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Abstract: The past few years have witnessed significant increase in DDoS attacks
on Internet, prompting network security as a great concern. With the attacks getting
more sophisticated, automatically reasoning the attack scenarios in real time and cat-
egorizing those scenarios become a critical challenge. However,the overwhelming flow
of events generated by Intrusion Detection System (IDS) sensors make it hard for se-
curity administrators to uncover hidden attack plans. This paper presents a semantic
vector space model to extract and categorize attack scenarios based on First-order Log-
ics (FOL) and linguistics. The modified Case Grammar is introduced to formalize the
heterogeneous IDS alerts into uniform structured alert streams. The attack resolution
is then used to generate attack semantic network. Afterwards, mutual information is
used to determine the alert semantic context range. Based on the attack ontology and
alert contexts, attack scenarios are extracted and the alerts are represented as attack
semantic space vectors. Finally text categorization technique are used to categorize the
intrusion stages. The preliminary results show our model has better performance than
the traditional alert correlations.
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1 Introduction

With the computer attacks have increased dramatically over the last several
years, the network security became a critical issue with the development of the
computer networks. Intrusion Detection System (IDS) has become an important
tool to secure the networks by detecting, alerting and responding to malicious ac-
tivity. Intrusion detection can be divided into misuse detection [Snort, Emerald],
and anomaly detection [NADIR, NIDES]. Misuse detection works by searching
for a set of known attacks that have been stored in the database. The knowledge
of the attacks is encoded as a set of signatures, which are patterns that occur
every time an attack takes place. Anomaly detection is based on a set of statis-
tical details that model the behavior of traffic or host machines. It monitors the
operations of network systems, and constantly compare the profiles with ones
stored in its database. If it detects what it considers to be a large deviation from
normal behavior, it signals an alarm. The contemporary commercial IDSs in-
clude both misuse detection and anomaly detection: ISS RealSecure [ISS], Cisco
Secure IDS [CISCO], etc.,
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Figure 2: Processing of IDS Semantic Vector Space Model

making it impossible to infer the hidden attack scenario knowledge automati-
cally.

Our current work is motivated by the needs to overcome the drawbacks men-
tioned above. In this paper, we exploit the semantics of attack behaviors, and
presents the semantic vector space model to extract and classify the attack sce-
narios automatically. Section 2 describes how to use our modified Case Grammar
to formalized alerts. Alert semantic network, 2-AASN, is introduced in Section
3. Section 4 describes the attack scenarios backward-chaining reasoning. Section
5 presents the simulation results, and Section 6 is the conclusion.

2 Alert Formalization

Fig.2 shows our IDS semantic vector space model. First, the number of du-
plicate raw alerts are decreased by aggregation according to same source IP
address, target IP address, and same consecutive time slot. Afterwards, based
on attack action-based semantic ontology and Attack Knowledge Bases(AKB)
which store the semantic information of the alerts, Principal-subordinate Conse-
quence Tagging Case Grammar(PCTCG) converters the aggregated alerts into
uniform streams. Attack resolution is then applied to the PCTCG streams to
generate 2 Atom Attack Semantic Network(2-AASN), where the correlation rules
are applied to derive the attack scenarios. On the other hand, based on the alert
context, the alerts are transformed into attack semantic vectors, from which text
categorization techniques are applied to derive different intrusion stages. Finally,
those the highly interpretable attack scenario results can be forwarded to the
security administrator.

2.1 Principal-subordinate Consequence Tagging Case Grammar

The aim of PCTCG is to normalize the aggregated intrusion alerts into uni-
form semantic representation of attack behavioral actions. PCTCG is based on
Case Grammar [Fillmore97]. The reasons for choosing Case Grammar are three
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Sentence Syntactic level Semantic level
Object Subject Agent Theme

The man moved the desk. the man the desk the man the desk
The desk was moved by the man. the desk the man the man the desk

Table 1: Syntactic vs. semantic

folds: First, Case Grammar structure specifies the semantic relations between a
verb and its slots. Second, Case Grammar cab be easily represented by seman-
tic network, which includes abundant semantic relations to express the alerts’
associations. Third, unlike the syntactic level, Case Grammar theory is deep se-
mantic, which means it does not change under the grammatical transformation.
As shown in Table 2.1, Subject role and Object role change in syntactic level when
the sentence switches from active to passive form. However, the Agent (Agent is
what causes the action of the verb) and Theme (Theme is the object in motion
or being located) roles in the semantic level remain the same.

Our assumption is that attack scenario can be regarded as a sequence of
attack events, each of which includes a certain attack action. When consider two
alerts (two actions), we use semantic roles to correlate them bi-literally. That
is, we apply the Principal-subordinate relation on two alerts. When one alert is
in the principal phase, we think it as a verb and replace the other alert with its
subordinate keywords (noun phases). If the subordinate keywords is in a specific
case relationship with the verb, these two alerts are correlated.

PCTCG is formally defined as G = {Mn, C, F, S}, where Mn is the alert
messages set of the IDS sensor with sensor name n, C specifies the set of possi-
ble semantic roles (slots) between alerts, F is the set of case fillers (legal value
for each slot), and S is subordinate keywords. In PCTCG, the semantic roles
chosen should reflect the semantic logic of attack actions. We define PCTCG
intrusion attack ontology, OT , based on the following questions that security
administrators would naturally ask: When did the actions happened? Where did
the actions happened? By which means did the actions happened? What results
did the actions caused? etc., Fig. 3 presents the hierarchy of concepts and rela-
tions. Each concept in the ontology is described by a set of attributes. Object
role means the receiving end of the action, and it has has object and be object of
attributes. The meronymy (has an object) and holonymy (is a part of) attributes
from part-whole role describe the situations that one entity contains other en-
tity. For every alert, we define some subordinate keywords which can describe
the alert background well.

In this paper, we use First-order Logic (FOL) [Brachman04] as the alert
representing and reasoning language. In FOL, there are three types of logic
symbols:
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Figure 3: PCTCG Ontology

– punctuation: “(”, “)”, and “.”

– connectives: “¬”, “∀”, “∃”, “ ∨ ”, “ ∧ ”, and “ ≡ ”. Note that “¬” is logical
negation, “ ∧ ” is logical conjunction, “ ∨ ” is logical disjunction, “∀” means
“for all...”, “∃” means “there exists...”.

– predicate: Predicates denote the semantic roles defined in OT .

Based on the alert semantic information, PCTCG streams of alerts: FINGER
0 query and FINGER redirection attempt are represented by predicate logic for-
mat:
E [Mn :(FINGER 0 query)snort ]=

λe.[∃v [command(C ::has object(FINGER daemon),third party,v)]∧C ::possible cause

(User account, password)∧C ::cause (FINGER command with username ′0 ′)

∧C ::consequence tagging(launching attack)∧S :(Finger query, third party)].

E [Mn :(FINGER redirection attempt)snort ]=

λe.[∃v [forward(C ::has object(FINGER query),third party,v)]∧C ::possible cause (gain info)

∧C ::cause (DDos, indirect connection)∧S :(Finger query, third party)].

where E is an entity described as “the event in which Finger daemon forward the
query to the third party”. Here, has object, possible cause, cause, consequence
tagging are the semantic roles,finger query, +info,DDoS, indirect connection,
launching attack fill the slots of the above roles respectively, and FINGER query
and thirty party are the subordinate keywords. Predict logic describe the con-
junction of the action predicate with other predicates described in the event.

2.2 Forward or Backward Chaining

A statement is called a Horn clause if it only contains at most one positive literal
[Brachman04]. When there is only one positive literal in the clause, it is called
the positive Horn clause. When there is no positive literal in the clause, it is
called the negative Horn clause. Here, we are only interested in the positive Horn
clause, because positive Horn clauses can be expressed as “if-then” statements.
For example, a positive Horn clause [¬x1,¬x2, y] can be thought as x1 ∧ x2 ⇒ y
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or “if both x1 and x2 happen, then y must happen”. By this way, we can write
the production rules (correlation rules) with positive Horn clauses.

Backward or forward chaining are two primary methods for reasoning the
knowledge from AKBs. Backward chaining starts with the hypothesis, and it
works backward from the hypothesis to the facts which support the hypothesis.
Forward chaining travels from the facts to the conclusions which follow from the
facts. To determine whether backward or forward chaining should be used de-
pends on the specific problems. If the facts in AKB can reach a large number of
entailments, and few of which you are interested, then backward chaining should
be adopted. Otherwise, forward chaining should be used. For the security admin-
istrator, what are known to him/her are the vulnerabilities of the networks and
hosts, the malicious attacks being happening, and the generated alerts; he/she
also wants to know if some specific attack attempts happened. Equivalently,
our system stores the vulnerabilities of the networks and hosts in AKB in ad-
vance, and converts the generated alerts into streams, and then into the positive
Horn clause facts. To extracting the attack scenarios, the system needs to check
whether or not the AKB together with the production rules can satisfy WH-
question related attack attempts: when, where, by which means,what results did
the attack actions? With the semantic roles defined in OT , we can pre-define the
reasoning goals. Furthermore, to guarantee real-time efficiency, reasoning should
be done without many unrelated conclusions. Therefore, we choose backward
chaining.

In our simulations, the backward chaining language Prolog is used for logic
programming in predicate logics. By backtracking, the inference engine provides
Prolog with powerful reasoning capacity [Teft89]. A Prolog program P is a set
of Horn clauses containing the facts F , production rules R, and goals G. The
general view of Prolog programs is that we are given a collection of F and R
and wish to deduce G from them [Nerode97].

Production rules are expressed as conditional sentences in the form:

IF semantic roles match THEN semantic correlation.

The semantic attack knowledge, alert’s frame structures, and production rules
are the input clauses to Prolog, and the reasoning goal is equivalent to procedure
call. For example, the related facts of alert FINGER requery can be represented
in Prolog as clauses:

1. object("finger requery", "finger daemon").

2. method("user account", "finger requery").

3. idsEvent("finger 0 query", "finger daemon", "finger daemon", "empty",

"user account", "empty", "empty", "finger with username 0" ).
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4. judge object(PAlert, SlotFiller, SAlert, Keyword, SlotName) :-

5. writef("(%, %,%)", SlotName, SlotFiller, Keyword),

6. object(SlotFiller, Keyword).

3 First-order Semantic Correlation Resolution

3.1 Conjunctive Normal Form

In this section, we will expound in detail how to automate a attack reasoning
procedure. In order to extract 2-AASN from alerts, we propose First-order Se-
mantic Correlation Resolution First-order Semantic Correlation Resolution is
based on the resolution for propositional Logic [Brachman04], which works on
a normalized representation called Conjunctive Normal Form (CNF). CNF is
a conjunctive of disjunctions of literals. For example, a CNF has the following
form:

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

where is propositional logic clause
Because PCTCG streams are the predicate logic literals of conjunction for-

mat, they must be transformed to CNF before resolution. According to the
DeMorgan’s law, (x1∧y1)∨ (x2∧y2) = (x1∧x2)∨ (y1∧x2)∨ (x1∧y2)∨ (y1∧y2),
we distribute conjunction over disjunction. For alert 1 FINGER 0 query and
alert 2 FINGER redirection attempt, their CNF are following:

CNF(alert1 , alert2)=

(has object(alert1 , FINGER daemon)∧ possible cause(alert1 , User account)

cause(alert1y, FINGER command with username ′0 ′)∧S(alert1 , Finger query))

∨(has object(alert2 , FINGER query)∧possible cause (alert2 , gain info)

∧cause (alert2 ,DDos & indirect connection)∧S :(alert2 , Finger query & third party))

=(has object(alert1 , FINGER daemon)∧ has object(alert2 , FINGER query))∨...,

∨(S(alert1 , Finger query))∧ S :(alert2 , Finger query & third party)).

3.2 First-order Attack Resolution

In this section, First-order attack resolution is proposed to generate 2-AASN
from alerts. First-order attack resolution works under the Principal-subordinate
relation. When one alert is in the subordinate phase, if its subordinate keywords
is in a specific relationship with the principle alert, these two alerts are correlated.
The process that subordinate alert is replaced with subordinate keyword is called
substitution.
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R3(Alert1, Alert2)

R3(Alert1, x2)

R1 � R2 ≡ R3

R1 � R2(Alert1, x2)

R1(Alert1, x1) R2(x1, x2)

Θ = x2/Alert2

Θ S(Alert2, x2)

Figure 4: Resolution tree

Definition 3.1 A substitution Θ is a set of pairs {x1/t1, x2/t2, . . . , xn/tn},
where xi, 1 ≤ i ≤ n, is the subordinate keyword of alert ti, and xi/ti means
that keyword term xi is substituted by its alert ti throughout the resolution.

Definition 3.2 If there exists a fact R2(x1, x2), First-order Attack Resolution
of two frame slots, R1(Alert1, x1) and S(Alert2, x2), is defined as following:

R1(Alert1, x1) ∧ S(Alert2, x2) |= R3(Alert1, Alert2)

where R1R2 ≡ R3, and the substitution Θ is x2/Alert2.

Fig. 4 shows the process of First-order attack resolution on Alert1 and Alert2.
Initially there are no connections between the case filler variables. When doing
resolution between them, we generally rename variables so that they have on
variables in common. Afterwards, we try to find if there exists semantic match-
ing among case fillers, whose semantic roles R1 and R2 can be fused into R3. Here
� is semantic role operator. Table 3.2 shows results of these operations. Some
semantic attributes cannot be operated, which are marked by ∅. If matching, the
substitution Θ is set to replace subordinate keyword to the alert, because sub-
ordinate keyword describes the alert’s attack background well. Fig.5 represents
an example of resolution tree.

4 Ontology-based Alert Categorization

In Natural Language Processing (NLP), text categorization means the assign-
ment of free text documents to one or more predefined categories based on their
contents. A number of statistical classification and machine learning techniques
has been applied to text categorization [Sebastiani02, Tong01]. In this section,
mutual information is used to determine the alert semantic context range. Based
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X X � C = C X � C = X X � C = EE X � C = EB

OH OH,LH,LB,MH,MB,PB,CB WM,WH PC,CC ∅
OB OB,LH,LB,MH,MB,PC,CC ∅ ∅ PB,CB
LH OH,LH,LB,MH,MB,WM,WH MB,WM,WH PC,CC ∅
LB LB,MH MH,WM,WH PC,CC PB,CB
MH LH,LB,MH,PC,CC LH,LB,WM,WH ∅ PB,BB
MB OB,LH,LB,MB,PB,BB LH,LB,WM,WH PC,CC ∅
PC PC,CC OH,LH,MH,WM,WH OB,LB,MB ∅
PB PB,BB OH,OB,LB,PB,CB,

WM,WH
∅ LH,MH,MB

WM/WH OH,OB,LH,LB,MH,MB,PC,
CC,PB,CB,WM,WH

∅ ∅ ∅

where OH: has object, OB: be object of, LH: has location, LB: be location of, MH: has
instrument, MB: by means of, PC: (possible) cause, PB: be (possible) caused of, CC: cause,
CB: be caused of, WM: meronymy, WH: Holonymy, EE:. Enable, EB: be enabled by.

Table 2: Semantic operations

EE(Alert2,Alert1)

EE(Alert2,user)

CC�OB≡EE

CC�0B(Alert2,user)

CC(Alert2,Indirect conn) OB(indirect conn,user)

Θ=user/Alert1

Θ S(Alert1,user)

OB(Alert2,Alert1)

OB(Alert2,daemon)

OB�OB≡OB

OB�0B(Alert2,daemon)

OB(Alert2,F inger req) OB(Finger req,daemon)

Θ=daemon/Alert1

Θ S(Alert1,daemon)

Figure 5: Example of resolution tree

on the attack ontology and alert contexts, alerts are represented as attack seman-
tic space vectors. Text categorization technique are then applied to categorize
the intrusion stages.

4.1 Alert Semantic Context Window Size

To guarantee reasoning the attack scenarios in real time, we need to determine
the alert semantic context range, the size of which is Alert Semantic Context
Window Size (ASCWS). Optimal ASCWS should provide enough semantic in-
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formation and restrain the correlation noise at the same time. If ASCWS is too
small, the correlated alerts would be absent. On the other hand, if it is too
large, the unnecessary computation and the correlation noise (unrelated alerts)
will be added. In this paper, mutual information is used to determine ASCWS
[Smadja93].

Definition 4.1 Suppose A and C are the sets of interested alerts and context
alerts respectively. They have values according to a probability distribution p(α)
and p(c) where α ∈ A and c ∈ C. Mutual information between α ∈ A and c ∈ C

at the distance d is defined to be:

MI(A,C, d) =
∑
c∈C

∑
α∈A

p(a, c, d)log2
p(a, c, d)
p(a)p(c)

where a 
= c, and p(a, c, d) is the probability that α occurs before or after c at the
distance d.

0 5 10 15 20 25 30 35 40 45 50
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Figure 6: Normalized Mutual Information vs. ASCWS

In Fig.6, three datasets, DDoS 1.0, DDoS 2.0, and DARPA 1999 week 2
Wednesday are simulated [MIT]. As shown in Fig. 6, the alert context window
size increases, the degree of the normalized mutual information decreases. At
some distances, the associations are very small and do not decrease significantly,
implying that there are almost no semantic associations between them. In our
simulations, we chose ASCWS as 35.

4.2 Alert Semantic Vector

Ontology-based text categorization is the classification of documents by using
ontology as category definition. In our approach, the process of alert catego-
rization is following: First, IDS alerts are converted into attack semantic vector
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Figure 7: A segment of attack ontology

by attack ontologies. Second, to classify the alert categorizations by calculating
similarity between an alert’s vector and a category vector. A semantic vector
is a vector which represents alert context of a log segment, while a category
vector is a vector which represents the characteristic of a whole intrusion cat-
egory. In this paper, three intrusion categories are divided: gain informaton,
making enable, and launching attacks. The category vector is calculated from
the feature vectors of the document assigned to the category. The features of
vectors are picked from the attack ontology. Fig. 7 shows a segment of attack
ontology. The feature’s weight is calculated by term frequency and the inverse
document frequency (TF-IDF) method [Buckley90].

TF-IDF multiplies the raw Term Frequency (TF) of a feature term in a alert
segment by the term’s Inverse Document Frequency (IDF) weight:

wkd = fkd · idfk = fkd · log
(

N

Dk

)

where tfkd is the frequency with which feature k, 1 ≤ k ≤ n, occurs in alert seg-
ment d; N is the total number of alert segments in the log corpus; and Dk is the
number of segments containing feature k. Afterwards, the vector is normalized
by:

Wk =
wkd√∑n
k=1 w2

kd

Cosine-based Similarity between two n dimensional semantic space vectors is
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measured by computing the cosine of the angle between these two vectors:

sim(−→i ,
−→
j ) = cos(−→i ,

−→
j ) =

−→
i · −→j

‖−→i ‖2 ∗ ‖−→j ‖2

In order to classify which intrusion category an alert a belongs to, the similarities
of a’s semantic vector and all category vectors are measured, and a belongs to
the category with the highest value.

5 Simulations

The datasets in our simulations are from the DARPA LLDOS 1.0 and 1999
week 2 Wednesday from MIT Lincoln Laboratory [MIT]. We use Snort [Snort]
as IDS sensor, and set the home net as 172.16.112.0, 172.16.115.0 for LLDOS 1.0
dataset. First, we replayed the tcpdump dataset and aggregated the generated
alerts according to the source IP address, target IP address, and the consecutive
time slot. Afterwards, 2-AASN of the alerts is built up, and the correlation
between them is extracted by the semantic attribute operation to form the attack
scenarios. Our simulation results showed that there were three attack scenarios
in LLDOS(attacker 202.77.162.213 → victim 172.16.115.20, 202.77.162.213 →
victim 172.16.112.10, and 202.77.162.213 → victim 172.16.112.50). In table 5,
for dataset LLDOS 1.0, after aggregation and scenario extraction, the number of
alerts had decreased to 29.1%, and 12.2% respectively. The correct classification
rates for three intrusion stages: gather information, making enable, and launching
attack are also shown. The attack scenarios of two datasets are shown in Fig. 8.

Reasoning time(s) 0.14 0.55 0.58 0.31 0.33 0.32 0.58 0.35 0.69

Inter-arrival time(s) 0.02 113.85 2.03 0.34 34.64 1.29 16.31 5.71 95.67

Table 3: Reasoning time of DARPA DDos1.0

Table 3 and Table 4 show the reasoning time and the alert inter-arrival time
of these two datasets. It is clear that the reasoning time is far less than the alert
inter-arrival time. There are very few alerts whose reasoning time is larger than
the inter-arrival time. The reasons are two folds:

1. Some attack actions can generate more than one alerts. For example, alerts
FINGER 0 query and FINGER requery are caused by the same FINGER
action.

2. A number of alerts may be generated due to the port scanning. In that case,
the inter-arrival time of these alerts are extremely small. However, we found
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0.06 0.1 0.08 0.12 0.14 0.17 0.21 0.22 0.02
0.28 0.3 0.59 0.19 0.21 0.68 0.5 0.23 0.25

Reasoning time(s) 0.26 0.25 0.03 0.26 0.29 0.57 0.28 0.29 0.86
0.93 1 0.62 0.67 1.08 0.46 0.45 2.23 -

58.47 0.01 0.02 415.39 0.01 249.22 6.98 0.01 0.15
285.79 170.7 258.6 41.7 230.17 85.47 1.21 1.17 160.1

Inter-arrival time(s) 139.7 69.5 92.19 57.9 1.62 292.09 8.16 40.2 206.1
1.12 1.21 9.8 0.27 0.23 1.2 1.62 113.5 -

Table 4: Reasoning time of DARPA 1999 week 2 Wednesday

Data set Aggregated Alerts in Gather Making Launch
alert scenario information enable attack

LLDOS 1.0 29.1% 12.2% 74% 71% 91%
99 week2 Wed. 45.9% 6.8% 70% 63% 85%

Table 5: Simulation results of alerts number in two alert datasets

the alerts generated by such port scanning action are normally not reasoned
to be part of the attack process, because they are uncorrelated with each
other.

Therefore, the system can efficiently automatically reason the attack plan.
We compared the performance of extracting attack scenario between FAR-

FAR and the Apriori method [Agrawal94]. Apriori is a method to extract the
highest possible association rules. Let I = {i1, i2, · · · , in} be a set of items, and
let D be a set of the transactions where each transaction T is a set of the items
such that T ⊂ I. An association rule is defined as: X → Y , where X ∈ I, Y ∈ I

and X ∩ Y = ∅. The association rule X → Y has the confidence degree c%
if c% of transactions in D containing X also contain Y . The association rule
X → Y has the support degree s% if s% of the transactions in D contain X ∪Y

[Agrawal94]. Given a set of transactions D, the problem of mining association
rules is to generate all the association rules that have s and c greater than the
user-specified minimum support and minimum confidence degrees, respectively.

However, in this paper, the Apriori method is not used for two reasons. First,
for those duplicated alerts indicating the DDoS attacks, the aggregation process
usually eliminates them causing very low support degree, which in terms causes
those alerts missing in the attack scenario. Second, for the very common alert,
such as “telnet” or “scan” alerts, since they can be associated with a number
of alerts, the association rules containing them will have very low “confidence”
degree, which leads to high “missing focus alerts” and “missing attack links”.
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(b) Attack Scenario Class of 99 week 2 Wed

Figure 8: Simulations of DARPA LLDOS 1.0 and 99 week 2 Wednesday dataset

In Figure 9, we compared the performance of extracting the attack scenario
between FAR-FAR and the Apriori method. It is clear that the Apriori method
had much higher “missing focus alerts” and “missing attack links” value. For
the false attack links, since Apriori extracted much less attack correlations than
FAR-FAR, it produced a lower value.

6 Conclusion

In this paper, we look to the semantics of attack behaviors for inspirations, and
propose FAR-FAR using linguistics approach. By PCTCG, the raw alerts were
converted into machine-readable uniform PCTCG streams. Then, the attack sce-
narios were extracted from 2-AASN. Based on the alert context, the alerts were
transformed into attack space vectors and were classified into three intrusion
categories automatically. Our simulation results show the scheme not only per-
forms as well as the traditional alert correlation technique, but also facilities the
intelligent semantic reasoning.
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(a) LLDoS 1.0 Simulation (FAR-FAR vs.

Apriori)

����������������	
���
��	��������������������������

�

�

�

�

�

 

!

"

#

$%� $% $%! �������

�����������	��
��
�

�
�������	��
��
�

�����������	������

�
����
��
�������
�

 

(b) 99 Week2 Wednesday Simulation (FAR-

FAR vs. Apriori)

Figure 9: Simulation comparison between FAR-FAR and Apriori method.
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