. There are works done on reasoning
about actor [44] and POOL models [21], but as far as we know, there is hardly
any work on the tool-supported formal verification of these models.

Rebeca is a modeling language based on the powerful yet simple paradigm of
actor model. Rebeca is developed to be a ”verify while design language”, inherit-
ing the modeling power of actor model, and also incorporating some abstraction
techniques in the semantics to make the analysis process more efficient. Rebeca
is an operational interpretation of actor, with a java-like, object-based syntax
which makes it easy-to-use for software engineers in modeling and also offer a
simple refinement strategy. The naturally decomposable model and independent
modules can be exploited in formal verification and model checking.

3 Rebeca

The actor model is proposed as a model of concurrent computation in distrib-
uted, open systems. Actors have encapsulated states and behavior; and are ca-
pable of changing behavior, creating new actors, and redirecting communication
links through the exchange of actor identities. The actor model was first ex-
plained as a simple functional model [7, 8, 9], but several imperative languages
have also been developed based on it [42, 58, 57].

Rebeca [48, 52] is an actor-based language, with independent reactive objects,
communicating by asynchronous message passing, and using unlimited buffers
for messages. Our objects are reactive and self-contained. We call each of them

1059Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

a rebec, for reactive object. Computation takes place by message passing and
execution of the corresponding methods of messages. Each message specifies a
unique method to be invoked when the message is serviced. Each rebec has an
unbounded buffer, called a queue, for arriving messages.

Each rebec is instantiated from a class and has a single thread of execution.
We define a model, representing a set of rebecs, as a closed system. It is com-
posed of rebecs, which are concurrently executed, and are interacting with each
other. When a message is read from the queue, its method is invoked and the
message is removed from the queue. Note that reading messages, thus, drives
the computation of a rebec. Rebecs do not provide an explicit control over the
message queue. We consider the execution of a method atomic. Sending a mes-
sage within a method execution is not considered to be a transition, per se. This
leads us to coarse grained transitions. Note that this coarse-grained granularity
of the interleaving of methods is compatible with the asynchronous nature of the
communication of Rebeca, which does not contain suspending communication
primitives (e.g. a possibly suspending receive state). It also reduces the state
space and makes the model simpler.

3.1 Syntax

The syntax for reactive classes (reactive-object templates), rebecs (reactive class
instantiations), and models (parallel composition of rebecs) is presented in Fig-
ure 2. The syntax of a <reactiveclass> definition is similar to Java, except for
the definition of <knownobjects>. The rebecs included in the <knownobjects>

part of a reactive class, are those rebecs to which this reactive class may send
messages. Figure 3 is an example of a Rebeca model.

After declaring the known rebecs, a list of reactive class fields are declared in
<statevars> part. Then the methods, which may themselves contain local vari-
ables, are defined as message servers. Variables are typed, and method declara-
tions follow a standard syntax. Unlike Java, methods have no return mechanism
and therefore no return type. The core language for statements (<statement>)
allows the remote method invocation requests (<mir>) which are sending mes-
sages, assignments (<assignment>), if-statements (<conditional>), object cre-
ation (<create>), and sequential composition.

In <mir>, after specifying the receiver id, the method name and actual para-
meters are included. This can be viewed as a message consists of the receiver id,
message id and the parameters passed to the receiver. Although not mentioned
explicitly in the message, the sender passes its rebec identity (self) to the re-
ceiver. Sender and receiver may be the same rebec, modeling local calls (sends
to self).

It is required that every reactive class definition has at least one method
named initial. In the initial state of the system, each rebec has an initial message

1060 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

<model> ::= <reactiveclasses>
<main>

<reactiveclasses> ::= {<reactiveclass>}+
<reactiveclass> ::=

reactiveclass <reactiveclassName>’(’<queueLength>’)’ ’{’
<knownobjects>
<statevars>
<body>

’}’
<knownobjects> ::= knownobjects ’{’

{<reactiveclassName> <varname>;}*
’}’

<statevars> ::= statevars ’{’
{<var>;}*

’}’
<body> ::= {<method>}+
<method> ::=

msgsrv <methodName> ’(’ {<parameter>}* ’)’ ’{’
{<statement>;}*

’}’
<parameter> ::= <var> | <var> ’,’ <parameter>
<var> ::= <typeName> <varName>
<statement> ::=

<mir> | <assignment> | <conditional> | <create>
<mir> ::=

<varname> ’.’ <methodName> ’(’ {<varname>}* ’)’ ’;’
<create> ::=

<varname> = new <reactiveclassName> ’(’ <knownobjectsBinding> ’)’
<main> ::=

main ’{’
{<rebec>;}+

’}’
<rebec> ::=

<reactiveclassName> <varname> ’(’ <knownobjectsBinding> ’)’

Figure 2: Reactive class, rebec and model definition syntax

in its message queue, so initial is the first method executed by each rebec. After
defining the reactive classes, there is a keyword <main> followed by the definition
of the Rebeca model which is defined as a finite collection of rebecs that are
(created and then) run in parallel. In declaring a rebec, the bindings to its
known rebecs is specified in the list of knownobjects. Variables are typed and the
variables denoting a known object, a receiver of a message, and a created object
have to be of type rebec identifier. Rebec identifiers can be passed as parameters,
but cannot be referenced in an assignment statement.

Example 1 A Rebeca model: The Bridge Controller. Figure 3 shows a simple
model in Rebeca. We use this example also in other sections to explain the
modeling and verification approach. Consider a bridge with a track where only
one train can pass at a time. There are two trains, entering the bridge in opposite
directions. A bridge controller uses red lights to prevent any possible collision of

1061Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

trains, and also guarantees that each train will finally pass the bridge.
Each rebec which is instantiated from the reactive class BridgeController has

two known rebecs, t1 and t2, both of type Train. The messages sent from this
rebec are sent to t1 and t2. the reactive class BridgeController has two state
variables which show if a train is waiting from either side of the bridge, and two
state variables which indicate the status of the signals. There are three message
servers, one is initial for initializing the state variables, and the other two, Arrive
and Leave are for servicing the messages come from the trains. As indicated, the
sender of each message is implicitly known, the keyword sender in the latter
message servers has the value of the sender of each message.

Known rebec of an instance of the reactive class Train is an instance of the
reactive class BridgeController. The state variable onTheBridge of the Train
shows the status of the train, whether it is on the bridge or not. The message
server initial initializes the state variable, and also initiates the model by sending
the Passed message to itself. The messages Passed and ReachBridge are sent by
Train to itself. The message YouMayPass comes from the bridge controller.
Three rebecs are instantiated in the main part of the model, two instances from
the Train and one from the BridgeController.

More complicated examples can be found in Rebeca Home Page [3], including
a similar example consisting of more trains, and also examples with dynamic
creation of rebecs.

3.2 Semantics

The operational semantics of Rebeca is defined using a labeled transition sys-
tem [52], a quadruple of a set of states (S), a set of labels (L), a transition
relation on states (T), and a set of initial states of the system (S0).

To define the semantics of Rebeca, we first formalize the definitions of a
rebec, a model, and their constituents. A rebec, ri, with a unique identifier i, is
defined as a triple < Vi,Mi,Ki >, where Vi is the set of its state variables, Mi

is the set of its methods identifiers, and Ki is the set of all known rebecs of ri.
For a Rebeca model, there is a universal set I of all rebec identifiers that are

involved in the model, and a universal set K of all known rebecs of all members
of I.

A message msg is defined as: msg =< sendid , i ,mtdid >, where sendid is
the identifier of the sender, i is the identifier of the receiver, and mtdid denotes
the method of receiver ri which is called when the message is received. For the
sake of simplicity, we ignore the message parameters in our semantics definition.

U is the set of all possible values for all types of variables that can be defined
in a rebec, Vi = {v|v : Vi → U} is the set of possible values for variables of rebec
i, and VM =

⋃
i∈IC

Vi.

1062 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

reactiveclass BridgeController(5) { reactiveclass Train(3) {
knownobjects{Train t1; Train t2;} knownobjects{BridgeController

controller;}
statevars{ statevars {boolean onTheBridge;}

boolean isWaiting1; boolean isWaiting2; msgsrv initial() {
boolean signal1; boolean signal2; onTheBridge = false;

} self.Passed();
msgsrv initial() { }

signal1 = false; isWaiting1 = false; msgsrv YouMayPass() {
signal2 = false; isWaiting2 = false; onTheBridge = true;

} self.Passed();
msgsrv Arrive() { }

if (sender == t1) { msgsrv Passed() {
if (signal2 == false) { onTheBridge = false;

signal1 = true; controller.Leave();
t1.YouMayPass(); self.ReachBridge();

} else { isWaiting1 = true; } }
} else { msgsrv ReachBridge() {

if (signal1 == false) { controller.Arrive();
signal2 = true; }
t2.YouMayPass(); }

} else { isWaiting2 = true; } } main {
} Train train1(theController);
msgsrv Leave() { Train train2(theController);

if (sender == t1) { BridgeController theController
signal1 = false; (train1, train2);
if (isWaiting2) { }

signal2 = true;
t2.YouMayPass();
isWaiting2 = false; }

} else {
signal2 = false;
if (isWaiting1) {

signal1 = true;
t1.YouMayPass();
isWaiting1 = false; } }

}
}

Figure 3: The Bridge Controller Example

Each rebec has a queue which can be defined as a finite sequence of messages.
We denote the set of all finite sequences on a given set A as seq(A). The mailbox
of a component is like a multi-queue consisting of all the queues of its rebecs and
including all the messages that have been sent from internal rebecs and have not
yet been received.

In the labeled transition system M = (S,L, T, s0) which denotes the se-
mantics of a Rebeca model, we have the followings (for a more detailed formal
definition refer to [52]):

The state space of the model is

1063Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

n∏

i=1

(Si × qi), (1)

where each Si is a model of the local state of rebec ri consisting of a valuation
that maps each local field variable to a value of the appropriate type; and the
inbox qi, an unbounded buffer that stores all incoming messages (<mir>) for
rebec ri in a FIFO manner.

The set of action labels L is the set of all <mir> calls in the given <model>;
such calls record the processing of those messages that are part of the target
rebec provided message servers;

A triple (s, l, s′) ∈ S × L × S is an element of the transition relation T iff

– in state s there is some i (1 ≤ i ≤ n) such that l is the first message in the
inbox qi, l is of the form < sendid , i ,mtdid(vars) >, and sendid is the rebec
identifier of the requester (sender rebec, implicitly known by the receiver),
i is the rebec identifier of ri (receiver rebec), and mtdid is the name of the
method m of ri which is invoked, together with its parameters vars;

– state s′ results from state s through the atomic execution of two activities:
first, rebec ri deletes the first message l from its inbox qi, second, method
m is executed in state s. The latter may add requests to the inboxes of the
rebecs, change the local state, and create new rebecs;

– if new rebecs are created in the invocation of m, then the state space S

expands dynamically from the one in (1) to

(∏

inew

(Sinew × qinew)
) ×

n∏

i=1

(Si × qi), (2)

where inew ranges over the new rebecs created within that method invocation
and s′ is an element of (2);

Clearly, the execution of the above methods relies implicitly on a standard se-
mantic for the imperative code in the body of method m. Within such code,
<mir> requests may be issued and rebecs may be created. In our semantics,
messages (method invocation requests) (<mir>) are the sole mechanism for com-
munication between these rebecs. Regarding the infinite behavior of our seman-
tics, communication is assumed to be fair [7]: all <mir> requests eventually reach
their respective inboxes and will eventually be invoked by the corresponding re-
bec. The initial state s0 is the one where each rebec has its initial message as
the sole element in its inbox.

1064 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

Example 2 The Bridge Controller: state transitions. The bridge controller uses
its state variables to keep the value of the red lights on each side, and has flags
to know whether a train is waiting on each side of the bridge or not. When the
initial message server of a train is executed, a Passed message is sent to self.
Serving this message causes a message Leave to be sent to the bridge controller
and a message ReachBridge to be sent to self. Method ReachBridge sends an
Arrive message to the bridge controller. By receiving the message Arrive, in the
case that the light for the other side of the bridge is red, the bridge controller gives
the permission to the requester to pass the bridge by sending it a YouMayPass
message. If the light for the other side of the bridge is green, then the train
cannot pass and a flag is set to indicate that the train is waiting. By receiving
YouMayPass message, a train sends a Passed message to itself. By receiving a
Leave message, the bridge controller sends a YouMayPass message to the other
train in the case that it is waiting to pass and sets the lights properly.

3.3 Abstraction techniques and compositional verification

One of the most important problems in model checking is the state-explosion
problem. Compositional verification is a way to tackle this problem. In composi-
tional verification the goal is to check properties of the components of a system
and deduce global properties from these local properties. The specification of
a system is decomposed into the properties of its components which are then
verified separately. If we deduce that the system satisfies each local property,
and show that the conjunction of the local properties implies the overall specifi-
cation, then we can conclude that the system satisfies this specification too. The
fundamental problem of composing specifications is to prove that a composite
system satisfies its specification if all its components satisfy their specifications
[31, 18, 37]. In general, compositional verification may be exploited effectively
when the model is naturally decomposable, so, a model consisting of inherently
independent modules is suitable for compositional verification [19].

In Rebeca, the feature of loosely coupled modules is exploited to introduce
different abstraction techniques and a compositional verification approach for
verifying the properties of Rebeca models. For instance abstracting the specifi-
cations from queue contents, atomic execution of methods, reducing the envi-
ronment from its complete behavior to its set of sent messages, and abstracting
the queue from incoming messages from environment. The background theory
can be found in [48, 47].

In computer system design, we distinguish between closed and open systems.
A closed system is a system whose behavior is completely determined by the state
of the system. An open system is a system that interacts with its environment and
whose behavior depends on this interaction. The problem of model checking open

1065Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

systems is different from model checking closed systems and is called module
checking [30].

In compositional verification of Rebeca models, a closed model is decom-
posed into components. A component is a subset of rebecs of the system, and
the remainder is the environment of the component. We proposed a method in
modeling the environment and model checking the component in [48, 47]. The
state and behavior of rebecs in a component are fully modeled, but the state
and behavior of the rebecs of the environment are abstracted. The environment
is modeled by sending arbitrary messages to the rebecs in the component. These
messages are called external, and according to the nonpredictable behavior of
the environment they are assumed to be present in all the states. In other words
with respect to the environment, a component behaves like an I/O automata [34],
where inputs from the environment are always enabled. So, the queues are ab-
stracted from external messages. Using a weak simulation relation, it is proved
that the safety properties specified in LTL-X (Linear Temporal Logic without
next operator) [23] which are satisfied for a component are preserved for the
system as well. Thus, the properties of the components are proved by model
checking and are used to prove the property of the system by deduction. Choos-
ing a component is done by the modeler and depends on the properties to be
proved. There is no general approach in decomposing the system in components,
components have to be selected carefully to lead to a smaller state space [31].
It is the responsibility of the modeler and cannot be fully automated, although
some work has been done in automating this process and eliminating user guid-
ance [10].

Example 3 The Bridge Controller: abstraction and compositional verification. In
the bridge controller example, we can consider a component consisting of the
bridge controller and one of the trains, say train1. The environment is then the
other train, train2. The external messages coming to the internal rebecs of the
component, the controller in this example, are Arrive and Leave. The behavior
of the controller and train1 are fully modeled, and in each state we have always
two additional enabled transitions corresponding to the external messages.

4 The Rebeca Verifier Tool

The Rebeca Verifier [50, 49, 53] provides an integrated environment to create
Rebeca models and corresponding components, specify properties, and translate
models and components to SMV or Promela. Using the tool, a user can create,
edit and debug Rebeca codes, such that the code can be successfully translated
to one of the back-end model-checker languages. The required properties can
be expressed at Rebeca source code level, using temporal specification patterns

1066 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

based on the specification language of the back-end model checkers. These prop-
erties can also be automatically translated to the specification language of the
selected back-end model checker. The output code can be model checked by
NuSMV or Spin.

Modular verification is supported by the tool. The user designates the com-
ponent to be verified, and then the tool automatically generates a closed model
and translates it to the language of back-end model checkers. Properties should
be specified based on the variables in the component. The rebecs in the rest
of the model are abstracted and their state variables and message queues are
not included in the generated code. Figure 4, shows the use case diagram of the
system, including creating models and components, specifying properties, and
translating them into SMV or Promela.

The UML component diagram of the tool is shown in Figure 5. Rebeca Ver-
ifier is written in Java and consists of components: Property handler, Compo-
nent generator, and Code generators which use Property parser, Model parser
and JGraph packages. We used SableCC [24] for generating the parser. SableCC
produces shift-reduce parsers for LALR(1) grammars expressed in EBNF for-
mat. Parsers generated by SableCC produce abstract syntax tree (AST) of the
input code. Component generator, and SMV and Promela code generators uses
this AST to navigate in the Rebeca source code and build the SMV or Promela
result code. The user can also specify a LTL or CTL property based on rebecs
variables. The property handler, changes this property to the suitable form to
be used by NuSMV or Spin.

Component generator also includes a model viewer to visualize the model
using JGraph package. In the visualized model, the user can select a subset of
rebecs in a Rebeca model to create a component. This will generate an open
system. The rebecs which are now interacting with the outside world and their
interface with the environment are all determined and visualized. The component
composed by its environment makes a closed system, called a component model,
which can be automatically generated by the tool.

Although the property-preserving abstraction technique is used to prevent
an unbounded amount of external messages coming into the queue, but still the
queue may grow unboundedly by putting messages which are sent by internal
rebecs. The back-end model checkers do not support unbounded data types, so
we need a limit for each rebec queue. A queue length, which can be different for
each rebec, is provided by the tool and is defined by the modeler. The queue
overflow can be checked as a property by the tool, and the queue length can be
increased if necessary.

1067Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

Edit and syntax checking of
Rebeca model

Create component from a Rebeca
model

Generate SMV code from a
Rebeca model

Specify a property for Rebeca
model

<<extend>>

Modeler

Generate Promela code from a
Rebeca model

<<extend>>

Figure 4: Use Case Diagram of Rebeca Verifier

4.1 Rebeca, SMV, and Promela

The goal in developing the tool is integrating automated verification tools in
the actual practice of software engineering by means of the high-level actor-
based modeling language Rebeca. We want to support automatic verification
of Rebeca models as well as using and evaluating the compositional verification
approach. The main difference between Rebeca and SMV or Promela is not their
expressive power or efficiency in model checking. One essential difference is the
actor-based modeling paradigm of Rebeca which is convenient in modeling event-
driven, asynchronous systems. The other essential difference is the compositional
verification approach that can be applied on Rebeca models, and increases the
efficiency of formal verification. The modeling paradigm of Rebeca can be fur-
ther used in designing special algorithms and increase the performance of model
checking, using symmetry. This can be exploited only after implementing Rebeca
direct model checker (an ongoing project) which does not use back-end model
checkers. There are also other detailed differences which are explained in the
following.

The behavioral model in NuSMV is described by a Kripke structure, and
there is a precise mapping from Rebeca semantics in labeled transition system

1068 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

Property Handler

Component generator

SMV code generator

Rebeca Verifier

SableCC-generated
Property Parser

Rebeca Verifier uses Property Handler to
transform a Rebeca property specification
to a NuSMV specification.

JGraph is an open-source graph
packge available for Java. Rebeca
Verifier uses this component for
displaying Rebeca model and
components.

R2SMV is a component for
generating SMV code from a
Rebeca model.

SableCC is an object-
oriented parser generator
that generates parsers in the
Java programming language.

SableCC-generated
Model Parser

JGraph

This component takes a parsed Rebeca
model and after interacting with user to
determine the component(Model viewer),
generates the output component.

Promela code generator

R2P is a component for
generating Promela code from
a Rebeca model.

Figure 5: Component Diagram of Rebeca Verifier

into SMV Kripke structure. In compositional verification we have a nondeter-
ministic choice between taking an internal message from the queue, or taking
an external message from the set of external messages. Using Rebeca to SMV
translator we are able to model check Rebeca models and also applying the com-
positional verification approach. But, SMV does not support structured data
types, and even in using arrays only constant indexes are allowed. Another short
come is lack of sequential composition in a process. Moving from simple case
studies to more complicated ones we need higher modeling constructs, and sup-
porting these features in Rebeca to SMV translator is not efficient. Although,
using Rebeca to SMV translator is still efficient in modeling models with simple
data components.

Promela is a rich modeling language which supports structured data types,

1069Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

and various communication mechanisms. All the modeling features of Rebeca
are supported in Rebeca to Promela translator. The differences between Rebeca
and Promela are originated from their different object-based and process-based
paradigm in modeling. In Spin, the properties of a model can only be defined
based on the global variables. Thus, the state variables of rebecs are mapped to
global arrays in Promela.

In the following, we give a mapping between Rebeca constructs and SMV and
Promela constructs. By extending these mappings to the run-time configurations
of the respective languages we can establish in a straightforward manner a one-
to-one correspondence between the computation steps of a Rebeca program and
its translation.

4.2 Translating Rebeca to SMV

NuSMV [2] is a symbolic model checker which verifies the correctness of proper-
ties for a finite state system. The system should be modeled in the input language
of NuSMV, called SMV, and the properties should be specified in CTL or LTL.
The only data types in the language are finite ones, including booleans, scalars
and fixed arrays. A SMV code is a set of Module definitions, including a main
module. Processes are instantiated from Modules, and are used to model in-
terleaving concurrency. The program executes a step by non-deterministically
choosing a process, then executing all of the assignment statements in that
process in one step. The main control structure in SMV is the next-case state-
ment. Using this statement, the programmer can specify the next value of a
variable, according to the current value of all variables in the code.

In Rebeca Verifier, the SMV code generator is used to produce SMV codes
from Rebeca models [50]. The mapping from Rebeca constructs to SMV is shown
in Table 1. The basis of our translation algorithm is the operational semantics of
Rebeca, formalized as the labeled transition system explained in Section 3. Each
class in Rebeca is translated to a module in SMV and for each rebec a process
is defined. In Rebeca, concurrency is modeled by interleaved execution of rebecs
which are nondeterministically chosen. This is mapped to interleaved execution
of processes in SMV. Each transition in executing a Rebeca model is mapped
to a process being executed in SMV model. What a process does exactly follows
the Rebeca semantics: taking a message from the top of the array which denotes
the queue, and executing the corresponding statements of the message server.
The initial state of the SMV model is mapped on Rebeca model, by putting the
init message in the message queue.

The state variables of a rebec are mapped to the local variables of the cor-
respondent process. Each method of a rebec is executed in an atomic step in a
SMV process. All the changes to a specific variable in a process, under different
conditions, shall be indicated in one next-case statement. So, all the assignments

1070 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

Rebeca construct SMV construct
class module
rebec process

known objects parameters of the process
message queue array
message server distributed in the code of a process

state variables of a rebec local variables of a process

Table 1: Mapping Rebeca Constructs to SMV

to one variable in different methods of a rebec are mapped into one next-case
statement. There is a variable in the translated SMV code which specifies the
method that is currently executed. This variable is used to set up the correct
condition in the case part of the next-case statement. To be able to translate
a Rebeca code into SMV, we do not allow loops, and multiple assignments to
the same variable in a method. A send statement is adding the corresponding
message to the array in SMV.

Message queues are translated into arrays in SMV. With no variable indexes
for arrays in SMV, the translated code becomes very long. In our translation
procedure, we considered some optimizations to generate an efficient code in
SMV with the minimum reachable states while not violating Rebeca semantics.
For instance, we need to manipulate empty entries in the message queue in a way
not to produce a dummy new state. Modeling the message queue as a structured
variable increases the number of state variables considerably and it may cause
state explosion quickly.

Instead of defining fixed length arrays for all rebecs, we let the modeler to
define the length of the queue. A queue-overflow variable (corresponding to each
rebec) is maintained in SMV code and can be checked as a property. Often, in
our case studies, we had to increase the length of the queues to allow proper
executions without the queue overflow.

4.3 Translating Rebeca to Promela

Spin [5] is a model checker that supports the design and verification of asyn-
chronous process systems. Process interactions can be specified in Spin with
rendezvous primitives, asynchronous message passing through buffered channels,
shared variables, and also the combination of them.

In the Rebeca Verifier, the Promela code generator is used to produce Promela
codes from Rebeca models. The mapping from Rebeca constructs to Promela is
shown in Table 2. Each class in Rebeca is a proctype in Promela, and each
rebec is a process. Each method of a rebec is mapped to an atomic block in

1071Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

Rebeca construct Promela construct
class proctype
rebec process

known objects parameters of the process
message queue channel
message server atomic block

state variables of a rebec global variables
non-deterministic assignment if-selection

synchronous message zero length channel

Table 2: Mapping Rebeca Constructs to Promela

the corresponding process in Promela. The message queues can easily be mod-
eled by channels, according to the length specified by modeler. Within an in-
finite loop in a process, the message channel is read for the next message to
be served. After receiving a message, the atomic block associated to that mes-
sage will be executed. Processes (rebecs) are instantiated in the init process
of Promela. Rebeca to Promela translator supports extended Rebeca which is
presented in [46]. Extended Rebeca enriches Rebeca with a formal concept of
components in modeling and provides an additional communication mechanism
based on synchronous message-passing, for each synchronous message there is a
zero-length (rendezvous) channel in Promela code.

A major difference between an object-based code and a Promela code con-
cerns the state variables. In Spin, properties can only be specified on global
variables. In Rebeca we do not have global variables, and our properties are
based on state variables of rebecs. In the mapping algorithm, all state variables
in Rebeca are mapped to global variables in Promela.

4.4 Creating Components and Module Checking

The compositional verification approach for Rebeca models is explained in sec-
tion 3. For compositional verification we need to model check a component,
which is a subset of the closed model and build an open model itself. Then,
use our theory to prove the desired properties for the whole model. For model
checking an open model we need to simulate the environment, this is called mod-
ular model checking or module checking [56, 30]. Simulating and abstracting the
environment as a set of external messages, are done automatically by Rebeca
Verifier.

To create a component, the whole model is visualized and the modeler can
select a subset of rebecs in the model as a component. This will generate an open
system. The rebecs which are now interacting with the outside world and their

1072 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

interface with the environment are all determined and visualized. The open com-
ponent which is composed by its environment makes up a closed system, called a
component model. The tool determines the external rebecs which interact with
the component as its environment, and a Rebeca code is automatically generated
for this component model. Each external rebec is modeled in the Rebeca code of
the component model by indicating the messages that are sent by it. The SMV
code then can be generated from the component model.

External rebecs are not modeled as processes, so all of their state variables
are removed from the model. In the internal rebecs which could receive messages
from outside, a fair nondeterministic choice has to be made between internal
message on top of the queue, and all the external messages present. Also, the
code that changes the message queues of external rebecs are removed because
these are messages sent to external rebecs which are no more present.

4.5 The Bridge Controller Example

Here we use our running example to describe using the tool for module checking.
In modular verification of Rebeca codes, a component is generated by decom-
posing a model into components. The environment is defined as a set of external
messages, and external messages can be derived from provided messages of all
internal rebecs of a component. As the whole system is generated first, all the
possible senders of a message are known.

A component is chosen by the modeler based on the property to be proven,
in a way that the overall property of the system is derivable from components
properties. In this approach, we can prove the properties of the different compo-
nents of a model, which may include shared rebecs, and use deduction to prove
the required property of the system.

In the bridge controller example, the required properties of the system are
that at any moment only one train should be on the bridge (mutual exclusion:
safety), trains should finally pass the bridge (no deadlock: progress), and both
trains finally pass the bridge (no starvation: progress). So the system properties
are specified in LTL (Linear Temporal Logic) [23] as follows:

– Mutual exclusion: �!(train1.OnTheBridge && train2.OnTheBridge)

– No deadlock: �♦(train1.OnTheBridge || train2.OnTheBridge)

– No starvation: �(♦(train1.OnTheBridge) && ♦(train2.OnTheBridge))

Here, we can decompose the model into two components, each with Bridge-
Controller and one of the trains in it. Because of the symmetry present in the
model, it is enough to consider one of the components, model check it, and then
use deduction to prove the overall property of the system out of component

1073Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

properties proved by model checking. Figure 6 shows a snapshot of the system,
creating the required component. For the component in Figure 6, the state vari-
ables of rebec train1 are abstracted away. So, we need to rephrase the properties
according to the state variables of BridgeController and train2 :

– Mutual exclusion: � !(theController.signal1 && theController.signal2)

– No deadlock: �♦(theController.signal1 || theController.signal2)

– No starvation: �(♦(theController.signal1) && ♦(theController.signal2))

These rephrased properties are proved by model checking. We also prove the
property:

– � (theController.signal2 → ♦(train2.OnTheBridge))

Using the rephrased properties and the latter property, the system’s proper-
ties are proved accordingly.

In the next section, the state space generated for model checking bridge
controller example (and other examples) are presented and compared with the
module checking the components, and the amount of state space reduction is
shown.

5 Experimental Results

Rebeca Verifier is used to model check typical simple case studies as well as
some medium-sized case studies (like the IEEE CSMA/CD protocol [41, 16]).
We selected typical case studies from [34] and also from the case studies which
are model checked by existing model checkers. For example we modeled leader
election (both LCR and HS algorithms) [34], the commit problem [34], trains and
the bridge controller [12], dining philosophers [28, 43, 34], readers and writers,
and gossiping girls. These case studies are translated to SMV or Promela or
both, and are included at Rebeca Home page [3]. The compositional verification
approach is applied on some of these case studies and the state space reduction
is evaluated.

Note that comparing SMV and Promela or their corresponding model check-
ers is not our goal. The goal is to examine the expressive power of Rebeca in
modeling typical cases of different computing paradigms in modeling distributed
and concurrent systems; and evaluating the compositional verification approach
and find the patterns on which this approach works efficiently; and also inves-
tigate and extend the tool capabilities. Our experimental results, shown in the
following tables, express the benefits of our compositional approach for the con-
sidered applications. Comparing NuSMV and Spin is one of our future works.

1074 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

Figure 6: A Snapshot of the Tool, Creating a Component from Bridge Controller
Example.

In the following we shortly explain a number of case studies for which com-
positional verification approach is applied and state space reduction is gained.
Module checking by Rebeca Verifier is currently supported by SMV code gener-
ator, the model checking process is done by NuSMV 2.1.2, executed on Windows
XP professional, CPU: Athlon XP 1700+, with 512 MB RAM.

Safety, deadlock and starvation properties are first checked for the close
model. In all the examples, there were bugs in our code which were found by
model checking. Some of the bugs simply were in initializing variables and some
were more serious ones, in communication and synchronization between rebecs.
The CPU time and memory used by SMV for computing total and reachable
states are shown for each case study. Also, the components that are selected and
model checked are given. These results show that how modeling the components
instead of the whole system can help in reducing the reachable states. Rebeca
code and the properties that are checked for each case study can be found at
Rebeca Home page.

Trains and the bridge controller. This is our running example shown in Figure 3.

1075Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

Model checking results are summarized in table 3. It can be seen that total state
space is reduced in the order of 104, but the number of reachable states is slightly
increased. Number of rebecs present in the component is less than the rebecs
present in the close model, and so the number of state variables are less in the
component. The number of reachable states is increased because of the external
messages that are always present in a component model, but are not really sent
in the close model.

We checked the queue-overflow condition and found out that queue length
of two for the trains and four for the bridge controller is enough for preventing
overflow.

Approach Model Reachable Total states CPU time Memory
states (mm:ss) (KByte)

Closed-world 2 Trains/Controller 203 5.16e+13 00:00 8956
Component- 1 Train/Controller 231 2.38e+09 00:00 8612

based (an ext. Train)

Table 3: Trains and the Controller: Closed-World Compared to Component-
Based Approach (results generated by NuSMV)

Dining philosophers. We modeled the dining philosophers example as a case
study and translated it into SMV using the tool. There are n philosophers at
a round table. To the left of each philosopher there is a fork, but s/he needs
two forks to eat. Of course only one philosopher can use a fork at a time. If
the other philosopher wants it, s/he just has to wait until the fork is available
again. The system safety requirement is that at any given time two neighboring
philosophers cannot both hold the fork between them.

In the close system, there are eight rebecs, four philosophers and four forks.
The component includes two philosophers and one fork, so we have three internal
rebecs, and only two external ones. Other rebecs do not send any messages
to internal rebecs of the specified component. These two external rebecs are
two forks adjacent to the internal philosophers. The reduction in state space
is significant in this example and is shown in Table 4. Only in the close model
with two philosophers and two forks, the reachable states are less than reachable
states of the component. This is again caused by external messages which made
the enabled transitions more than the real enabled transitions in a close world.
But total states are less because of the reduction in number of variables.

This case study can be considered as a prototypical example of a general
problem consisting of a set of reactive objects arranged in a ring-shape topology;

1076 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

representing a resource allocation problem involving allocation of pairwise shared
resources in this ring of objects. The model in Rebeca is scalable without any
changes in the code of philosophers or forks, as the links between rebecs do not
change by increasing the number of rebecs (see figure 7 which is a snapshot of the
tool creating a component consisting of two philosophers and one fork). Thus,
the properties which are satisfied for the component preserves for the model
consisting of any number of rebecs.

Figure 7: A Snapshot of the Tool, Creating a Component from Dining Philoso-
phers Example.

Readers and writers This is the typical example of a data buffer that multiple
readers can read from it, but only one writer can write into it. Here, we need
a message queue of length two for both readers and writers, and four for the
data buffer. This case study can be considered as a prototypical example of a
problem consisting of a critical section and requesters arranged in a star-like
topology around it.

1077Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

Approach Model Reachable Total states CPU time Memory
states (mm:ss) (KByte)

Closed-world 2 Phils/2 Forks 285 3.28e+22 00:00 11136
3 Phils/3 Forks 14671 8.79e+36 00:12 19304
4 Phils/4 Forks 390720 1.80e+52 06:28 38700

Component- 2 Phils/1 Fork 4132 1.16e+21 00:02 14076
based (2 External Forks)

Table 4: Dining Philosophers: Closed-World Compared to Component-Based
Approach (results generated by NuSMV)

Approach Model Reachable Total states CPU time Memory
states (mm:ss) (KByte)

Closed-world 3 Readers/1 Writer 3293 2.60e+23 00:02 18288
Component- Data Buffer 180 1.81e+09 00:00 8664

based (external R/W)

Table 5: Readers and Writer: Closed-World Compared to Component-Based Ap-
proach (results generated by NuSMV)

6 Conclusion and Future Work

In this paper we have shown how tools for model checking and compositional
verification can be integrated in the actual practice of software engineering by
means of the actor-based modelling language Rebeca. We generate a front-end
tool, Rebeca Verifier, for translating Rebeca models to SMV or Promela. Our
tool supports modular verification, enabling the modeler to model check com-
ponents derived from decomposing Rebeca models. This is used in our compo-
sitional verification approach. Abstraction techniques are applied to overcome
state explosion problem.

Rebeca group at Tehran and Sharif universities has already worked on sev-
eral prototypical case studies including medium-sized case studies like IEEE
CSMA/CD protocol. This protocol is used in multiple access shared media en-
vironments, which use a shared bus for connecting a number of independent
computers. More information can be obtained from Rebeca Home Page [3].

Modeling and verifying security protocols using Rebeca is an ongoing project,
for example Mitnick attack is modeled in Rebeca to show how an attacker may
chain simple attacks to construct a complex distributed attack. A server, a client,
their TCP agents and an attacker are modelled. According to the asynchrony
of computer networks, they can be naturally modeled by Rebeca. Availability is
one of the required properties, which is shown to be violated by syn-flood attack.

1078 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

The Mitnick attack is also simulated to show that an unsafe command can be
executed on the server.

Modular structure of Rebeca allows for an incremental development of the
tool. We started with Rebeca kernel, as a pure actor-based language, which
describes a set of rebecs in a flat structure, communicating by asynchronous
message passing. SMV and Promela code generators are both implemented for
this kernel language. Promela code generator also supports synchronous message
passing which is added to Rebeca as an extension to support globally asynchro-
nous and locally synchronous systems [46]. The Promela code generator, will
soon support the dynamic features of Rebeca, including dynamic rebec creation
and dynamic changing topology. Direct model checking of Rebeca models is an
ongoing project. Without using back-end model checkers we can exploit Rebeca
modularity more efficiently in model checking algorithms and introduce other
abstraction techniques.

Acknowledgement

This research is financially supported by the grant number 22210001/1/01 of
Deputy of Research Office of Tehran University.

References

1. Bandera. http://www.cis.ksu.edu/santos/bandera.
2. NuSMV user manual. availabe through http://nusmv.irst.itc.it/NuSMV/

userman/index-v2.html.
3. Rebeca. http://khorshid.ut.ac.ir/∼rebeca.
4. SLAM. http://research.microsoft.com/slam.
5. Spin user manual. available through http://netlib.bell-

labs.com/netlib/spin/whatisspin.html.
6. UML: Unified Modeling Language Specification version 1.4,

Sept. 2001, OMG document formal/01-09-67. Availabe through
http://www.omg.org/technology/documents/formal/uml.htm.

7. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, USA, 1990.

8. G. Agha. The structure and semantics of actor languages. In J. W. de Bakker,
W.-P. de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Lan-
guages, pages 1–59. Springer-Verlag, Berlin, Germany, 1990.

9. G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor computation.
Journal of Functional Programming, 7:1–72, 1997.

10. R. Alur, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Automating modular
verification. In CONCUR: 10th International Conference on Concurrency Theory,
Lecture Notes in Computer Science, pages 82–97. Springer-Verlag, Berlin, Ger-
many, 1999.

11. R. Alur, T. A. Henzinger, F. Y. C. Mang, and S. Qadeer. MOCHA: Modularity in
model checking. In Proceedings of CAV’98, volume 1427, pages 521–525. Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1998.

12. R. Alur and T.A. Henzinger. Computer aided verification. Technical Report Draft,
1999.

1079Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

13. R. Alur and T.A. Henzinger. Reactive Modules. Formal Methods in System De-
sign: An International Journal, 15(1):7–48, July 1999.

14. P. America, J. de Bakker, J. N. Kok, J. J. M. M. Rutten. Denotational Semantics
of a Parallel Object-Oriented Language. In Information and Computation, 83(2):
152–205, 1989.

15. T. Ball, B. Cook, V. Levin, and S. K. Rajamani. Slam and static driver verifier:
Technology transfer of formal methods inside microsoft. In MSR-TR-2004-8. In-
vited talk/paper for Integrated Formal Methods 2004, 2004.

16. D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A tool for BDD-based verification
of real-time systems. In Hunt W.A., Jr. Somenzi, and F. Somenzi, editors, Pro-
ceedings of CAV 2003, volume 2725 of Lecture Notes in Computer Science, pages
122–125. Springer-Verlag, Berlin, Germany, 2003.

17. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of soft-
ware components in C. In Proceedings of the 25th International Conference on
Software Engineering (ICSE-03), pages 385–395, Piscataway, NJ, May 3–10 2003.
IEEE Computer Society.

18. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

19. W. P. de Roever, h. Langmaack, and A. Pnueli, editors. Compositionality: The
Significant Difference, International Symposium, COMPOS’97, Bad Malente, Ger-
many, September 1997, Revised Lectures, volume 1536 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, Germany, 1998.

20. W. Damm, B. Josko, A. Pnueli and A. Votintseva, Understanding UML: A formal
semantics of concurrency and communication in real-time UML. In Proceedings
of the 1st Symposium on Formal Methods for Components and Objects (FMCO
2002), LNCS 2852, Springer-Verlag, Berlin, 2003.

21. F.S. de Boer, A Proof system for the language POOL. Proceedings of the
REX School/Workshop Foundations on Object-Oriented Languages, LNCS 489,
Springer-Verlag, Berlin, 1991, 124-150.

22. M.B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C.S. Pasareanu, Robby,
W. Visser, and H. Zheng. Tool-supported program abstraction for finite-state ver-
ification. In Proceedings of the 23nd International Conference on Software Engi-
neering, pages 177–187, 2001.

23. E.A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 996–1072, Amsterdam, 1990.
Elsevier Science Publishers.

24. E. Gagnon and L. Hendren. SableCC – an object-oriented compiler framework. In
Proceedings of TOOLS 1998, pages 140–154. Springer-Verlag, Berlin, 1998.

25. M. Gaspari and G. Zavattaro. An actor algebra for specifying distributed sys-
tems: The hurried philosophers case study. Lecture Notes in Computer Science,
2001:216–246, 2001.

26. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, 2000.

27. C. Hewitt. Description and theoretical analysis (using schemata) of PLANNER: A
language for proving theorems and manipulating models in a robot. MIT Artificial
Intelligence Technical Report 258, Department of Computer Science, MIT, April
1972.

28. C. A. R. Hoare. Communications Sequential Processes. Prentice-Hall, Englewood
Cliffs (NJ), USA, 1985.

29. N. Ioustinova, N. Sidorova, and M. Steffen. Closing open SDL-systems for model
checking with DTSpin. In FME’2002, volume 2391 of Lecture Notes in Computer
Science, pages 531–548. Springer-Verlag, Berlin, Germany, 2002.

30. O. Kupferman, M. Y. Vardi, and P. Wolper. Module checking. Information and
Computation, 164(2):322–344, 2001.

1080 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

31. L. Lamport. Composition: A way to make proofs harder. In Proceedings of COM-
POS: International Symposium on Compositionality: The Significant Difference,
volume 1536 of Lecture Notes in Computer Science, pages 402–407. Springer-
Verlag, Berlin, Germany, 1997.

32. N. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2(3):219–246, 1989.

33. N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. Technical Report MIT/LCS/TR-387, MIT, 1987.

34. N.A Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, CS, 1996.
35. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems (Safety).

Springer-Verlag, Berlin, Germany, 1995.
36. I. A. Mason and C. L. Talcott. Actor languages: Their syntax, semantics, transla-

tion, and equivalence. Theoretical Computer Science, 220(2):409–467, June 1999.
37. K. L. McMillan. A methodology for hardware verification using compositional

model checking. Science of Computer Programming, 37(1–3):279–309, May 2000.
38. R. Milner. A calculus on communicating systems. Lecture Notes in Computer

Science, 92, 1980.
39. R. Milner. Elements of interaction: Turing award lecture. Communications of the

ACM (CACM), 36(1):78–89, Jan 1993.
40. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information

and Computation, 100(1):1–77, September 1992.
41. J. Parrow. Verifying a CSMA/CD-protocol with CCS. In Proceedings of the IFIP

Symposium on Protocol Specification, Testing and Verification, pages 373–387, At-
lantic City, New Jersey, 1988. North-Holland.

42. S. Ren and G. Agha. RTsynchronizer: language support for real-time specifications
in distributed systems. ACM SIGPLAN Notices, 30(11):50–59, November 1995.

43. W. A. Roscoe. Theory and Practice of Concurrency. Prentice-Hall, 1998.
44. S. Schacht. Formal reasoning about actor programs using temporal logic. Pro-

ceedings of Concurrent Object-Oriented Programming and Petri Nets, LNCS 2001,
pages 445-460, Springer-Verlag, Berlin, 2001.

45. I. Schinz, T. Toben, Ch. Mrugalla and B. Westphal, The Rhapsody UML Verifica-
tion Environment. In Proceedings of the 2nd International Conference on Software
Engineering and Formal Methods (SEFM 2004), IEEE September 2004.

46. M. Sirjani , F. de Boer, A. Movaghar and A. Shali. Extended Rebeca: a
component-based actor language with synchronous message passing. In Proceed-
ings of Fifth International Conference on Application of Concurrency to System
Design (ACSD’05), to appear. IEEE Computer Society, 2005.

47. M. Sirjani and A. Movaghar. Simulation in Rebeca. In Proceedings of Parallel and
Distributed Processing Techniques and Applications (PDPTA’02), pages 923–926.
CSREA Press, USA, 2002.

48. M. Sirjani and A. Movaghar. An actor-based model for formal modelling of reac-
tive systems: Rebeca. Technical Report CS-TR-80-01, Tehran, Iran, 2001.

49. M. Sirjani, A. Movaghar, H. Iravanchi, M. Jaghoori, and A. Shali. Model checking
in Rebeca. In Proceedings of Parallel and Distributed Processing Techniques and
Applications (PDPTA’03), pages 1819–1822. CSREA Press, USA, 2003, June 2003.

50. M. Sirjani, A. Movaghar, H. Iravanchi, M. Jaghoori, and A. Shali. Model checking
Rebeca by SMV. In Proceedings of the Workshop on Automated Verification of
Critical Systems (AVoCS’03), pages 233–236, Southampton, UK, April 2003.

51. M. Sirjani, A. Movaghar, and M.R. Mousavi. Compositional verification of an
object-based reactive system. In Proceedings of the Workshop on Automated Ver-
ification of Critical Systems (AVoCS’01), pages 114–118, Oxford, UK, April 2001.

52. M. Sirjani, A. Movaghar, A. Shali, and F. de Boer. Modeling and verification of
reactive systems using Rebeca. Fundameta Informatica, 63(4):183–235, December
2004.

1081Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

53. M. Sirjani, A. Shali, M.M. Jaghoori, H. Iravanchi, and A. Movaghar. A front-end
tool for automated abstraction and modular verification of actor-based models. In
Proceedings of Fourth International Conference on Application of Concurrency to
System Design (ACSD’04), pages 145–148. IEEE Computer Society, 2004.

54. C. Talcott. Composable semantic models for actor theories. Higher-Order and
Symbolic Computation, 11(3):281–343, December 1998.

55. C. Talcott. Actor theories in rewriting logic. Theoretical Computer Science,
285(2):441–485, August 2002.

56. M. Y. Vardi. Verification of open systems. Lecture Notes in Computer Science,
1346:250–267, 1997.

57. C. Varela and G. Agha. Programming dynamically reconfigurable open systems
with SALSA. ACM SIGPLAN Notices, 36(12):20–34, 2001.

58. A. Yonezawa. ABCL: An Object-Oriented Concurrent System. Series in Computer
Systems. MIT Press, 1990.

1082 Sirjani M., Movaghar A., Shali A., de Boer F.S.: Model Checking...

