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Abstract: This work describes the formal semantics of Scheme3 as an equational
theory in the Maude rewriting system. The semantics is based on continuations and
is highly modular. We briefly investigate the relationship between our methodology for
defining programming languages and other semantic formalisms. We conclude by show-
ing some performance results of the interpreter obtained for free from the executable
specification.
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1 Introduction

Following the approach proposed in [34] and partially published in [27] to give
modular rewriting logic [25] executable semantics to programming languages,
this paper describes a formal semantics of Scheme [24]. The efficient rewriting
engine of Maude [3] gives us an interpreter for Scheme from its semantics
essentially for free. Since Scheme is not a concurrent language, we only need
the equational fragment of rewriting logic.

The use of rewriting logic is not novel in the definition of programming lan-
guages. In fact, one can translate the structural operational semantics (SOS) [32]
of a sequential language into a set of equations [27, 26] satisfying the Church-
Rosser property. Braga et al. [6] investigated how to translate language defini-
tions given in the form of Mosses’ MSOS [30] into modular rewriting semantics
(MRS) [8] in order to mechanically derive sound language interpreters for con-
current languages.

As in [6], our main focus is on modular definitions of languages using rewrit-
ing. In [34], we found (and empirically evaluated in class) that the use of con-
tinuations [4, 16], in addition to that of associative and commutative (AC) sets
of state attributes, can improve modularity of language definitions. Using this
technique, we here illustrate how easily a complex language like Scheme can be
1 A preliminary version of this paper appeared in the proceedings of SBLP 2005 [9].
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defined. In particular, we show how the Scheme construct call/cc is precisely
defined with only 3 equations. This methodology has been used for the last two
years in a programming language design class taught by the second author at
the University of Illinois [34]. Even though Scheme is not concurrent in its core,
the methodology we present also supports concurrency, as shown in [34, 27].

This paper is organized as follows. Section 2 describes related work. Section
3 introduces informally the Maude system and the Scheme language. Section
5 shows the executable semantics of Scheme. Section 5 illustrates performance
results and Section 6 concludes the paper.

2 Related Work

Monads have been introduced [36] as a data type allowing one to add “impure”
features, such as side-effects, to pure functional languages. They became notable
for their contribution to modularity. Monads can be seen as a structuring feature
that enables one to systematically write programs in tail-form. With monads it
is easier to localize changes since context is transferred in a uniform manner.
Mainly because of the use of continuations, transitions in our semantics are
defined in a similar fashion as the monad operator �. Matching modulo ACI
allows one to define � via equations with some degree of freedom.

MSOS (Modular Structural Operational Semantics) [30] is a formalism which
aims at describing modular definitions of languages. The technique in [30] pro-
poses to overcome the possible lack of modularity in standard SOS [32] spec-
ifications. In MSOS, transitions take the form γ

α→ γ′, where γ and γ′ are
called configurations and denote syntactic entities of the language (expression
and commands, for instance). One can understand these transitions as describ-
ing source-to-source derivations rules. The label α transmits only the necessary
information needed in a particular derivation, such as the store and the environ-
ment. Modularity is obtained essentially by avoiding the inclusion of auxiliary
information explicitly in configuration terms. It is worth noting that MSOS [30,
page 221] was influenced by monad transformers.

Braga et al. [11, 6, 8] investigated modularity of rewrite theories for defining
programming languages. Meseguer and Braga [26] recently illustrated a tech-
nique, named Modular Rewriting Semantics (MRS) [26], for defining modular
rewrite theories. They propose the use of record inheritance, and abstract inter-
faces in order to give definitive formalizations of language constructs via conser-
vative extensions of the semantics. The first technique is similar to the notion of
set of state attributes we use, which is essentially an AC list of attributes rep-
resenting the “state of the program”. The store, environment, and locks held by
each thread are candidate attributes for this list in the semantics of concurrent
languages. Matching modulo ACI makes possible to specify equations containing
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only a projection of the attributes in the list. Similarly to MSOS labels and MRS
record inheritance, the use of sets of state attributes allows one to define only
what is needed in order to carry out a derivation step, thus reducing the coupling
between infrastructure and semantic definitions. The use of abstract interfaces
as the second technique follows the information hiding discipline [31] which is a
fundamental concept to achieve modularity. In our semantics, this boils down to
defining separate modules for the syntax and semantics of each construct, and
accessing modules via their public operations.

It is worth mentioning that in this paper we do not aim at formalizing our
definitional methodology, or at comparing it mathematically to other existing
techniques. Instead, our purpose here is to instantiate it to one non-trivial special
case, the definition of Scheme. We believe that the presentation will be self-
explanatory and intuitive enough to make this possible.

3 Preliminaries

In this section we present a short introduction to the Maude language, then
give an informal semantics to some Scheme constructs.
Maude is a high-performance executable specification language for rewriting
logics whose roots go back to Clear [7] and OBJ [19]. Many other languages
belong to the same family, such as CafeOBJ [13], BOBJ [18], and ELAN [5].

In Maude, specifications are introduced as theory modules. In this paper we
only use functional modules, and for these, specifications correspond to equa-
tional theories of the form (Σ, E), where Σ denotes the signature of a module
including its sorts and operations defining the interface to that module, and E

denotes the set of equations that should hold for any implementation of that
module. Maude replaces terms by terms when they are equal under an equa-
tional theory. That is, for any equation of the form t l = tr, when a term t can
be matched modulo associativity, commutativity, and identity (ACI) to t l via a
substitution θ, then t can be replaced by tr with variables substituted accord-
ing to θ. As an example, the module below axiomatizes the PEANO natural
numbers:

fmod PEANO-NAT is sort Nat .
op zero : -> Nat .
op succ : Nat -> Nat .
op plus : Nat Nat -> Nat .
vars N M : Nat .
eq plus(zero, M) = M .
eq plus(succ(N), M) = succ(plus(N, M)) .

endfm

The only sort defined in this module is Nat. The constant zero is defined as
an operation with no arguments and has sort Nat. The operations succ and
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plus denote the successor of a number and the addition of two numbers, re-
spectively. The equations in this module must hold for any model of PEANO-NAT.
In these equations, variables are universally quantified. That is, the first equa-
tion describes the axiom: ∀ M:Nat. 0 + M = M. One can prove via equational
deduction that the equality plus(succ(succ(zero)),succ(succ(succ(zero)))) =

plus(succ(succ(succ(succ(zero)))),succ(zero)) holds for this specification as
both terms reduce to the ground term: succ(succ(succ(succ(succ(zero))))).

In fact, one can show that this specification is confluent and terminates. One
can import a module (theory) using the keyword including. All sorts, operations,
and equations are then imported. The module PEANO-NAT* below extends the
previous with multiplication.

fmod PEANO-NAT* is including PEANO-NAT .
op mult : Nat Nat -> Nat .
vars M N : Nat .
eq mult(zero, M) = zero .
eq mult(succ(N), M) = plus(mult(N, M), M) .

endfm

This simple examples illustrate most of Maude’s features needed to define
Scheme. We explain other features by need. For a more complete description of
Maude see [3].

Scheme [24, 16] is a functional programming language mostly inspired by LISP.
The following is a non-exhaustive list of its features:

– Statically scoped;

– Call-by-value (but can simulate call-by-need with the Promises data-type);

– Programs as data;

– Functions and continuations are first-class citizens;

– Dynamically typed.

Scheme has a small core language. We next informally discuss its main con-
structs. The interested reader is referred to [24] for the standard definition and
many examples. Notice in the following that, similarly to LISP, every expression
in Scheme has the syntax of a list.

Lists. The construct list has the form (list exp1 . . . expK) and evaluates
to a list of size k whose values correspond to the evaluation of each expression
argument.
Variables. The binding construct let has the form

(let ((name1 exp1) . . . (nameK expK)) exp1’ . . . expN’)

and “atomically” binds the results of evaluating exp1,. . . , expK in the current
environment to name1,. . . ,nameK. The expressions exp1’,. . . , expN’ are evaluated
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sequentially in the new environment obtained. The result of the whole expres-
sion is that of the last expression, expN’, evaluated in this sequence. Variations
of this bindings include let* and letrec. The first performs the binding se-
quentially rather than atomically, while letrec binds in an environment initially
extended with the name list name1,. . . ,nameK. As usual, the letrec construct is
very convenient for defining recursive definitions.

The construct set! has the form (set! name exp) and assigns the evaluation
of exp to name in the current environment.

The construct define takes the form (define name exp) and binds the eval-
uation of exp to name in the top-level environment if name is not yet bound.
Otherwise, this expression is similar to an assignment to name. Our interpreter
does not allow the use of define outside the top-level block (it can be encoded
with letrec [24]).
Functions. The function abstraction construct has the form

(lambda (name1 . . . nameK) exp1’ . . . expN’)

and evaluates to a closure. This closure saves the current environment because
Scheme is statically scoped. In addition, since the language supports high-order
functions, closures are ordinary values in the language.

Function application takes the form (exp0 exp1 . . . expK) where exp0 must
evaluate to a closure. Assuming that the closure that exp0 evaluates to holds the
function abstraction above and the environment E , then the result of evaluating
the application above is the same as that of evaluating

(let ((name1 exp1) . . . (nameK expK)) exp1’ . . . expN’)

in E . Recall that Scheme’s parameter-passing style is by-value.

Control Flow. The if construct has the form (if test then-expr else-expr)

and has the expected behavior of evaluating the expression test first and if the
result is the “true” value then the result of the conditional is that of evaluating
then-expr; otherwise that of evaluating else-expr.

Sequential composition has the form (begin expr1c . . .exprK) and evaluates
sequentially each expression. The evaluation of exprK is the result of the entire
expression.

Continuations are procedures of a single parameter and thus considered first-
class citizens in Scheme. In the example below, k denotes a continuation pro-
cedure. The actual parameter passed to the continuation procedure denotes the
value that the program continuation expects to receive in order to continue. The
way one creates a continuation procedure is by calling the procedure call/cc

passing an expression denoting a function abstraction, which declares one formal
standing for the continuation procedure. For instance, the Scheme expression:

(let ((f (lambda (k) (k 10))))(* 5 (call/cc f)))
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evaluates to the integer 50. When the function f is applied, a continuation pro-
cedure (that knows “how to continue”) is created and passed as argument to f.
The value 10 is then passed to the program continuation which is in charge of
filling the hole � in the expression (* 5 �) and evaluate it.

Data Types. In addition to function, continuation, and list data-types,
Scheme supports integer, rational, real, string, boolean, and several other data-
types. We here discuss only the integers and booleans. Integer literals take the
form 1, 2, 3, ..., while the boolean literals are #t and #f. Arithmetic opera-
tions on these types are provided as built-in operations. For instance, (+ 1 2)

denotes the addition of two integers and (and a b) denotes the conjunction of
two expressions.

Scheme also supports “frozen” expressions as values: expressions may eval-
uate to “frozen” expressions, also called “data”. With the support of constructs
to freeze and unfreeze “data”, one can store programs as data. For instance,
the construction (quote exp) freezes the expression exp. That means that exp

is not evaluated when (quote exp) is. Conversely, the expression (unquote exp)

evaluates the frozen expression that can be resulted from the evaluation of exp
in the current environment.

Promises are introduced to support call-by-need. Two operations support this
feature: (delay exp) and (force exp). Similarly to quotations, the evaluation of
delay does not trigger the evaluation of exp. It saves the current environment and
exp in a promise data-type. When forced, the promise will evaluate exp in the
saved environment. Additional calls to force on the same promise will return the
same value. As one might expect, in the presence of side-effects, the evaluation
of an expression can differ from an eventual force in the promise corresponding
to that expression.

4 The SchemeM Syntax

We use a slightly different syntax in order to facilitate parsing and semantic
definitions. We call this language SchemeM from here on. We write the syn-
tax of SchemeM in Maude’s mixfix notation which is equivalent to defining
a context-free grammar. We next show fragments of the SchemeM syntax. Its
entire syntax appears in [10]. We decided to have a single sort for expressions,
namely Exp, in order to simplify the definition and parsing. The sorts, subsort
relations, and operations below define the basic syntax for integers, booleans,
and expression lists. The sorts Qid, standing for quoted identifiers, and Int are
pre-defined by Maude. NameList is defined in a similar manner as ExpList. The
subsorts keyword allows one to declare subsort relations succinctly. For instance,
we declare Qid to be subsort of Name, and this to be a subsort of Exp:
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sorts Exp ExpList .
subsorts Qid < Name Int < Exp NameList < ExpList .
subsort Name < NameList .
op a b c d e f g h i j k l m n o p q r s t u v x y z : -> Name .
op noExp : -> Exp . op _,_ : ExpList ExpList -> ExpList .

The operations plus, minus, times, div, and mod have signature Exp Exp -> Exp.
Boolean expressions and the conditional are defined with the following syntax:

ops true false : -> Exp .
ops eq leq geq and or : Exp Exp -> Exp .
op not : Exp -> Exp .
op if_then_else_ : Exp Exp Exp -> Exp .

The syntax of letrec follows. The attribute prec assigns precedence to an oper-
ator in order to deal with parsing conflicts:

sorts Binding BindingList . subsort Binding < BindingList .
op none : -> BindingList .
op _,_ : BindingList BindingList -> BindingList

[assoc id: none prec 71] .
op _=_ : Name Exp -> Binding [prec 70] .
op letrec_in_ : BindingList Exp -> Exp .

The syntax of function abstraction and application is:

op lambda _ -> _ : NameList Exp -> Exp .
op __ : Exp ExpList -> Exp [prec 0] .

We define next the syntax for quotation, unquotation, callcc, and for the oper-
ations on the “promises” data type.

op quote : Exp -> Exp .
op unquote : Exp -> Exp .
op callcc_ : Exp -> Exp [prec 0] .
op delay : Exp -> Exp .
op force : Exp -> Exp .

Finally, we give the syntax for assignment, sequential composition, and expres-
sion blocks. Note that the sort ExpList; is used to stand out expressions sepa-
rated by the ; symbol.

op set_=_ : Name Exp -> Exp .
sort ExpList; .
subsort Exp < ExpList; .
op _;_ : ExpList; ExpList; -> ExpList; [assoc prec 100] .
op {_} : ExpList; -> Exp .

We implemented, but omitted in this paper for space reasons, the syntactic
constructs for: vectors, lists, loops, let* , let, and IO operations.

5 The Equational Semantics

Next we show the state infrastructure used in the semantics, describe the con-
tinuation semantics, and finally instantiate this semantics to SchemeM.
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5.1 The State Infrastructure

In what follows we axiomatize the standard notions of location, environment,
value, and store. Each module denotes one relevant component of the state in-
frastructure, allowing us to eventually define the module STATE. We start with
the formal definition of locations (term of sort Location), in the module LOCATION

below. The sort of natural numbers, Nat, is imported from the built-in module
INT. A list of locations can be constructed using the comma mixfix operator , .
In Maude, one can assign certain properties to operators via a fixed set of at-
tributes. For instance, we state that the operator , is commutative and noLoc is
its identity. So the term (loc(1),noLoc),loc(2) is equivalent to loc(1),loc(2).
It is sometimes convenient to generate a fresh sequence of contiguous locations.
This can be done with the operator loc( ;; ) taking as arguments two natural
numbers: the index of the first location and the number of locations to create:

fmod LOCATION is including INT .
sorts Location LocationList . subsort Location < LocationList .
op loc : Nat -> Location .
op noLoc : -> LocationList .
op _,_: LocationList LocationList -> LocationList [assoc id: noLoc] .
op loc : Nat -> Location .
op loc(_;;_) : Nat Nat -> LocationList .
vars N # : Nat .
eq loc(N ;; 0) = noLoc .
eq loc(N ;; #) = loc(N), loc((N + 1) ;; (# - 1)) .

endfm

Next we describe environments. The module NAME-LIST defines the sorts Name and
NameList standing for the language identifier and its associated list (see [10]). An
environment is a table mapping names to locations. An environment cell has the
form [N,L] where N is a name and L a location. The operation concatenates
two environments. Note that, in addition to using the assoc and id: attributes,
we also declare this operator commutative (comm). It is worth noting that these
attributes are central to rewriting, since matching is performed modulo ACI
(associativity, commutativity and identity). The operation E[Nl<-Ll] updates
the environment E by binding the location list Ll to the name list Nl element-
wise.

fmod ENVIRONMENT is including LOCATION . including NAME-LIST .
sort Env . op noEnv : -> Env .
op [_,_] : Name Location -> Env .
op __ : Env Env -> Env [assoc comm id: noEnv] .
op _[_<-_] : Env NameList LocationList -> Env .
vars X X’ : Name . vars Env Env’ : Env . vars L L’ : Location .
var Xl : NameList . var Ll : LocationList .
eq Env[() <- noLoc] = Env .
eq ([X,L] Env)[X,Xl <- L’,Ll] = ([X,L’] Env)[Xl <- Ll] .
eq Env[X,Xl <- L,Ll] = (Env [X,L])[Xl <- Ll] [owise] .

endfm

The next module, CONTINUATION, defines the sort Continuation, which is central to
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our continuation-based semantics. The constant stop is the empty continuation
and denotes a point in which there is no continuation, the end of the program:

fmod CONTINUATION is
sort Continuation .
op stop : -> Continuation .

endfm

The following module, VALUE, defines the infrastructure for values; the sorts Value
and ValueList denote the values and the list of values in the language. As usual,
a closure value records the list of formals, the body expression, and an envi-
ronment. It also stores the number of formals to avoid computing the number
of formals in every application. The delayed value records to which location a
delayed expression is bound, so that when forced we will be able to update that
location with the computed value:

fmod VALUE is including ENVIRONMENT . including CONTINUATION .
including GENERIC-EXP-SYNTAX .
sorts Value ValueList .
subsort Value < ValueList .
op noVal : -> ValueList .
op _,_ : ValueList ValueList -> ValueList [assoc id: noVal] .
*** values of the language
op noV : -> Value .
op [_] : ValueList -> Value .
op int : Int -> Value .
op bool : Bool -> Value .
op vector (_,_) : Location Nat -> Value .
op frozen (_) : Exp -> Value .
op closure : Nat NameList Exp Env -> Value .
op delayed(_,_,_,_) : Exp Env Location Value -> Value .
op kon(_) : Continuation -> Value .

endfm

A store is a table mapping locations to values, as the following module, called
STORE, shows. Similarly to environments, a store cell has the form [L,V] for any
location L and value V, and is the operation that concatenates two stores.
The update operation [ <- ] on stores associates a location list to a value list
element-wise.

fmod STORE is protecting LOCATION . including VALUE .
including ENVIRONMENT . including GENERIC-EXP-SYNTAX .
sort Store . op noStore : -> Store .
op [_,_] : Location Value -> Store .
op __ : Store Store -> Store [assoc comm id: noStore] .
op _[_<-_] : Store LocationList ValueList -> Store .
...

endfm

We finally define the module STATE, which puts together all the infrastructure
defined above. A program state is a term having sort MState. It is comprised of a
collection of state attributes concatenated with the operator , . The attribute m

denotes the store of the program, which will be updated as the program runs. The
attribute o contains a list of values that can be output when the program finishes.
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The attribute d encloses the distinguished top-level environment updated by
define expressions. The attribute n is the index of the next free location available
in the store. Finally, the attribute k denotes the continuation of the program:

fmod STATE is including ENVIRONMENT .
including STORE . including CONTINUATION .
sorts StateAttribute MState . subsort StateAttribute < MState .
op empty : -> MState .
op _,_ : MState MState -> MState [assoc comm id: empty] .
op m : Store -> StateAttribute .
op o : ValueList -> StateAttribute .
op d : Env -> StateAttribute .
op n : Nat -> StateAttribute .
op k : Continuation -> StateAttribute .

endfm

Next section uses this infrastructure in semantic definitions.

5.2 The Continuation Semantics

The operational semantics of a language is comprised of a set of axioms and infer-
ence rules [37, 20]. There are essentially two techniques for defining operational
semantics: structural (a.k.a. small-step) due to Plotkin [32], and natural (a.k.a.
big-step) due to Kahn [23]. Natural semantics is well known for its conciseness,
since the transition relation can make big steps of evaluation, but is also known
to be deficient in the support of concurrency, since it cannot capture intermedi-
ate interleavings of a program. Sequential languages are commonly defined using
natural semantics [29]. Therefore, we show a simple informal translation of an
inference rule given in big-step style to our semantics.

We take the IMP programming language defined in [37] as an example. In
this definition, Aexp is the set of arithmetic expressions, Loc denotes the set
of locations, � is the set of integer numbers denoting values4, and Σ consists of
the set of states, that is, functions σ: Loc → �. The transition relation →I ⊆
(Aexp × Σ) × � is defined inductively on the syntax of arithmetic expressions.
The semantics of addition, for instance, can be defined by the inference rule:

(a0, σ) →I i (a1, σ) →I j

(a0 + a1, σ) →I n
, where n = i + j.

As shown in [30], unconstrained use of structural and natural semantics can
lead to unmodular language formalizations. This means that the introduction
of a new construct in the language may require modification in rules of other
constructs, so one cannot hope that the definitions are definitive. As [30] shows,
the undisciplined use of configurations mixing program and instrumental devices
as the environment and store can lead to unmodular definitions.
4 We changed the set of values to be integers to make the examples uniform with our

infrastructure.
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We next informally instantiate the CPS (Continuation Passing Style) se-
mantics [34, 27] for the self-contained example of addition. The CPS semantics
represents memory states as an (AC) set of attributes whose sort is MState as de-
clared in the state infrastructure. This allows one to declare only what is needed,
i.e. a projection of the state, in derivations and therefore reduce coupling between
definitions and the infrastructure. Furthermore, the CPS semantics is based on
continuations. This makes the definition of control-flow extremely simple and
provides a systematic way for describing the semantics. The use of continuations
is pervasive in programming languages [21, 16, 4] and for all purposes here we
can consider them just as a stack. The dynamic semantics therefore retrieves
and pushes continuation items from and to the top of such stack.

In general, the semantics of each language construct can be defined with
two equations following a divide-and-conquer methodology. The first equation
breaks down an expression into sub-expressions and puts them back on the
continuation followed by a mark used to remember what need to be done to
complete the evaluation of the original expression. The second equation is in
charge of collecting the parts, removing the mark, and computing the value
denoting the evaluation of the original expression.

In CPS [27], addition of two expressions a0 and a1 can be defined as follows:

� k([plus(a0, a1) @ Env] -> K) = k((a0, a1 @ Env) -> {+} -> K)
� k([int(i),int(j)] -> {+} -> K) = k(int(i+j) -> K)

Note that many of these terms are yet to be defined. However, this simple ex-
ample gives an evidence that the transition relation →I can be implemented as
a term rewrite system. In fact, these axioms are implemented as unconditional
equations. Note also that we do not need to mention all the attributes in the
state. We just specify what we need in order for a derivation step to take place.
Here, for instance, we do not mention the store. The variable K stands for the
continuation that should be followed after evaluating plus(a0, a1) at environ-
ment Env. Note that after evaluating the addition in the domain of integers, the
resulting value will be available on the top of the continuation so another “com-
putation” can proceed independently. The following is a non-exhaustive list of
features of the CPS semantics:

– it uses an AC list of state attributes ;

– it is defined in a continuation passing style;

– expressions carry their evaluation environment.

The first and second design decisions aim at increasing modularity. The second
is also central to the definition of control sensitive features, and the third avoids
the tedious task of recovering the environment when leaving blocks.
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As we illustrate in the next section, the run of a program E is a se-
quence of the form s0 � s1 � · · · � sn, where � stands for term
rewrites, si (for 0≤ i ≤ n) has sort MState, s0 = (k([E @ noEnv] -> stop),

n(0),d(noEnv),m(noStore),o(noVal)) is the initial state, and sn is a state con-
taining the continuation k(V -> stop). The term [E @ noEnv] -> stop occurring
in s0 denotes the current (initial) continuation. It “says” that the expression E

waits to be evaluated in the environment noEnv, and nothing else remains to be
evaluated. One can understand the equational theory we define as the definition
of an abstract state machine implementing the natural semantics of Scheme.

Note about concurrency

Our CPS definitional methodology informally presented above is capable of
translating big-step declarations without compromising concurrent behavior.
This perhaps surprising claim [30, page 216] relies on the fact that rewrite rules
are applied modulo equations in a rewriting engine like Maude. Operationally,
equations are applied first, exhaustively in order to “cannonicize” the term/ state
to rewrite, then one rewrite rule is applied, then equations again, etc. In order
to preserve concurrent semantics, the right notion of thread/process interference
needs to be captured using rewrite rules.

One needs to identify which operations affect concurrent behavior. For non-
concurrent operations, the “state (term) graph” will commute and therefore
the intermediate states do not need to be observable. This technique essentially
corresponds to a partial-order reduction [17] on the language semantics. In the
case of a language like Java [14], only three operations are treated as concurrent:
read and write of shared variables, and acquisition of locks. Instead of equations,
the semantics of these three operations are defined as rewrite rules in Maude

using rl instead of eq. Except for these three cases, every other operation is
defined equationally. The small number of rewrite rules improves considerably
the performance of state search, as JavaFAN demonstrates [14].

Of course, one still needs to increment the infrastructure to support concur-
rency. Instead of keeping only one continuation in the memory state, one needs
to create as many continuations as threads spawned and associate to each thread
the set of locks that it holds.

Even though our methodology works well for concurrent language defini-
tions, in this paper we only show it at work on a sequential language definition.
However, we believe that Scheme, and specially its call/cc feature, is complex
enough to reflect the strength of our CPS definitional methodology.

5.3 Maude Functional Modules

Due to space limitations we describe only one important subset of modules in
the definition of SchemeM. The complete definition is available at [1].
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We first present the module GENERIC-EXP-K-SEMANTICS. The continuation [ @ ]->

is used throughout the semantics to represent expressions at a given environment.
Note that the evaluation of an integer literal is the corresponding integer value.
The evaluation of a name, however, needs the store in order to retrieve the asso-
ciated value. Note that only the continuation, top-level environment, and store
attributes “k, d, m” are used in that definition. The top-level environment is
searched if the name can not be reached from the current environment. The at-
tribute owise is essentially giving precedence to the previously defined equation.
The continuation [ @ | ]-> is used to define the evaluation of an expression list
into a value list. Finally, a store update occurs when a list of values appears in
front of a list of locations on the top of the continuation:

fmod GENERIC-EXP-K-SEMANTICS is including GENERIC-EXP-SYNTAX .
including EXP-LIST . including STATE . including VALUE .
op [_@_] ->_: ExpList Env Continuation -> Continuation .
op [_@_|_] ->_: ExpList Env ValueList Continuation -> Continuation .
op _->_ : ValueList Continuation -> Continuation .
op _->_ : LocationList Continuation -> Continuation .
vars E E’ : Exp . var El : ExpList . var V : Value .
var Vl : ValueList . var L : Location . var Ll : LocationList .
var X : Name . var Xl : NameList . var S : MState . var I : Int .
var K : Continuation . var M : Store . vars Env Env’ : Env .
eq k([I @ Env] -> K) = k(int(I) -> K) .
*** name expression
eq k([X @ Env[X,L]] -> K), d(Env’), m([L,V] M)
= k(V -> K), d(Env’), m([L,V] M) .
*** look for top-level definitions
eq k([X @ Env] -> K) , d([X,L] Env’) , m([L,V] M)
= k(V -> K) , d([X,L] Env’) , m([L,V] M) [owise] .
eq k([(E,E’,El) @ Env] -> K)
= k([E @ Env] -> [(E’,El) @ Env | noVal] -> K) .
*** atomic memory block write; useful for let and letrec
eq k(V -> [() @ Env | Vl] -> K) = k((Vl,V) -> K) .
eq k(V -> [(E,El) @ Env | Vl] -> K)
= k([E @ Env] -> [El @ Env | Vl,V] -> K) .
eq k(Vl -> Ll -> K) , m(M) = k(K) , m(M[Ll <- Vl]) .
eq k([ noExp @ Env ] -> K) = k(K) .

endfm

As usual, in the semantics of if-then-else we first evaluate the boolean expres-
sion and, depending on the resulted value, we evaluate the then expression or
the else. Note that we rely on the definition of the Maude if-then-else in the
last equation:

fmod IF-K-SEMANTICS is including IF-SYNTAX .
including BEXP-K-SEMANTICS .
op [if(_,_) @_] -> _ :

Exp Exp Env Continuation -> Continuation .
vars BE E E’ : Exp . var B : Bool .
var K : Continuation . var Env : Env .
eq k([ if BE then E else E’ @ Env] -> K)
= k([BE @ Env] -> [if(E,E’) @ Env] -> K) .
eq k(bool(B) -> [if(E,E’) @ Env] -> K)
= k(if B then [E @ Env] -> K else [E’ @ Env] -> K fi) .

endfm
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The following module, BINDING-K-SEMANTICS, is needed for the definition of bind-
ing expressions. The operator a has the sole purpose of separating name and
expression in a binding list and also of indicating the number of bindings in that
list:

fmod BINDING-K-SEMANTICS is including BINDING-SYNTAX .
including GENERIC-EXP-K-SEMANTICS . sort Aux .
op a : Nat NameList ExpList BindingList -> Aux .
var N : Nat . var Xl : NameList . var El : ExpList .
var X : Name . var E : Exp . var Bl : BindingList .
eq a(N, Xl ,El, (X = E, Bl)) = a(N + 1, (Xl,X), (El,E), Bl) .

endfm

The construct letrec, defined in the next module, first creates a new environment
containing all the names declared, and then evaluate the expressions in the
binding list. Finally, the binding is performed and the body evaluated in this new
environment. The attribute := in the conditional performs a pattern-matching
when the term on the right cannot be further reduced. We could remove this
conditional equation by passing the term a to the continuation. We decided to
keep it for the sake of readability:

fmod LETREC-K-SEMANTICS is including LETREC-SYNTAX .
including BINDING-K-SEMANTICS .
op letrec : Nat NameList ExpList Exp -> Exp . vars N # : Nat .
var Bl : BindingList . var E : Exp . var Xl : NameList .
var El : ExpList . var K : Continuation . var Env : Env .
ceq letrec Bl in E

= letrec(#,Xl,El,E) if a(#,Xl,El,none) := a(0,(),(),Bl) .
eq k([letrec(#,Xl,El,E) @ Env] -> K) , n(N)
= k([El @ Env[Xl <- loc(N ;; #)]] -> loc(N ;; #) ->
[E @ Env[Xl <- loc(N ;; #)]] -> K) , n(N + #) .

endfm

The module PROC-K-SEMANTICS below defines the semantics of procedures. The
operator function is a convenience to avoid computing the number of formals
for every call of the same function. Note that the equation for this operator
performs a source-to-source transformation on the program (term). The opera-
tion length, defined in the syntactic module NAME-LIST, computes the size of a
name list. The function abstraction evaluates to a closure, which is a value of
the language (it can be passed around or stored) that also saves the environ-
ment (recall that Scheme is statically-scoped). Function application is defined
with two equations. The first evaluates the expressions standing for the closure
and actual parameters. The second binds the actual parameters to their formals
in the environment saved in the closure. Then, the body is evaluated in the
resulting context:
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fmod PROC-K-SEMANTICS is including PROC-SYNTAX .
including GENERIC-EXP-K-SEMANTICS .
op function : Nat NameList Exp -> Exp .
op fn -> _ : Continuation -> Continuation .
var Xl : NameList . var El : ExpList . var F E : Exp .
var K : Continuation . var Env : Env . var M : Store .
vars N # : Nat . var Vl : ValueList .
*** abstraction
eq lambda(Xl) -> E = function(length(Xl),Xl,E) .
eq k([function(#,Xl,E)@Env] -> K) = k(closure(#,Xl,E,Env) -> K) .
*** application
eq k([(F(El)) @ Env] -> K) = k([(F,El) @ Env] -> fn -> K) .
eq k((closure(#,Xl,E,Env), Vl) -> fn -> K) , n(N), m(M)
= k([E @ Env[Xl <- loc(N;;#)]] -> K) , n(N + #),

m(M[loc(N;;#) <- Vl]) .
endfm

The next module illustrates the semantics of the constructs quote and unquote.
The expression quote casts a program fragment to data. It means that the en-
closed expression will not be evaluated when quote is. A frozen value includes
solely the string of text for a program. The expression unquote takes a frozen

value and evaluates it in the current context (Scheme provides other constructs
to facilitate the composition of program and data – see quasiquotation in [24] –
in lists, but we do not discuss these here):

fmod LITERAL-K-SEMANTICS is including LITERAL-SYNTAX .
including BEXP-K-SEMANTICS . including PROC-K-SEMANTICS .
including AEXP-K-SEMANTICS . including ENVIRONMENT .
var K : Continuation . var Xl : NameList . var Vl : ValueList .
var E : Exp . vars Env Env’ : Env . vars N : Nat . var V : Value .
op [eval_] -> _ : Env Continuation -> Continuation .
eq k([quote(E) @ Env] -> K) = k(frozen(E) -> K) .
eq k([unquote(E) @ Env] -> K) = k([E @ Env] -> [eval(Env)] -> K) .
eq k(frozen(E) -> [eval(Env)] -> K) = k([E @ Env] -> K) .
eq k([closure(N , Xl , E , Env) , Vl] -> [eval(Env’)] -> K)
= k((closure(N,Xl,E,Env), Vl) -> fn -> K) .

eq k(V -> [eval(Env)] -> K) = k(V -> K) [owise] .
endfm

Scheme’s call/cc is perhaps the most difficult to understand feature of this
language. Despite its complexity it can be defined very concisely in our seman-
tics. This happens mainly because we encode explicitly the continuation in our
specification. Note that we introduce a new value, kon( ), which encloses a con-
tinuation. Thus, continuations are regarded first-class citizens; it can be passed
around and stored. The expression callcc( ) is a special kind of function call.
When this expression is evaluated, it triggers a call to the function denoted by its
parameter, passing the current continuation as a value to this function. Further,
this continuation can be “called” like any other function, as the last equation
shows. When this happens, the stored continuation replaces the current and the
actual parameters are placed in the top of the new continuation:
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fmod CALLCC-K-SEMANTICS is including CALLCC-SYNTAX .
including AEXP-K-SEMANTICS . including GENERIC-EXP-K-SEMANTICS .
including PROC-K-SEMANTICS . var E : Exp .
var Xl : NameList . var X : Name . vars K K’ : Continuation .
vars Env Env’ : Env . var Vl : ValueList . var # : Nat .
op kon(_) : Continuation -> Value .
op [callcc] ->_ : Continuation -> Continuation .
eq k([(callcc E) @ Env] -> K) = k([E @ Env] -> [callcc] -> K) .
eq k((closure(#,Xl,E,Env)) -> [callcc] -> K)
= k(kon(K) -> [() @ noEnv | closure(#,Xl,E,Env)] -> fn -> K) .

eq k((kon(K),Vl) -> fn -> K’) = k(Vl -> K) .
endfm

The module VAR-ASSIGNMENT-K-SEMANTICS below is self- explanatory:

fmod VAR-ASSIGNMENT-K-SEMANTICS is including VAR-ASSIGNMENT-SYNTAX .
including GENERIC-EXP-K-SEMANTICS .
var X : Name . var E : Exp . vars Env Env’ : Env . var M : Store .
var K : Continuation . var L : Location . var V : Value .
op _=>_ : Location Continuation -> Continuation .
eq k([(set X = E) @ ([X,L] Env)] -> K)
= k([E @ ([X,L] Env)] -> L => int(1) -> K) .
eq k([(set X = E) @ (Env)] -> K) , d([X,L] Env’)
= k([E @ (Env)] -> L => int(1) -> K) , d([X,L] Env’) .

eq k(V -> L => K) , m(M) = k(K) , m(M[L <- V]) .
endfm

The next module, BLOCK-K-SEMANTICS, defines sequential composition of expres-
sions:

fmod BLOCK-K-SEMANTICS is including BLOCK-SYNTAX .
including GENERIC-EXP-K-SEMANTICS .
op ignore -> _ : Continuation -> Continuation .
var E : Exp . var El; : ExpList; .
var Env : Env . var K : Continuation . var V : Value .
eq k([{E} @ Env] -> K) = k([E @ Env] -> K) .
eq k([{E ; El;} @ Env] -> K)
= k([E @ Env] -> ignore -> ([{El;} @ Env] -> K)) .
eq k(V -> ignore -> K) = k(K) .
eq k(ignore -> K) = k(K) .

endfm

The module DELAYED-EXPRESSION-K-SEMANTICS implements the “promises” data-
type. A promise results from the evaluation of a delay( ) expression. In contrast
to quote, this expression stores the current environment which will be used to
evaluate the stored expression in the future. This data-type can be used to model
call-by-need. The construct force( ) is used to reclaim the promise. Note that
if such value is stored at some location, then the result of the evaluation will
be memorized at the same location. This avoids the expression to be evaluated
several times:
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fmod DELAYED-EXPRESSION-K-SEMANTICS is including PL-SYNTAX .
including DELAYED-EXPRESSION . including GENERIC-EXP-K-SEMANTICS .
var E : Exp . var Env : Env . var V : Value .
var K : Continuation . var L : Location . var M : Store .
op [force] -> _ : Continuation -> Continuation .
op [memo_] -> _ : Value Continuation -> Continuation .
eq k([delay(E) @ Env] -> K) = k(delayed(E, Env , noL , noV) -> K) .
eq k([force(E) @ Env] -> K) = k ( [E @ Env] -> [force] -> K) .
eq k(delayed(E,Env,noL,noV) -> [force] -> K) = k([E @ Env] -> K) .
eq k(delayed(E,Env,L,noV) -> [force] -> K)
= k([E @ Env] -> [memo( delayed(E,Env,L,noV) )] -> K) .

--- if the promise is evaluated
eq k(delayed(E,Env,L,V) -> [force] -> K) = k (V -> K) [owise] .
eq k(V -> [memo(delayed(E,Env,L,noV))] -> K) , m(M)
= k(V -> K) , m(M[L <- delayed(E,Env,L,V)]) .

endfm

The semantics of SchemeM is obtained by including the semantics of the fea-
tures discussed above (and others). We define an operator eval in terms of a
set of state attributes, denoting the “initial state”. In this set we add all the
state attributes required to perform an evaluation, and include the expression
(the program) on the top of the continuation, with an empty environment. The
evaluation terminates when the stop continuation is reached:

fmod PL-K-SEMANTICS is protecting PL-SYNTAX .
including AEXP-K-SEMANTICS . including BEXP-K-SEMANTICS .
including VECTOR-K-SEMANTICS . including LIST-K-SEMANTICS .
including IF-K-SEMANTICS . including LET-STAR-SEMANTICS .
including LET-K-SEMANTICS . including PROC-K-SEMANTICS .
including LITERAL-K-SEMANTICS . including CALLCC-K-SEMANTICS .
including LETREC-K-SEMANTICS .
including VAR-ASSIGNMENT-K-SEMANTICS .
including BLOCK-K-SEMANTICS . including LOOP-K-SEMANTICS .
including CASE-K-SEMANTICS . including IO-K-SEMANTICS .
including DEFINE-K-SEMANTICS .
including DELAYED-EXPRESSION-K-SEMANTICS .
op eval : Exp -> Value . op [_] : MState -> Value .
var V : Value . var S : MState . var I : Int .
var K : Continuation . var Vl : ValueList . var X : Name .
eq eval(E)
= [(k([E @ noEnv] -> stop)), n(1), m(noStore), o(noVal), d(noEnv)] .
eq [k(V -> stop), S] = V .
eq [k(stop), S] = noVal .

endfm

6 Performance Results

Figures 1 to 5 illustrate programs from a benchmark we used to evaluate the
performance of our interpreter. Figures 1 to 3 show different implementations
of the factorial function. Figure 3, for instance, shows the factorial program
implemented with callcc. Figure 4 shows insertion sort and Figure 5 illustrates
a program calculating all the permutations up to a natural number n. We created
empty functional modules declaring constant names standing for the names used
throughout these programs in order to avoid the need of using quotation marks.
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For instance, we declared fact-recursive , fact-iterative as constant names
inside a module including the specification of our interpreter.

{ define x = 10000 ;
letrec fact-recursive =

lambda (n) -> if eq(n , 1)
then 1
else times(n ,

fact-recursive(minus(n , 1)))
in (f x) }

Figure 1: Recursive factorial.

{ define x = 50000 ;
let fact-iterative = lambda (n) ->

let p = 1 , i = 2 in {
while leq(i , n) {

set p = times( p , i ) ;
set i = plus( i , 1 )

} ;
p

}
in fact-iterative(x)

}

Figure 2: Iterative factorial.

Table 1 shows the running times and the number of rewrites (inside parenthesis)
of various programs in a benchmark comparing our implementation of SchemeM

with that of Dr.Scheme, a well-known C implementation of Scheme. We used
a two 2.4GHz, 512KB cache processor machine with 4GB of memory running
Fedora Core release 1. The SchemeM programs are listed in [10]. Note that
the running times of the first four entries are close to that of Dr. Scheme. We
believe that the highly efficient implementation of lists in Dr. Scheme might
be the reason for the difference in the last 2 entries. We included in this table
entries to the recursive and iterative factorial of 300. These were also used in
[8], where they achieved results of 0.45 seconds and 23,122 rewrites, and 0.52
seconds and 33,511 rewrites for the recursive and iterative implementations,
respectively. Note, however, that [8] implements a different language using a
different methodology.

It is expected that compilation of equational specifications can lead to sig-
nificant speed-ups. We hope that in the foreseeable future, our approach can
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let g =
lambda (’v1,’v2) ->
let r = lambda (’kon) -> list (’kon , ’v1 , ’v2)
in callcc(r)

in let ’fact-callcc =
lambda (v) ->

let ’triple = g(1,v)
in let ’first = car(’triple),

’second=car(cdr(’triple)),
’third=car(cdr(cdr(’triple)))

in {
if eq(’third,0)
then ’second
else ’first (

list(’first , times (’second , ’third ) , minus(’third , 1 ) )
)

}
in ’fact-callcc(25000)

Figure 3: Factorial via callcc.

letrec
insert = lambda (x,l) ->

if null?(l)
then list(x)
else if leq( x , car(l))

then cons(x,l)
else cons(car(l), insert(x,cdr(l)))

, insert-sort = lambda (l) ->
if null?(l)
then emptyList
else insert(car(l), insert-sort(cdr(l)))

, genlist = lambda (n) ->
if eq(n , 0)
then emptyList
else cons( n , genlist( minus(n,1) ) )

in insert-sort ( genlist(200) )

Figure 4: Insertion sort.

not only serve to prototyping and analyzing programs, but also as a way to
deliver very efficient language interpreters. The source code and benchmarks of
SchemeM can be downloaded at [1].

7 Conclusions

This paper presents the semantics of the language Scheme (R5RS) as an equa-
tional theory in the Maude rewriting system. We claim that the definition is
highly modular and thus can be easily extended with new constructs. Similar
semantics for Java, JVM, OCamL, ML, and Haskel [2, 14] have already been
or are currently being developed in the Formal Systems Laboratory at the Uni-
versity of Illinois at Urbana-Champaign.
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letrec
permutations-up-to-n = lambda (n) ->

if eq (n , 0)
then list(emptyList)
else insert(n, permutations-up-to-n( minus(n , 1) ))

, insert = lambda (n,l) ->
if null?(l) then emptyList
else app(interleave(n,car(l)), insert(n,cdr(l)))

, interleave = lambda (n,l) ->
if null?(l) then list( list(n) )
else cons(cons(n,l), mycons(car(l),

interleave(n,cdr(l))))
, mycons = lambda (x,l) ->

if null?(l)
then emptyList
else cons(cons(x,car(l)), mycons(x,cdr(l)))

, app = lambda (u,v) ->
if null?(u) then v else cons(car(u), app( cdr(u), v ))

in permutations-up-to-n(7)

Figure 5: List of n! permutations over the first n natural numbers.

Program SchemeM Dr.Scheme mzScheme mode
fact-recursive(300) 0.040 (12,319) 0.000
fact-recursive(25000) 9.170 (1,025,019) 4.547
fact-iterative(300) 0.030 (11,749) 0.010
fact-iterative(25000) 7.440 (975,049) 6.299
fact-callcc(25000) 15.490 (2,100,197) 9.591
insert-sort(400) 43.840 (4,269,102) 0.110

permutations-up-to-n(8) 112.770 (12,776,619) 0.421

Table 1: Running time in seconds for a benchmark.

We strongly believe that these efforts might also set the ground for the de-
velopment of software analysis tools. Maude already provides the user with a
breadth-first search and LTL model-checker for theories developed in it. Re-
cently, our group implemented dimensional analysis of C programs [35]. In [34],
students defined the Hindley-Milner W [28] type inference algorithm in a two-
week assignment. We currently investigate the use of equational logics in the
development of static analyzers using some of the techniques presented in this
paper.. In particular, the definition of symbolic execution tools, abstract in-
terpreters [15, 22], and verification condition generators with their automatic,
instead of interactive, theorem provers [12, 33] for domain-specific logics.
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