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Abstract: For many applications, it is important to evaluate trigger conditions on
streaming time series. In a resource constrained environment, users’ needs should ul-
timately decide how the evaluation system balances the competing factors such as
evaluation speed, result precision, and load shedding level. This paper presents a ba-
sic framework for evaluation algorithms that takes user-specified quality requirements
into consideration. Three optimization algorithms, each under a different set of user-
defined probabilistic quality requirements, are provided in the framework: (1) minimize
the response time given accuracy requirements and without load shedding; (2) min-
imize the load shedding given a response time limit and accuracy requirements; and
(3) minimize one type of accuracy errors given a response time limit and without load
shedding. Experiments show that these optimization algorithms effectively achieve their
optimization goals while satisfying the corresponding quality requirements.
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1 Introduction

In many situations an application system needs to react to preset trigger con-
ditions in a timely manner. For example, in network management systems, we
may want to quickly divert traffic from certain area once a congestion is dis-
covered; in road traffic control, we may want to immediately enact a camera
when a car crosses a certain line while the traffic signal is red; and in environ-
mental monitoring, we may want to start taking rain samples soon after certain
event happens. In this paper, we tackle this monitoring problem in which trigger
conditions need to be evaluated continuously on streaming time series.

Consider a stock market monitoring system where each stock si is a streaming
time series. A stock broker may register many requests for his/her clients such as
“notify Alice whenever stocks s1 and s2 are correlated with a correlation value
above 0.85 during a one-hour period.” The system is to monitor the streaming
stock data and trigger the actions in the requests whenever the corresponding
conditions are evaluated true.
1 Partly supported by the NSF grants IIS-0415023, IIS-0430165, and IIS-0242237.
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A perfect system would trigger the corresponding action without any delay
whenever a condition becomes true. However, delay is unavoidable in a resource
constrained environment. This delay can be alleviated by allowing approximate
evaluation and load shedding. We here define approximate evaluation as to allow
some conditions that are actually true (false) to be reported false (true, resp.),
and load shedding as to selectively skip a fraction of conditions from evaluation.

Approximation and load shedding may lead to errors. However, their results
may still be useful. These two methods have appeared in the literature in other
contexts as well, e.g., ANN [2] is developed to searching for approximate nearest
neighbors and a load shedding strategy is deployed in Aurora system [13, 1, 4].

Approximation can be useful in at least two ways. (1) End users may be satis-
fied with approximate results, but it is important that users are given the ability
to specify an error bound. (2) Or an application system may use approximate
results for optimization purposes. For example, a “speculative optimization strat-
egy” can use fast approximate results to prepare (e.g., prefetch) for subsequent
complex activities, while precise results can later be used to correct any error
made in the aggressive, speculative phase [14]. In this scenario, precision and
response time need to be balanced for achieving the best overall performance.

Response time, approximation error, and load shedding level are competing
factors. In this paper, we advocate that it’s the users’ needs that should ulti-
mately decide how the evaluation system balances them. That is, the evaluation
system should satisfy user-specified quality requirements in terms of these three
factors. In other words, a concept of quality of service is needed. The resulting
evaluation system is called quality-driven.

For a quality-driven system, it is important to have the ability to measure
the (intermediate) result quality during the evaluation process. However, it is
impossible to measure the accuracy (i.e., false positive and negative ratios) pre-
cisely when an approximation method is used. Indeed, the precise accuracy can
only be measured a posteriori, i.e., only after we know the actual evaluation
results of the trigger conditions. Instead, we measure accuracy in an a priori
manner, i.e., the false ratios are estimated before the conditions are evaluated.
To do this, we build a prediction model based on historical data analysis. At the
evaluation time, we use this prediction model to derive accuracy estimates that
are used to guide the evaluation.

Since the evaluation procedure is based on probabilistic prediction models,
our system cannot satisfy accuracy in a strict sense. Instead, we use a concept
similar to the soft quality of service (QoS) in computer networks [5]. That is,
the system guarantees with enough confidence that the expected accuracy will be
more than the given thresholds. Specifically, the system allows users to impose
the following quality constraints:
– Response time constraint: All evaluation results must be reported within a

given time limit.
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– Drop ratio constraint: The percentage of the conditions that are skipped (no
evaluation results are reported for them) cannot exceed a given threshold.

– Accuracy constraints: The expected false positive and negative ratios must
not exceed the given thresholds, with enough confidence (the confidence is
deduced from the prediction model).

Ideally, users should be able to impose any combination of the above con-
straints. But the evaluation system may not be able to satisfy all the constraints
simultaneously. To solve this problem, one way is to ask the users to give up on
some constraints (i.e., leave as unconstrained) and let the evaluation system to
do its best in terms of these constraints, while satisfying the imposed constraints
on the remaining parameters. In our scenario, if one constraint is left unspecified,
the system can always satisfy all other constraints. This leads to three possible
choices. For each choice, we provide an evaluation algorithm in this paper.

This paper makes three contributions. First, we initiate the study of a quality-
driven system for evaluating trigger conditions on streaming time series. Second,
we show how to use a prediction model to deduce the accuracy estimates. Third,
we provide quality-driven evaluation algorithms, and show their effectiveness.

The rest of the paper is organized as follows. In Section 2, we review re-
lated work. In Section 3, we formally define the trigger conditions and the qual-
ity parameters. In Section 4, we introduce our prediction model and define the
probabilistic quality constraints. We present evaluation algorithms in Section 5
and present our experimental results in Section 6. We conclude the paper with
discussion on future research directions in Section 7.

2 Related Work
The quality-driven aspect of our work is similar to the QoS concept in computer
networks [8, 12]. This paper adopts the QoS concept into trigger condition evalu-
ation on streaming time series and presents a basic design strategy for developing
such a quality-driven system.

Aurora [13, 1, 4] seems to be the only data stream processing system that
contains a QoS component. In Aurora, a user may register an application with
a QoS specification. Aurora tries to maximize an overall QoS function when it
makes scheduling and load-shedding decisions. In our system, we allow multiple
QoS parameters, and our system optimizes an unconstrained quality parameter
while satisfying users-imposed constraints on all the remaining parameters.

With limited resources, using approximation techniques in processing con-
tinuous queries on data streams has been studied in [7, 9, 6, 11]. However, most
approximate evaluation strategies only consider one quality aspect and neglect
the others. For example, Chain [3] minimizes the memory usage without consid-
ering the response time at all. Our work differs from all such work in that we
take different user-specified quality requirements into consideration.
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3 Preliminary

A time series is a finite sequence of real numbers and the number of values
in a time series is its length. A streaming time series, denoted s, is an infinite
sequence of real numbers. At each time position t, however, the streaming time
series takes the form of a finite sequence, assuming the last real number is the one
that arrived at time t. In this paper, we assume that all streams are synchronized,
that is, each stream has a new value available at the same time position.

In general, a trigger condition can be any user-defined predicate on streaming
time series, and needs to be evaluated after every data arrival. We denote a
set of conditions as C = {c1, c2, . . . , cn} and the reported evaluation result of
condition ci at time position t as r(ci, t). We denote the precise evaluation result
(the actual value of the given condition if a precise evaluation process is used) of
ci at time position t as R(ci, t). Obviously, we have r(ci, t) ∈ {True, False}, and
R(ci, t) ∈ {True, False}.2 Note that r(ci, t) may not be equal to R(ci, t) due to the
approximate nature of the system. Let CT denote all the conditions in C whose
reported results are True at time position t, i.e., CT = {ci ∈ C|r(ci, t) = True}.
Similarly, let CF = {ci ∈ C|r(ci, t) = False} and CD = {ci ∈ C|ci is dropped at
time position t}. We call CT , CF and CD the reported-True set, reported-False

set, and dropped set, respectively.
Using the above notation, we define four parameters:

1. Response Time, RT, is the duration from the data arrival time t to the time
when last condition ci, r(ci, t) = True, is reported.

2. Drop Ratio, DR, is the fraction of the conditions (among all the conditions
in C) that are dropped (not reported).

3. False Positive Ratio, FPR, of a reported-True set CT is the fraction of the
conditions (among all the conditions in CT ) whose actual values are False.
We define FPR = 0 if CT is an empty set.

4. False Negative Ratio, FNR, of a reported-False set CF is similarly defined.

Note that response time is defined only on conditions that are reported true.

4 Prediction Model

While it is easy and straightforward to measure the quality parameters RT
and DR at any time, it is difficult to measure the other two parameters, FPR
and FNR, without actually evaluating all the conditions. A practical solution is
to build a prediction model using historical evaluation results and calculate the
expected FPR and FNR based on the model in a probabilistic manner.

For each condition ci, we define a random variable Xi to state the outcome
of its evaluation. Clearly, Xi follows Bernoulli distribution Xi ∼ B(ρi), that is,
2 In the rest of the paper, we may omit t and use r(ci) (R(ci)) to denote the reported

evaluation result (actual value) of condition ci at time position t when the context
is clear.
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Xi =
{

1 if R(ci) = True

0 if R(ci) = False
with

{
P (Xi = 1) = ρi

P (Xi = 0) = 1 − ρi
.

In this paper, we make the simplifying assumption that all Xi’s (for 1 ≤ i ≤ n)
are mutually independent. Clearly, the mean ρi is also the expected value of
Xi. Depending on how the system treats ci, we see three different cases for
ρi: (1) ci is precisely evaluated. In this case, we have ρi = 1 if ci is evaluated
to be True and ρi = 0 if ci is evaluated to be False. (2) ci’s result is reported
based on an approximation procedure, e.g., prediction. In this case, ρi cannot
be known exactly. Instead, its estimate ρ̂i will be used. Specifically, ρ̂i can be
approximated by a normal distribution function Norm(μi, σ

2
i ), where the mean

value μi = X̄i and the variance σ2
i = (1−μi)μi

N , i.e., ρ̂i ∼ Norm(μi,
(1−μi)μi

N ).
(Here, X̄i denotes the sample mean, and N the sample size.) We may obtain the
above by analyzing the historical evaluation results for each condition, i.e., by
adopting a data mining approach. (Examples can be found in [10, 14].) (3) Too
little historical data to estimate ρi. For all the three cases, the estimate of ρi

can be viewed as a random variable that follows normal distribution as shown
below.

Case μi σ2
i Note

ci is precisely evaluated 1(or 0) 0 known True or False

ci is predicted μi
(1−μi)μi

N
from N samples

otherwise 0.5 0.25 unknown

With the prediction model, given a reported-True set of size m, we have:
E(FPR) ∼ Norm(μ, σ2), where μ =

∑m
i=1(1 − μi)/m and σ2 =

∑m
i=1 σ2

i /m2.
Here μi and σi take values from the above table accordingly. We can do the same
for E(FNR).

We are now ready to define false positive ratio (FPR) constraint and false
negative ratio (FNR) constraint by using the expected FPR and FNR.

Definition 1. An FPR-constraint is in the form of a pair τFPR = (θE , α) (0 ≤
θE , α ≤ 1). A set of reported-True conditions CT satisfies τFPR if P{E(FPR) ≤
θE} ≥ α. We call θE and α the expected-mean threshold and the confidence
threshold, respectively.

Symmetrically, we can define FNR-constraint τFNR and FNR-quality of a
reported-false set CF .

In addition to FPR- and FPR-constraints, which provide an effective way
to guarantee the overall evaluation quality, we allow the users to specify two
constraints for each individual condition ci such that ci cannot be reported as
true (or false) unless μi is greater (or less) than a given true (or false) quality
threshold. For simplicity, we assume that the users use a global threshold of 0.5
for all individual constraints in this paper.
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5 Optimization Algorithms

In this section, we provide optimization algorithms for the three optimization
problems mentioned in the introduction. Each problem requires a different strat-
egy. For simplicity, in all these algorithms, we assume that the precise evaluation
of each condition has the same cost. Thus, the response time can be measured
by the number of conditions that have been precisely evaluated (to either True

or False) before the last condition in the reported-True set is reported.
As mentioned earlier, the user imposes constraints on all quality parameters

except for one that is left unconstrained. The evaluation system will optimize
for the unconstrained parameter while satisfying the constraints on others. For
the cases that the unconstrained parameter is either FPR or FNR, we just give
the algorithm for the FNR unconstrained case since the other one is symmet-
ric. Thus, we study three optimization problems, namely, 1) minimize response
time given accuracy requirements and no drop, 2) minimize drop ratio given
response time and accuracy requirements, and 3) minimize false negative ratio
given response time and false positive error requirements and no drop.

5.1 Algorithm for minimizing response time
The algorithm is shown in Fig. 1. The basic idea is to increase the size of CT

and CF aggressively, and at the same time, try to report as early as possible
those trigger conditions in CT . We use a greedy algorithm for this purpose.

This algorithm needs to exam if the FPR-quality of a set CT = {c1, . . . , cm}
satisfies a given FPR-constraint τFPR, by comparing P{E(FPR) ≤ θE} to a
given threshold α. Since the expected value of FPR follows normal distribution,
we have

P{E(FPR) ≤ θE} = η(zT ), where zT =
∑m

i=1
(θE−(1−μi))√∑

m

i=1
σ2

i

.

In the above, η is the standard normal distribution function, i.e., η(x) =
1√
2π

∫ x

−∞ e−t2/2dt. Note zT value can be calculated incrementally.
The algorithm uses a list (called μList) that contains all the conditions

in C arranged in the order, say c1, . . . , cn, such that μ1 ≥ · · · ≥ μn. The
algorithm starts with using InitExpandCT to get initial report-True set CT .
(This InitExpandCT procedure obtains, without evaluating any conditions, an
initial set of conditions that can be reported true without violating the user
requirements.) The trigger conditions in CT are reported to be True. Both
the FPR-constraint τFPR and μ > 0.5 are satisfied by CT by the property of
InitExpandCT . These are the trigger conditions that can be reported True with-
out doing any precise evaluation. This is Step 1.

After Step 1, we need to precisely evaluate trigger conditions in order to
report them true (without violating either τFPR or μ > 0.5). In Step 2, as a
greedy algorithm, we pick up the condition having the highest μ value. This is
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Consts.: no drop and satisfy τFPR and τFNR

Goal: minimize response time (RT )
Step 1. Form and report the reported-True set:

Init. zT = 0, [zT , iT ] = InitExpandCT (zT ) and report c1, . . . , ciT −1 as True.
Step 2. Process all conditions ci with (μi > 0.5):

Do loop until (μiT ≤ 0.5) or (iT > n)
{ - Precisely evaluate ciT . Two outcomes:

o If ciT is evaluated False, update zF with an extra reported-False condi-
tion. Continue the loop with iT = iT + 1;

o If ciT is evaluated True, update zT with an extra reported-True condition,
[zT , ΔT ] = ExpandCT (zT , iT + 1), and report ciT , . . . , ciT +ΔT as True.
Continue the loop with iT = iT + ΔT + 1.

}
Step 3. Form the reported-False set:

Init. zF = 0, [zF , iF ] = InitExpandCF (zF )
Step 4. Process all conditions ci with (μi ≤ 0.5) :

Continue to use the same iT from Step 2, do loop until (iT > iF )
{ - Precisely evaluate ciT . Two outcomes:

o If ciT is evaluated True, report ciT as True and continue the loop with
iT = iT + 1;

o If ciT is evaluated False, update zF with an extra reported-False condi-
tion, [zF , ΔF ] = ExpandCF (zF , iF ). Update iF = iF − ΔF and continue
the loop with iT = iT + 1.

}
Step 5. Report as False all those conditions that were not reported True.

Figure 1: Algorithm MinResponse.

the one immediately after the conditions in the initial CT . Hence, we pick it (i.e.,
ciT ) up for precise evaluation. If the condition is evaluated True, we add it to CT

and try to expand CT without precise evaluation again (by calling Procedure
ExpandCT ), report the conditions in the expended CT and keep going. If the
condition is evaluated False, then we just keep going to precisely evaluate the
next condition.

During Step 2, if we run out of conditions in μList, we can stop (just report
all the conditions that were evaluated False as false and thus achieve FNR = 0).
If the μList is not exhausted, then we need to reach the first trigger condition
in the μList such that its μ value is no greater than 0.5.

Once we only have conditions with μ no greater than 0.5, we need to precisely
evaluate them and report them as soon as they are evaluated True. However,
there is a chance we may be able to report them False. Therefore, Step 3 tries
to get the maximum set of trigger conditions to report False without precise
evaluation (note that all the conditions that were evaluated False need to be
taken into account, hence the zF value may not start with 0 in Step 3).

After Step 3, if we still have trigger conditions that need to be processed
(i.e., if iT≤iF ), we will pick them up for evaluation. Since we want to minimize
the response time for the conditions in CT , we precisely evaluate the conditions
starting from those with greater μ values. Again, if any condition is evaluated
False, we will try to expand CF .
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5.2 Algorithm for minimizing drop ratio
In this optimization problem, we have a deadline to report all conditions in the
reported-True set, which is exactly the limit on the total number of conditions
that can be precisely evaluated. In addition, we still want both CT and CF to
satisfy the given quality constraints (i.e., τFPR and τFNR). In this case, we want
to reduce the number of conditions that are dropped, i.e., minimizing DR. Fig. 2
shows the pseudo-code for our algorithm.

Consts.: response time θRT , τFPR and τFNR

Goal: minimize drop ratio (DR)
Step 1. For the reported-True set CT : init. zT = 0, [zT , iT ] = InitExpandCT (zT ).
Step 2. For the reported-False set CF : init. zF = 0, [zF , iF ] = InitExpandCF (zF ).
Step 3. Expand CT and CF :

3.1. Let z′
T = zT and update zT with an extra reported-True condition, then

[zT , ΔT ] = ExpandCT (zT , iT )
3.2. Let z′

F = zF and update zF with an extra reported-False condition, then
[zF , ΔF ] = ExpandCF (zF , iF )

3.3. Do loop until
(
(μiT +ΔT

≤ 0.5))&(μiF −ΔF
≥ 0.5)

)
or (iT > iF ) or (θRT is

reached).
{ - If ΔT > ΔF , k = iT + ΔT , else k = iF − ΔF ;

- Precisely evaluate ck. There are two outcomes:
o If ck is evaluated True, do Step 3.1 again, then continue the loop;
o If ck is evaluated False, do Step 3.2 again, then continue the loop;

}
Step 4. Clean up the uncertain conditions: Precisely evaluate all conditions whose μ

values are 0.5 until θRT is reached.
Step 5. Report all conditions that were evaluated True or are in CT as True. Report

all conditions that were evaluated False or are in CF as False. The remaining
conditions are dropped.

Figure 2: Algorithm MinDrop.

The difference between this algorithm and MinResponse lies in what we em-
phasize on. In MinResponse, we want to report the trigger conditions in CT as
soon as possible (to minimize the response time). For that, we always precisely
evaluate, as early as possible, trigger conditions that are most likely to be True.
However, if we use the same strategy, we are not aggressively increasing the size
of CF , which may be more beneficial to decrease the number of dropped condi-
tions. Therefore, to minimize DR, we also need to precisely evaluate, as soon as
possible, the trigger conditions that are most likely to be False.

In MinDrop, we try to maximize CT and CF at the same time. Steps 1 and
2 respectively get the initial CT and CF without precisely evaluating any con-
dition. In Steps 3.1 and 3.2, we obtain the potential increases of CT and CF

if we add an additional reported-True (reported-False) condition into CT ( CF ,
respectively). If CT can increase faster, we will precisely evaluate the condition
(not in CT ) that is most likely to be True. Otherwise, we precisely evaluate the
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one that is most likely to be False. After each precise evaluation, we will again see
the potential increases to CT and CF and repeat the process. This is Step 3.3.

We will continue Step 3 until either the response deadline is reached or all
the remaining trigger conditions have μ values equal to 0.5. In the former case,
we just drop all the trigger conditions that are in neither CT nor CF . In the
latter case, we will just need to precisely evaluate all these trigger conditions
until θRT is reached. This is Step 4.

5.3 Algorithm for minimizing FNR

Our last optimization situation is when there are a response time deadline and
a quality constrain on CT only (i.e., τFPR). Different from the second problem,
this one does not allow any drop of conditions, i.e., all trigger conditions must be
reported either True (in CT ) or False (in CF ). The optimization target is to min-
imize the false negative ratio FNR, and hence, there is no quality constraint on
set CF and no individual quality constraint for each condition ci in CF (i.e., we
do not require μi < 0.5 for each condition ci in CF ). Fig. 3 shows this algorithm
in pseudo-code.

Consts.: response time θRT , DR = 0, and τFPR

Goal: minimize false negative ratio (FNR)
Step 1. Form the reported-True set CT : init. zT = 0, [zT , iT ] = InitExpandCT (zT ).
Step 2. Decrease the uncertainty in CF : do the following until θRT is reached or

(iT > n) or (μiT ≤ 0.5):
{ - Precisely evaluate ciT . There are two outcomes:

o If ciT is evaluated False, continue the loop with iT = iT + 1;
o If ciT is evaluated True, update zT with an extra reported-True condition,

[zT , ΔT ] = ExpandCT (zT , iT + 1), and continue the loop with iT = iT +
ΔT + 1.

}
Step 3. Report all the conditions that were evaluated True or are in CT as True,

and report the remaining conditions as False.

Figure 3: Algorithm MinFNR.

This algorithm turns out to be the simplest. Since no drop is allowed, to
reduce the false negative ratio, we want to spend time on trigger conditions
that is most unlikely to be False. So the algorithm first looks for an initial
CT . After that, the trigger condition immediately after the conditions in CT

is most unlikely to be False, and hence we precisely evaluate that condition. If
this condition turns out to be False, we just pick up the next one for precise
evaluation. If it turns out to be True, we expand CT and repeat. When the
response time deadline is reached, we just report CF to be all conditions that
are neither reported True (in CT ) nor precisely evaluated.

1405Gao L., Wang M., Wang X.S.: Evaluating Trigger Conditions ...



6 Experimental Results

This section presents the experimental results.
Data set: 100 synthetic streaming time series are used in the experiments,

each being independently generated with a random walk function. For example,
stream s = 〈v1, v2, . . . , 〉, vi = vi−1 + rand , where rand is a random variable
uniformly distributed in the range of [−0.5, 0.5].

Condition set: 400 conditions are defined over the above 100 streams.
Specifically, each condition may contain one or more correlation (or distance)
functions, and each function is defined on two randomly selected streams.

A prediction model for each condition is built based on the method in [14]
on the data sets generated above. We assume that when a condition is precisely
evaluated, the corresponding feature values (used for prediction) are extracted.
When the prediction of a condition is required, we will look back in time to find
the nearest time position when the condition was precisely evaluated. We use
the extracted feature values and the prediction model to predict the probability
for the condition to be true.

Performance parameters: We use the four quality parameters described
in Section 3 (i.e., RT , DR, FPR and FNR) to measure the performance of our
algorithms. Note that DR, FPR and FNR are all real numbers in [0, 1] and can be
computed precisely by comparing the reported results with the precise evaluation
results (done for the purpose of performance evaluation). The response time is
measured by the number of conditions that are precisely evaluated (either to
True or False) before all the conditions in the reported-True set are reported.
By using this measure (instead of using real time), we can clearly separate the
overhead of the optimization procedure and the condition evaluation time.

6.1 Results for minimizing response time
This set of experiments is to assess MinResponse that minimizes the response
time under quality constraints on CT and CF and no drop allowed. Here, we
set the confidence threshold α = 95% for both FPR- and FNR-constraints and
DR = 0. We vary the expected-mean threshold θE from 0.05 to 0.3 and execute
the algorithm for 1,000 time positions in each run.

Fig. 4(a) and (b) show the evaluation quality achieved in terms of actual FPR
and FNR. The two plots of Fig. 4(a) present the actual FPR and FNR values
at each time position for 200 time positions with θE = 0.01 (for both τFPR

and τFNR). We can see that these actual FPR (FNR) values are in the range
[0.01, 0.04] with a mean of 0.008 (which is very close to the given θE = 0.01).
Fig. 4(b) presents how well FPR (FNR) constraints with various mean thresholds
(varying from 0.01 to 0.3) are satisfied by our algorithm. We calculate the average
of the actual FPR (FNR) values over 1000 time positions for each run, and
we can see that the average is either below or very close to the corresponding
required expected-mean threshold θE for all the runs.
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Figure 4: Quality (and performance) of MinResponse.

Fig. 4(c) shows the performance of MinResponse in terms of response time.
For comparison, a naive algorithm is implemented: It randomly picks up a con-
dition for precise evaluation, until it has reported k Trues, where k is the number
of real Trues in the reported-True set from MinResponse (i.e., k is the number
of cis such that R(ci) = True and ci ∈ CT ). This is to make the naive algo-
rithm report the same number of true conditions. We compare the response
time of MinResponse with this naive algorithm for different runs with θE val-
ues in [0.01, 0.3]. We can see that MinResponse consistently outperforms the
naive algorithm. Note that the response time of MinResponse decreases as θE

increases, because the greater the θE value, the coarser approximation is allowed,
and thus fewer precise evaluations are needed.

The performance gain of MinResponse is significant. For example, given
θE = 0.01, MinResponse only takes about 1/15 time of the naive algorithm,
but maintains the quality of FPR and FNR at around 1%. When θE is set to
higher values, the performance gain becomes more significant.
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Figure 5: Quality and Performance of MinDrop.

6.2 Results for minimizing drop ratio
This set of experiments is to assess the performance of Algorithm MinDrop, which
aims at minimizing the drop ratio under quality constraints for both CT and CF

and a response time limit (deadline). Here, we set θE = 0.01 and α = 0.95 (for
both τFPR and τFNR), and vary the response time limit θRT for different runs
over 1000 time positions.

Fig. 5(a) shows the results from one run in detail. In this run, θRT is set to be
equivalent to 20% of the time for a full scan. More precisely, since we have a total
of 400 conditions, θRT is set to be the time to precisely evaluate 80 conditions.
We can see from Fig. 5(a) that MinDrop achieves the quality constraints very
well (top two plots of Fig. 5(a)) with an average drop ratio of 14% (bottom plot
of Fig. 5(a)). That means among the 400 conditions, only about 55 conditions
are dropped on average.

Fig. 5(b) presents how the FPR (FNR) constraints are satisfied in various
runs with different deadlines ranging from 10% to 50% of the full scan time.
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The average actual FPR (FNR) is close to the required mean threshold (0.01)
in most cases. Of course, the tougher the deadline (i.e., smaller θRT value), the
greater the actual FPR (FNR) is.

Fig. 5(c) compares the drop ratio of MinDrop with a naive algorithm, which
precisely evaluates all conditions in a random order until the deadline is reached.
We can see that MinDrop out-performs the naive algorithm significantly.

6.3 Results for minimizing FNR
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Figure 6: Quality and Performance of MinFNR.

This set of experiments is to assess the performance of Algorithm MinFNR,
which aims at minimizing FNR under a quality constraint for CT and a response
time limit (deadline) when no drop is allowed. Here, we set θE = 0.01 and
α = 0.95 for τFPR, and vary the response time limit θRT for different runs over
1000 time positions.

Fig. 6(a) presents the results from one run in detail. In this run, θRT is set to
be 20% of full scan (same as the experiment setting in the previous subsection).
We can see that MinFNR achieves very high quality for CF with a mean FNR
of 0.024 (bottom plot of Fig. 6(a)) while satisfying the quality constraint on CT

very well with a mean FPR of 0.006 (top plot of Fig. 6(a)).
Fig. 6(b) compares MinFNRwith the naive algorithm described in the previous

subsection. We can see that MinFNR provides much better FNR quality (i.e.,
smaller FNR value) than the naive algorithm. Also, when more time is allowed
(i.e., greater θRT values), the FNR achieved by MinFNR decreases very quickly.
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7 Conclusion

In this paper, we proposed a framework for designing trigger condition evaluation
system that considers user-specified quality requirements. We used statistical
analysis to derive the likelihood of a condition to be true at a time position.
By using this likelihood and the associated confidence (due to finite sampling),
we estimated the quality of our approximate answers. Based on this prediction
method, we designed algorithms for three different optimization problems. Our
experiments showed that these algorithms are effective in reaching corresponding
optimization goals.

It will be interesting to see how our quality-driven strategy works in different
settings. For example, we may define the optimization goal based on a global
function computed from several quality measures, or we may form complex trig-
ger conditions based on a few consecutive basic windows.
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