
Online Mining Changes of Items over Continuous
Append-only and Dynamic Data Streams

Hua-Fu Li∗
Department of Computer Science and Information Engineering

National Chiao-Tung University
1001, Ta Hsueh Road, Hsinchu 300, Taiwan

hfli@csie.nctu.edu.tw

Suh-Yin Lee
Department of Computer Science and Information Engineering

National Chiao-Tung University
1001, Ta Hsueh Road, Hsinchu 300, Taiwan

sylee@csie.nctu.edu.tw

Man-Kwan Shan
Department of Computer Science

National Chengchi University
64, Sec. 2, Zhi-nan Road, Wenshan, Taipei 116, Taiwan

mkshan@cs.nccu.edu.tw

Abstract: Online mining changes over data streams has been recognized to be an important
task in data mining. Mining changes over data streams is both compelling and challenging. In
this paper, we propose a new, single-pass algorithm, called MFC-append (Mining Frequency
Changes of append-only data streams), for discovering the frequent frequency-changed items,
vibrated frequency changed items, and stable frequency changed items over continuous
append-only data streams. A new summary data structure, called Change-Sketch, is developed
to compute the frequency changes between two continuous data streams as fast as possible.
Moreover, a MFC-append-based algorithm, called MFC-dynamic (Mining Frequency Changes
of dynamic data streams), is proposed to find the frequency changes over dynamic data streams.
Theoretical analysis and experimental results show that our algorithms meet the major
performance requirements, namely single-pass, bounded space requirement, and real-time
computing, in mining data streams.

Keywords: Data streams, change mining, single-pass algorithm
Categories: H.2.8

1 Introduction

In recent years, database and knowledge discovery communities have focused on a
new data model, where data arrives in the form of continuous streams [Babcock, 02]
[Golab, 03]. It is often referred to as data streams or streaming data. A data stream is
a massive, open-ended sequence of data elements continuously generated at a rapid

∗ Corresponding author.

Journal of Universal Computer Science, vol. 11, no. 8 (2005), 1411-1425
submitted: 10/3/05, accepted: 5/5/05, appeared: 28/8/05 © J.UCS

rate. Many real-world applications generate large amount of data streams in real time,
such as sensor data generated from sensor network, transaction flows in retail chains,
Web record and click-streams in various Web applications, performance measurement
in network monitoring and traffic management, call records in telecommunications,
etc.

Online mining of frequent items (or item-sets) over data streams for knowledge
discovery has become a novel and rapidly growing research direction [Charilar, 02]
[Demaine, 02] [Ganti, 02] [Manku, 02] [Cormode, 03] [Giannella, 03] [Jin, 03] [Karp,
03] [Li, 04] [Li, 05], and has posed new challenges [Babcock, 02] [Golab, 03]: First,
each data element over data streams should be examined at most once. Second, the
memory usage in the process of mining data streams should be bounded even though
new data elements are continuously generated from the stream. Third, each data
element in the stream should be processed at fast as possible. Fourth, the analytical
results generated by the online algorithms should be instantly available when user
requested. Finally, the errors of results should be constricted as small as possible.
Consequently, the continuous nature of data streams makes it essential to use the
online algorithms which require only single scan over the stream for knowledge
discovery. The unbounded nature makes it impossible to store all the data into main
memory or even secondary storage. This motivates the design of the in-memory
summary data structure with small footprints that can support both one-time and
continuous queries. In other words, single-pass data stream mining algorithms have to
sacrifice the correctness of its analytical results by allowing some counting errors.
Hence, traditional multiple-pass data mining algorithms studied for static datasets
cannot be easily used in such a streaming environment.

Change mining on static datasets has been studied in the last ten years [Dong, 99]
[Ganti, 99] [Liu, 00] [Dong, 03]. It has become one of the core sub-areas of data
mining. Ganti et al. [Ganti, 99] proposed a framework for quantifying the deviation of
the induced models, such as two decision tree classifiers, clusters, and frequent
itemsets, in the large datasets. The quantify measure is the amount of work required to
transform one model into the other. Dong et al. [Dong, 99] proposed an algorithm to
find the emerging patterns, and used these patterns to characterize the changes from
one dataset to the other. Liu et al. [Liu, 00] proposed a method to discover the
changes in the new data with respect to the old data, and the old decision tree models,
and generate the exact changes that have occurred to the user. These studies are
focused on the effects of data changes on data mining models and algorithms,
whereas the paper is focus on the problem of measuring and understanding the
changes of data directly rather than measuring the effects on data mining models.
Furthermore, the proposed algorithms, MFC-append and MFC-dynamic, discover the
changes of items over continuous data streams, not in static datasets.

The motivation of the problem of online mining changes of items between
distributed data streams comes from the context of online transaction flows in large
organizations. These companies generate the millions of records every day. For
example, Google handles 70-110 millions searches, AT&T produces 250-300 million
call records, and WallMart which is composed of thousands of stores, and records 20-
40 million transactions in a single day. With the computation model of distributed
data streams presented in Figure 1, a data stream processor and the in-memory
summary data structure are two major components in the distributed data streaming

1412 Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

environment. The streams in questions are sequences of transaction data which is
composed of the records in the form of <StoreID, Timestamp, TransactionID, Items>.
In other words, a transaction record is a purchasing log generated by a customer in a
specific time and store. These transaction flows sent to the server, and we are
interested in finding the frequent frequency changes in items between pairs of data
streams purchased by the most customers in some period of time. Note that the buffer
mechanism can be optionally set for temporary storage of recent transactions from the
transaction data streams.

In this paper, we study the problem of online mining frequent frequency changes
of items between pairs of continuous, high-volume, open-ended data streams. The
summary of our results are described as follows. Three types of frequency change are
proposed: frequent changed-item (or FCI in short), vibrated frequent changed-item
(or VFCI in short), and stable frequent changed-item (or SFCI in short). A new
summary data structure, called change-sketch, is developed to store the essential
information over the pairs of data streams. Two single-pass algorithms, MFC-append
and MFC-dynamic, are proposed to find the patterns over data streams. The best space
bound we achieve for this problem is Ω(mlog(n/m)), where n is the union size of two
data streams, and m is the size of the working bucket for frequent changed-items
mining. Moreover, the proposed algorithms take O(log(n/m)) time in worst case to
process each new data element, but only O(1) amortized time per data element.

The remainder of the paper is organized as follows. The data stream model and
problem definition are discussed in Section 2. Algorithms MFC-append and MFC-
dynamic are described in Section 3. Performance evaluation is presented in Section 4.
Section 5 concludes the study.

Figure 1: Processing model of distributed data streams

2 Preliminaries

In this section, we discuss the data stream model, the definition of online data mining
for changes of items, and the goal of the proposed algorithms.

Answers
(Approximate)

Stream
Processing

Engine

 Data Streams

Buffer

Store 1
Store 2

Store k

In-Memory Summary
Data Structure

1413Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

2.1 Data Stream Model

Let Ψ = {x1, x2, …, xm} be a set of literals, called data items (or items in short). A data
stream is an infinite sequence of data items, where the items arrive in some order, and
may be seen only once. It is also referred to as item-stream. In the item-stream model,
we focus on two performance issues: workspace required in main memory, which is
measured as a function of the input union size n of two data streams, and the time to
process an incoming data item over the streams.
 In this paper, we assume that the data arrives in the unordered1 form, and the same
value can appear multiple times within the streaming data. This is termed the
unordered cash register, unordered aggregated model [Babcock, 02] [Golab, 03].

Definition 1. A data stream is called an append-only data stream (or ADS in short) if
it has no updates and deletions; a data stream is called a dynamic data stream (or
DDS in short) if there are removal as well as addition of data items.

2.2 Problem Statement

Let Ψ = {x1, x2, …, xm} be a set of data items. Two parallel item-streams are P = <p1,
p2, …, pi, …>, and Q = <q1, q2, …, qj, …> with time-varying data rates, where pi, qj ∈
Ψ.

Definition 2. The frequency of a data item x in an item-stream S over a time period T
is the number of items in T in which x occurs, and is denoted as frequency(x, S, T).
The size of T is n, the total number of data items so far in T.

Definition 3. The changed support of a data item x is the difference in frequency
between two data streams P and Q divided by the total data items observed in T, and
is denoted as changeSup(x, T).

Definition 4. The changed rate of a data item x is the number of frequency vibration2
divided by the total time-points observed in T, and is denoted as changeRate(x, T),
where the time-point is a basic unit of time over which the system collects data, e.g.,
second or minute.

Definition 5. A data item x is called a frequent frequency changed item (or FFCI in
short) if changeSup(x, T) ≥ mcs, where mcs is a user-defined minimum changed
support threshold in the range of [0, 1]; it is a sub-frequent frequency changed item
(or SFFCI in short) if ase ≤ changeSup(x, T) < mcs, where ase is a user-defined
approximate support error threshold in the range of [0, mcs]; it is an infrequent
frequency changed item (or IFFCI in short) if changeSup(x, T) < ase.

1 The streaming data items from various domains arrive in no particular order and without any
preprocessing.
2 Frequency vibration is the ratio of frequency change which exceeds a user-specified threshold,
vibrate rate. In this paper, we assume that the rate is 100% for simplicity, i.e., frequency
vibration is a frequency change from positive one to negative one, or vice versa.

1414 Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

Definition 6. A data item x over a time period T is called a vibrated frequency
changed item (or VFCI in short) if its changed rate and changed support are greater
than or equal to a user-defined minimum changed rate (or mincr in shot) and ase,
respectively; it is a stable frequency changed item (or SFCI in short) if its changed
rate is less than a user-specified maximal changed rate (or maxcr in short), and
changeSup(x, T) ≥ mcs, where mincr is a real number in the range of [0, 1] and maxcr
> mincr.

For example, there are ten time-points (T = [t1: t10], where t1 is the starting time-
point and t10 is the current time-point) in Figure 2, and we assume that mincr = 0.1,
and maxcr = 0.5. In Figure 2, data item a and b are VFCIs, where changeRate(a, T) =
9/10 = 0.9 > 0.5, and changeRate(b, T) = 6/10 = 0.6 > 0.5, and items c, d, e are SFCIs,
where changeRate(c, T) = 0/10 = 0 ≤ 0.1, changeRate(d, T) = 0/10 = 0 ≤ 0.1, and
changeRate(e, T) = 1/10 = 0.1 ≤ 0.1.

 The goal of this paper is to find the changes of items (FFCIs, VFCIs, and SFCIs)
over the pairs of data streams (either in ADS or DDS).

2.3 Performance Requirements in Mining Data Streams

The main design issues in mining data streams are:

(1) Online, one-pass algorithm: each transaction of a data stream is examined at
most once.

(2) Limited space requirement: bounded memory requirement for storing crucial,
compressed information in the summary data structure.

(3) Real-time: per data element must be processed as fast as possible.

Our algorithms have all of these characteristics described above, while none of
previously published methods can claim the same [Dong, 99] [Ganti, 99] [Liu, 00]
[Dong, 03].

-15

-10

-5

0

5

10

15

Increasing time (timepoints)

fr
eq

ue
nc

y
di

ff
er

en
ce

a b c d e

Figure 2: Examples of VFCIs and SFCIs

1415Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

3 Online Mining Changes of Items over Distributed ADSs

In this section, a new summary data structure, called Change-Sketch, is developed to
maintain the essential information about the set of all FFCIs, VFCIs, and SFCIs
embedded in the data streams. A deterministic single-pass algorithm MFC-append
(Mining Frequency Changes of append-only data streams) is proposed to find the
changes of items over the pairs of data streams. The proposed algorithm uses at most
mlog(n/m) space, where n is the union size of the estimated data streams, and m is the
size of working bucket.

3.1 A New Summary Data Structure Change-Sketch

The proposed in-memory summary data structure, called Change-Sketch, is a list of
entries of the form (q, q.count, q.wid, q.rate), where q is a data item in the streams,
q.count is an integer representing its estimated support, the value of q.wid assigned to
a new entry q is the window identifier of current window, and q.rate is the number of
frequency vibration of item q. An item q is stored in the current Change-Sketch if
q.count ≥ ase⋅m⋅(wcurrent-id − q.wid), where m is the window size and m = ⎡1/ase⎤. Note
that the parameter ase is an acronym of the user-specified approximate support error
threshold.

Two operations are used to maintain the structure Change-Sketch:

(1) Update Change: For each entry (q, q.count, q.wid, q.rate) ∈ Change-Sketch,
MFC-append increases q.count by computing the frequency changes of q in the
current window. If the updated entry q take place a frequency vibration, its
q.rate is increased by one. If the changed support of updated entry q is less
than the user-specified minimum changed support threshold mcs, the entry is
deleted from the current Change-Sketch.

(2) New Change: If an item p ∉ Change-Sketch, and its changed support is larger
than or equal to the threshold ase⋅m⋅(wcurrent-id − p.wid), a new entry of the form
(p, 1, p.wcurrent-id, 0) is created into the current Change-Sketch.

3.2 Algorithm MFC-append

Algorithm MFC-append uses the notations and conventions illustrated in Figure 3. In
the framework of mining changes of items over data streams, the streaming data is
broken into fixed sized buckets B1, B2, …, Bi, …, BN, where BN is the “latest” bucket
with bucket identifier N, and B1 is the “oldest” one. Note that each bucket contains k
items. The bucket length from Bi to Bj is denoted as B(i, j), where i ≥ j. Let t1, t2, …, tn
be the timepoints (the smallest unit of time) which group the buckets so far in the
streams, where tn is the most recent timepoint, and t1 is the oldest one. The form of
bucket Bi is (StreamID, ti, items), where ti is the timepoint when the items appeared in
the stream with identifier StreamID.

The window-id of ti is denoted as wi, and the number of buckets arrived from ti-1
to ti is |wi|, and the number of items (i.e., size) in wi is denoted as |wi|. The size of
buckets arrived in T equals |wk| + |wk+1| + … + |wn|, ∀k = 1, 2, …, n. As described
above, the goal of this paper is to find the set of all FFCIs, VFCIs, and SFCIs in a

1416 Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

time period T = tk ∪ tk+1 ∪ … ∪ tn, ∀k = 1, 2, …, n. Hence, the pair of input data
streams P and Q are divided into two sequences of basic windows, i.e., P = w1[BP1 +
BP2 + … + BPi] + w2[BPi+1 + BPi+2 + … + BPj] + … + wm[BPk + BPk+1 + … + BPcurrentid-

1] , and Q = w1[BQ1 + BQ2 + … + BQi] + w2[BQi+1 + BQi+2 + … + BQj] + … + wm[BQk +
BQk+1 + … + BQcurrentid-1]. The notation wi[BStreamIDj + BStreamIDj+1 + … + BStreamIDk]
denotes that the buckets of data stream with id StreamID arrived at timepoint ti, and
the “latest” bucket id is denoted as BStreamIDcurrent, whose value is ⎡n/m⎤ + 1. For
example, there are five buckets in the first window w1 of Figure 1, in which two
buckets (BP1and BP2) in stream P, and three buckets (BQ1, BQ2, and BQ3) in stream Q.

t0 t1 t2 … tn-1 tnTimepoints

Current timepoint

BQ1 BQ2 BQ3 BQ4 BQ5 BQi

BP1 BP2 BP3 BPi-2 BPi-1 BPi BPcurrentidBatch buckets

Stream P

Stream Q

Data elements that will be
seen in the future

w1 w2 … wn

Increasing time

Batch Buckets

Figure 3: Notations and conventions used in the proposed algorithms

The algorithm description of MFC-append is shown in Figure 4. Four parameters
are used in MFC-append algorithm: mcs, ase, maxcr, and mincr, where mcs is an
acronym of the minimum changed support threshold, ase is an acronym of the
approximate error support threshold, maxcr is an acronym of the maximum changed
rate, and mincr is an acronym of the minimum changed rate. At any moment, a list of
FFCIs with their estimated changed supports and changed rates is generated by the
proposed algorithm. These approximate answers (i.e., a list of FFCIs) have the
following guarantees. First, all items whose changed support exceed mcs⋅n are output,
i.e., no false negative. Second, no items whose changed support is less than
(ase−mcs)⋅n are output. Third, estimated changed supports are less the true changed
supports by at most ase⋅n. Finally, all items whose changed rate exceed mcr⋅n or less
than mcr⋅n are output, respectively.

1417Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

Algorithm MFC-append
Input: (1) Two continuous append-only data streams, P = <p1, p2, …, pn, …> and Q = <q1, q2,

…, qn, …> with time-varying data rate, (2) A user-defined approximate support error
threshold, ase, i.e., the window size m is ⎡1/ase⎤, (3) A user-defined minimum changed
support threshold, mcs, (4) A user-specified maximum changed rate maxcr, (5) A user-
specified minimum changed rate minicr.

Output: A list of FFCIs, VFCIs, and SFCIs.
Begin

Change-Sketch()←{ };
 Repeat:

for each bucket from the data streams (P and Q) do
for each item q in wi(C, Bi) do /* i = 1, 2, …, ⎡n/m⎤+1 */
 Change-Sketch(q, q.count++, q.wid, q.rate);
 for each item q in wi(D, Bi) do
 Change-Sketch(q, q.count--, q.wid, q.rate);

 while Change-Sketch(q, q.count, q.wid, q.rate) ≠ ∅ then
 if |q.count| ≥ mcs⋅m⋅(wcurrent − q.wid) then

 item q is a frequent frequency change pattern in Change-Sketch;
else if |q.q.count |≥ ase⋅m⋅(wcurrent – q.wi) then

 preserve q in Change-Sketch;
 else remove q from Change-Sketch;

if q.wi change its symbol (either from positive frequency to negative one or from
negative one to positive one)

then q.rate++;
End

Figure 4 : Algorithm description of MFC-append

The maintenance process of Change-Sketch is described as follows. Let the
window identifier of current window be k. Initially, Change-Sketch is empty. For each
item q in the current window of item-stream P, MFC-append first checks Change-
Sketch to see whether an entry with id q already exists or not. If the entry exists in the
current Change-Sketch, the frequency of q (i.e., q.count) is increased by one.
Otherwise, a new entry of the form (q, 1, k, 0) is created in the current Change-Sketch.
After processing all items in wk of stream P, MFC-append computes all the items in
wk of another stream Q to maintain the changed information in Change-Sketch. The
computation first checks Change-Sketch to see whether an entry q already exists or
not in the Change-Sketch. If the search succeeds, the proposed algorithm updates the
entry with id q by decreasing its frequency q.count by one. Otherwise, a new entry of
the form (q, -1, k, 0) is created in the current Change-Sketch. Now, if the updated
entry q take place frequency vibration, q.rate is increased by one, i.e., from zero to
one.

In order to bound the memory usage in mining changes of items over data
streams, a pruning mechanism of Change-Sketch is proposed. The technique deletes
some entries of Change-Sketch before MFC-append computes the next working
window with window-id k+1. It is a trade-off between the accuracy of the outputs and
the memory requirement of Change-Sketch. The pruning is described as follows. An
entry of the form (q, q.count, q.wi, q.rate) is deleted, if |q.count| < ase⋅m⋅(wcurrent-id −
q.wid). After the pruning, MFC-append computes the next working windows with
window-id wk+1 of data streams P and Q in the same way as described above.

1418 Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

When a user requests the results of the set of all FFCIs, VFCIs, and SFCIs
embedded in the data streams, MFC-append algorithm outputs the entries whose
|q.count| ≥ mcs⋅m⋅(wcurrent-id − q.wid), |q.rate| ≥ mincr⋅m⋅(wcurrent-id − q.wid), and |q.rate| ≥
maxcr⋅m⋅(wcurrent-id − q.wid), respectively, by one scan of the current Change-Sketch.

3.3 Space Analysis of Change-Sketch

In this section, we prove that MFC-append algorithm uses at most O(mlog(n/m))
space, where n denotes the current length of the estimated data streams, and m =
⎡1/ase⎤ is the size of working bucket.

Theorem 1: The space requirement of MFC-append algorithm is O(mlog(n/m)).

Proof: Let wcurrent-id be the current window-id, i.e., wcurrent-id = ⎡n/m⎤ , where m is the
size of working bucket. Let ci denote the number of items in Change-Sketch, whose
window id is wcurrent-id − i+1. Since the size of each working bucket is m, we get the
following constraints:

∑
=

k

i 1
ici ≤ km for k = 1, 2, …, wcurrent-id. (1)

We claim that

∑
=

k

i 1
ci ≤ ∑

=

k

i 1 i

m
 for k = 1, 2, …, wcurrent-id. (2)

We prove Inequality (2) by induction on k. If k = 1, then the claim is true because
c1 ≤ m, i.e., we prove it from Inequality (1) directly. We now assume that Inequality
(2) is true for k = 1, 2, …, j-1, and prove that this assumption implies that it is true for
k = j. We now add Inequality (1) for k = j to j-1 instances of Inequality (2) and we
have

∑
=

j

i 1
ici + ∑

=

1

1i
ci + ∑

=

2

1i
ci + … + ∑

=

1-

1

j

i
ci ≤ jm + ∑

=

1

1i i
m

 + ∑
=

2

1i i
m

+ … + ∑
=

1-

1

j

i i
m

.

⇒ c1 + 2c2 + … + (j-1)cj-1 + jcj + [c1 + (c1 + c2) + … + (c1 + c2 + … + cj-1)] ≤ jm +
[m + (m + m/2) + … + (m + m/2 + … + m/(j−1))].

⇒ jc1 + jc2 + … + jcj-1 + jcj ≤ jm + [(j−1)m + (j-2)m/2 + … + m/(j−1)]

⇒ j ∑
=

j

i 1
ci ≤ jm + ∑

=

1-

1

j

i i

mij)(−
.

Upon rearrangement, we get j ∑
=

j

i 1
ci ≤ jm + ∑

=

1-

1

j

i i

mij)(−
, which then easily

simplifies to Inequality (2) for k = j, then we can complete the induction.

1419Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

Since |Change-Sketch|= ∑
=

currentw

i 1
ci, from Inequality (2), we get |Change-Sketch| ≤

∑
=

currentw

i 1 i
m ≤ m log(wcurrent-id) = m log(n/m).



Note that, if ase ≤ (1/m), the space is effectively Ω(m log(n/m)). If we set ase =
(d/m) for some small d, then it requires time at worst O(m log(n/m)), but this occurs
only every 1/m items, and so the total time is O(n log(n/m)).

3.4 MFC-dynamic: Online Mining Changes of Items over Distributed DDSs

In this section, a MFC-append based-algorithm, called MFC-dynamic (Mining
Frequency Changes of dynamic data streams), is proposed to mine the set of all FFCIs,
VFCIs, and SFCIs over dynamic data streams. Note that a data stream is called a
dynamic data stream (or DDS in short) if there are removal as well as addition of data
items.

An effective encoding method is used in the proposed algorithm to distinguish
the inserted items and deleted items over DDSs, and described as follows. If an item q
is an inserted item, MFC-dynamic encodes it to be a “positive” item, and denotes it as
+q. Otherwise, the proposed algorithm encodes it to be a “negative” item, and denotes
it as −q. After processing the encoding, MFC-append algorithm is used to find the set
of all FFCIs, VFCIs, and SFCIs over dynamic data streams. Figure 5 gives the
description of MFC-dynamic algorithm. From the interpretation of MFC-dynamic, a
space usage guarantee, which is similar to Theorem 1, is given as follows.

Claim 1. Whenever the deletions of item p occurs, frequency (p)Deleted ≤ frequency(p),
where frequency(p)Deleted is the number of item p needed to be drop.
Claim 2. If an item q ∉ Change-Sketch, if and only if |q.count| < ase⋅m⋅(wcurrent-id −
q.wid)

1420 Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

Algorithm MFC-dynamic
Input: (1) Two dynamic data streams, C={c1, c2, …, cn, …} and D={d1, d2, …, dn, …} with

time-varying data rate, (2) A minimum change support threshold, mcs, (3) An
approximation support error threshold, ase, (4) A maximum change rate threshold,
maxcr, (5) A minimum change rate threshold, minicr.

Output: A list of change patterns { qi, …, qj } over dynamic data streams.
Begin

Dynamic_Encode_Streamming_Items(C, D);
MFC-append(C, D, mcs, ase, maxcr, minicr) ;

End
Procedure Dynamic_Encode_Streamming_Items(C, D);
Begin

for each bucket wCi
 of stream C and bucket wDi

 of stream D
if the item q is an inserted item then

Set it to be a positive (+q) item;
 else

Set it to be a negative (-q) item;
end

 endfor
End

Figure 5 : Algorithm MFC-dynamic

Theorem 2. The space requirement of MFC-dynamic algorithm is O(mlog(n/m)).

Proof: According to the pruning rule, only items with frequency f or larger within the
last updated f windows age are not pruned. Thus, at most m/f items could have been

survived from that window which gives m ∑
=

n/m

i i1

1
 as the upper-bound on the number of

items we are keeping track of. Now, using the well know inequality ∑
=

p

i i1

1
 ≤ log(p), the

result follows directly.


4 Performance Evaluation

4.1 Synthetic Data Generation

In the experiments of MFC-append, we generated three datasets |D| of 10,000,
100,000, and 1,000,000 transactions of single-item, and searched for frequent
frequency changes while varying the Zipf parameter from 0 (uniform) to 3 (highly
skewed), and the ase from 1% to 0.001%.

In order to evaluate algorithm MFC-dynamic, the generation approach of
synthetic data was modified from [Cormode, 03]. The generated data consists of three
parts: first, a sequence of insertions distributed uniformly over a small range; next, a
sequence of inserts was drawn from a Zipf distribution with varying parameter (from
0 to 3); lastly, a sequence of deletes was distributed uniformly over the same range as

1421Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

the starting sequence. We examine MFC-dynamic in the fourth dataset of 1,000,000
transactions of single-item, Zipf parameter from 0 to 3, and ase from 1% to 0.001%.
Table 1 summarizes the meaning of various parameters used in our experiments.

|D|
ase
mcs
maxcr
minicr
Zipf

Number of transactions of single item in data streams.
Approximate error support.
Minimum changed support.
Maximum change rate.
Minimum change rate.
From 0 (uniform) to around 3 (highly skewed).

Table 1: Meanings of various parameters

4.2 Experimental Results

In this following experimental testing (results as Figure 6 and Figure 9), we use
threshold mcs = 0.01, and ase = 0.1⋅mcs. First, we computed recall and precision for
MFC-append, with the results shown in Figure 6. In this Figure, we can see that
MFC-append algorithm has excellent precision (0.90-1) and recall (0.6-0.81) on the
synthetic data |D|=10,000 transactions, and the recall decreases as the parameter ase
increases, while the precision increases as the ase decreases. An important
observation is that the Zipf parameter (from 0 to 3) does not affect the recall and
precision of MFC-append.

In Figure 7, we can see that MFC-append has precision (0.93-1) and recall (0.57-
0.76) on the synthetic data |D|=100,000 transactions. In Figure 8, we can see that
MFC-append has precision (0.92-1) and recall (0.51-0.71) on the synthetic data
|D|=1,000,000 transactions.

In Figure 9, we can see that the MFC-dynamic has the similar experimental
results as algorithm MFC-append. The recall increases as the ase decreases while the
precision decrease as the ase increases, and the various Zipf parameters do not
influence the recall and precision of MFC-dynamic.

Recall on Synthetic Data (|D|=10,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

R
ec

al
l

1.0000% 0.1000%
0.0100% 0.0010%

Precision on Synthetic Data (|D|=10,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

P
re

ci
si

on

1.000% 0.100%
0.010% 0.001%

Figure 6: Experiments on synthetic data (104 transactions) for MFC-append. Left:
testing recall (proportion of the frequent change patterns reported). Right: testing
precision (proportion of the output frequency change patterns which are frequent)

1422 Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

Figure 7: Experiments on synthetic data (105 transactions) for MFC-append. Left:
testing recall. Right: testing precision

Figure 8: Experiments on synthetic data (106 transactions) for MFC-append. Left:
testing recall. Right: testing precision

Figure 9: Experiments on synthetic data (106 transactions) for MFC-dynamic. Left:
testing recall. Right: testing precision

Recall on Synthetic Data(|D|=100,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

R
e

ca
ll

1.000% 0.100%
0.010% 0.001%

Precision on Synthetic Data (|D |=100,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

P
re

ci
si

o
n

1.000% 0.100%
0.010% 0.001%

Recall on Synthetic Data (|D|=1,000,000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

R
e

ca
ll

1.000% 0.100%
0.010% 0.001%

Precision on Synthetic Data (|D |=1,000,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

P
re

ci
si

o
n

1.000% 0.100%
0.010% 0.001%

Recall on Synthetic Data (|D|=1,000,000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

R
e

ca
ll

1.000% 0.100%
0.010% 0.001%

Precision on Synthetic Data (|D |=1,000,000)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Zipf parameter

P
re

ci
si

o
n

1.000% 0.100%
0.010% 0.001%

1423Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

5 Conclusions

In this paper, we propose two single-pass algorithms, called MFC-append and MFC-
dynamic, for mining frequent frequency changed items, vibrated frequency changed
items, and stable frequency changed items over continuous append-only and dynamic
data streams, respectively. A new summary data structure, called Change-Sketch, is
developed to store the essential changed patterns of data streams. The space
complexity of Change-Sketch is O(mlog(n/m)), and the proposed algorithms take
O(log(n/m)) time in worst case to compute each new arrived item, but only O(1)
amortized time per item. The experimental results show that our algorithms have
linear scalability and high accuracy in the analytical outputs.

Acknowledgements

The authors thank the reviewers' precious comments for improving the quality of the
paper. The research is supported by National Science Council of R.O.C. under grant
no. NSC93-2213-E-009-043.

References

[Babcock, 02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems”, In PODS’02, Madison, WI, June 2002.

[Charilar, 02] M. Charilar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. In Proceedings of the International Colloquium on Automata, Languages, and
Programming (ICALP), 2002, pp. 693-703.

[Cormode, 03] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most
frequent items dynamically. In PODS’03, June 2003.

[Demaine, 02] E. Demaine, A. López-Ortiz, and J. I. Munro. Frequent estimation of internet
packet streams with limited space. In Proceedings of the 10th Annual European Symposium
on Algorithms, volume 2461 of Lecture Notes in Computer Science, 2002, pp. 348-360.

[Dong, 03] G. Dong, J. Han, L.V.S. Lakshmanan, J. Pei, H. Wang and P.S. Yu. Online mining
of changes from data streams: Research problems and preliminary results. In Proceedings
of the 2003 ACM SIGMOD Workshop on Management and Processing of Data Streams. In
cooperation with the 2003 ACM-SIGMOD International Conference on Management of
Data (SIGMOD'03), San Diego, CA, June 8, 2003.

[Dong, 99] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and
differences. In Proceedings of the 5th International Conference on Knowledge Discovery
and Data Mining (KDD’99), Aug. 1999, pp. 43-52.

[Ganti, 99] V. Ganti., J. Gehrke, and R. Ramakrishnan. A framework for measuring changes in
data characteristics. In PODS’99, 1999, pp. 126-137.

[Ganti, 02] V. Ganti., J. Gehrke, and R. Ramakrishnan. Mining data streams under block
evolution. SIGKDD Explorations, 3(2), 2002, pp. 1-10.

[Giannella, 03] C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu, Mining frequent patterns in
data streams at multiple time granularities, in H. Kargupta, A. Joshi, K. Sivakumar, and Y.
Yesha (eds.), Next Generation Data Mining, AAAI/MIT, 2003.

[Golab, 03] L. Golab and M. Tamer Ozsu. Issues in data stream management. In SIGMOD
Record, Volume 32, Number 2, June 2003, pp. 5--14.

[Jin, 03] C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou. Dynamically maintaining frequent
items over a data stream. In Proceedings of the 12th ACM Conference on Information and
Knowledge Management.

1424 Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

[Karp, 03] R. Karp, C. Paradimitriou, and S. Shenker. A simple algorithm for finding elements
in sets and bags. ACM Transactions on Database Systems, 2003.

[Li, 04] H.-F. Li, S.-Y. Lee, and M.-K. Shan. An efficient algorithm for mining frequent
itemsets over the entire history of data streams. In Proceedings of First International
Workshop on Knowledge Discovery in Data Streams, 2004.

[Li, 05] H.-F. Li, S.-Y. Lee, and M.-K. Shan. Mining (recently) maximal frequent itemsets over
data streams. In Proceedings of 15th International Workshop on Research Issues on Data
Engineering: Stream Data Mining and Applications, April 3-4, 2005.

[Liu, 00] B. Liu, W. Hsu, H.-S. Han, and Y. Xia. Mining changes for real-life applications. In
the 2nd International Conference on Data Warehousing and Knowledge Discovery, Sept.
2000.

[Manku, 02] G. S. Manku and R. Motwani. Approximate frequency counts over data streams.
In Proceedings of the 28th International Conference on Very Large Data Bases, 2002.

1425Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...

