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Abstract: Online mining changes over data streams has been recognized to be an important 
task in data mining. Mining changes over data streams is both compelling and challenging. In 
this paper, we propose a new, single-pass algorithm, called MFC-append (Mining Frequency 
Changes of append-only data streams), for discovering the frequent frequency-changed items, 
vibrated frequency changed items, and stable frequency changed items over continuous 
append-only data streams. A new summary data structure, called Change-Sketch, is developed 
to compute the frequency changes between two continuous data streams as fast as possible. 
Moreover, a MFC-append-based algorithm, called MFC-dynamic (Mining Frequency Changes 
of dynamic data streams), is proposed to find the frequency changes over dynamic data streams. 
Theoretical analysis and experimental results show that our algorithms meet the major 
performance requirements, namely single-pass, bounded space requirement, and real-time 
computing, in mining data streams. 

Keywords: Data streams, change mining, single-pass algorithm 
Categories: H.2.8 

1 Introduction  

In recent years, database and knowledge discovery communities have focused on a 
new data model, where data arrives in the form of continuous streams [Babcock, 02] 
[Golab, 03]. It is often referred to as data streams or streaming data. A data stream is 
a massive, open-ended sequence of data elements continuously generated at a rapid 
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rate. Many real-world applications generate large amount of data streams in real time, 
such as sensor data generated from sensor network, transaction flows in retail chains, 
Web record and click-streams in various Web applications, performance measurement 
in network monitoring and traffic management, call records in telecommunications, 
etc.  

Online mining of frequent items (or item-sets) over data streams for knowledge 
discovery has become a novel and rapidly growing research direction  [Charilar, 02] 
[Demaine, 02] [Ganti, 02] [Manku, 02] [Cormode, 03] [Giannella, 03] [Jin, 03] [Karp, 
03] [Li, 04] [Li, 05], and has posed new challenges [Babcock, 02] [Golab, 03]: First, 
each data element over data streams should be examined at most once. Second, the 
memory usage in the process of mining data streams should be bounded even though 
new data elements are continuously generated from the stream. Third, each data 
element in the stream should be processed at fast as possible. Fourth, the analytical 
results generated by the online algorithms should be instantly available when user 
requested. Finally, the errors of results should be constricted as small as possible. 
Consequently, the continuous nature of data streams makes it essential to use the 
online algorithms which require only single scan over the stream for knowledge 
discovery. The unbounded nature makes it impossible to store all the data into main 
memory or even secondary storage. This motivates the design of the in-memory 
summary data structure with small footprints that can support both one-time and 
continuous queries. In other words, single-pass data stream mining algorithms have to 
sacrifice the correctness of its analytical results by allowing some counting errors. 
Hence, traditional multiple-pass data mining algorithms studied for static datasets 
cannot be easily used in such a streaming environment. 

Change mining on static datasets has been studied in the last ten years [Dong, 99] 
[Ganti, 99] [Liu, 00] [Dong, 03]. It has become one of the core sub-areas of data 
mining. Ganti et al. [Ganti, 99] proposed a framework for quantifying the deviation of 
the induced models, such as two decision tree classifiers, clusters, and frequent 
itemsets, in the large datasets. The quantify measure is the amount of work required to 
transform one model into the other. Dong et al. [Dong, 99] proposed an algorithm to 
find the emerging patterns, and used these patterns to characterize the changes from 
one dataset to the other. Liu et al. [Liu, 00] proposed a method to discover the 
changes in the new data with respect to the old data, and the old decision tree models, 
and generate the exact changes that have occurred to the user. These studies are 
focused on the effects of data changes on data mining models and algorithms, 
whereas the paper is focus on the problem of measuring and understanding the 
changes of data directly rather than measuring the effects on data mining models. 
Furthermore, the proposed algorithms, MFC-append and MFC-dynamic, discover the 
changes of items over continuous data streams, not in static datasets. 

The motivation of the problem of online mining changes of items between 
distributed data streams comes from the context of online transaction flows in large 
organizations. These companies generate the millions of records every day. For 
example, Google handles 70-110 millions searches, AT&T produces 250-300 million 
call records, and WallMart which is composed of thousands of stores, and records 20-
40 million transactions in a single day. With the computation model of distributed 
data streams presented in Figure 1, a data stream processor and the in-memory 
summary data structure are two major components in the distributed data streaming 
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environment. The streams in questions are sequences of transaction data which is 
composed of the records in the form of <StoreID, Timestamp, TransactionID, Items>. 
In other words, a transaction record is a purchasing log generated by a customer in a 
specific time and store. These transaction flows sent to the server, and we are 
interested in finding the frequent frequency changes in items between pairs of data 
streams purchased by the most customers in some period of time. Note that the buffer 
mechanism can be optionally set for temporary storage of recent transactions from the 
transaction data streams. 

In this paper, we study the problem of online mining frequent frequency changes 
of items between pairs of continuous, high-volume, open-ended data streams. The 
summary of our results are described as follows. Three types of frequency change are 
proposed: frequent changed-item (or FCI in short), vibrated frequent changed-item 
(or VFCI in short), and stable frequent changed-item (or SFCI in short). A new 
summary data structure, called change-sketch, is developed to store the essential 
information over the pairs of data streams. Two single-pass algorithms, MFC-append 
and MFC-dynamic, are proposed to find the patterns over data streams. The best space 
bound we achieve for this problem is Ω(mlog(n/m)), where n is the union size of two 
data streams, and m is the size of the working bucket for frequent changed-items 
mining. Moreover, the proposed algorithms take O(log(n/m)) time in worst case to 
process each new data element, but only O(1) amortized time per data element. 

The remainder of the paper is organized as follows. The data stream model and 
problem definition are discussed in Section 2. Algorithms MFC-append and MFC-
dynamic are described in Section 3. Performance evaluation is presented in Section 4. 
Section 5 concludes the study. 
 
 

  

Figure 1: Processing model of distributed data streams 

2 Preliminaries 

In this section, we discuss the data stream model, the definition of online data mining 
for changes of items, and the goal of the proposed algorithms. 
 

 
 

Answers 
(Approximate) 

 

Stream 
Processing 

Engine 

     Data Streams 

Buffer 

Store 1 
Store 2 
 
 
 
 
Store k 

In-Memory Summary 
Data Structure  

1413Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...



2.1 Data Stream Model  

Let Ψ = {x1, x2, …, xm} be a set of literals, called data items (or items in short). A data 
stream is an infinite sequence of data items, where the items arrive in some order, and 
may be seen only once. It is also referred to as item-stream. In the item-stream model, 
we focus on two performance issues: workspace required in main memory, which is 
measured as a function of the input union size n of two data streams, and the time to 
process an incoming data item over the streams.  
    In this paper, we assume that the data arrives in the unordered1 form, and the same 
value can appear multiple times within the streaming data. This is termed the 
unordered cash register, unordered aggregated model [Babcock, 02] [Golab, 03]. 
 
Definition 1. A data stream is called an append-only data stream (or ADS in short) if 
it has no updates and deletions; a data stream is called a dynamic data stream (or 
DDS in short) if there are removal as well as addition of data items. 

2.2 Problem Statement 

Let Ψ = {x1, x2, …, xm} be a set of data items. Two parallel item-streams are P = <p1, 
p2, …, pi, …>, and Q = <q1, q2, …, qj, …> with time-varying data rates, where pi, qj ∈ 
Ψ.  
 
Definition 2. The frequency of a data item x in an item-stream S over a time period T 
is the number of items in T in which x occurs, and is denoted as frequency(x, S, T). 
The size of T is n, the total number of data items so far in T.  
 
Definition 3. The changed support of a data item x is the difference in frequency 
between two data streams P and Q divided by the total data items observed in T, and 
is denoted as changeSup(x, T).  
 
Definition 4. The changed rate of a data item x is the number of frequency vibration2 
divided by the total time-points observed in T, and is denoted as changeRate(x, T), 
where the time-point is a basic unit of time over which the system collects data, e.g., 
second or minute. 
 
Definition 5. A data item x is called a frequent frequency changed item (or FFCI in 
short) if changeSup(x, T) ≥ mcs, where mcs is a user-defined minimum changed 
support threshold in the range of [0, 1]; it is a sub-frequent frequency changed item 
(or SFFCI in short) if ase ≤ changeSup(x, T) < mcs, where ase is a user-defined 
approximate support error threshold in the range of [0, mcs]; it is an infrequent 
frequency changed item (or IFFCI in short) if changeSup(x, T) < ase. 
 

                                                           
1 The streaming data items from various domains arrive in no particular order and without any 
preprocessing. 
2 Frequency vibration is the ratio of frequency change which exceeds a user-specified threshold, 
vibrate rate. In this paper, we assume that the rate is 100% for simplicity, i.e., frequency 
vibration is a frequency change from positive one to negative one, or vice versa. 
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Definition 6. A data item x over a time period T is called a vibrated frequency 
changed item (or VFCI in short) if its changed rate and changed support are greater 
than or equal to a user-defined minimum changed rate (or mincr in shot) and ase, 
respectively; it is a stable frequency changed item (or SFCI in short) if its changed 
rate is less than a user-specified maximal changed rate (or maxcr in short), and 
changeSup(x, T) ≥ mcs, where mincr is a real number in the range of [0, 1] and maxcr 
> mincr. 
 

For example, there are ten time-points (T = [t1: t10], where t1 is the starting time-
point and t10 is the current time-point) in Figure 2, and we assume that mincr = 0.1, 
and maxcr = 0.5. In Figure 2, data item a and b are VFCIs, where changeRate(a, T) = 
9/10 = 0.9 > 0.5, and changeRate(b, T) = 6/10 = 0.6 > 0.5, and items c, d, e are SFCIs, 
where changeRate(c, T) = 0/10 = 0 ≤ 0.1, changeRate(d, T) = 0/10 = 0 ≤ 0.1, and 
changeRate(e, T) = 1/10 = 0.1 ≤ 0.1. 
 
    The goal of this paper is to find the changes of items (FFCIs, VFCIs, and SFCIs) 
over the pairs of data streams (either in ADS or DDS). 

2.3 Performance Requirements in Mining Data Streams 

The main design issues in mining data streams are: 

(1) Online, one-pass algorithm: each transaction of a data stream is examined at 
most once. 

(2) Limited space requirement: bounded memory requirement for storing crucial, 
compressed information in the summary data structure. 

(3) Real-time: per data element must be processed as fast as possible. 

Our algorithms have all of these characteristics described above, while none of 
previously published methods can claim the same [Dong, 99] [Ganti, 99] [Liu, 00] 
[Dong, 03]. 
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Figure 2: Examples of VFCIs and SFCIs 
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3 Online Mining Changes of Items over Distributed ADSs  

In this section, a new summary data structure, called Change-Sketch, is developed to 
maintain the essential information about the set of all FFCIs, VFCIs, and SFCIs 
embedded in the data streams. A deterministic single-pass algorithm MFC-append 
(Mining Frequency Changes of append-only data streams) is proposed to find the 
changes of items over the pairs of data streams. The proposed algorithm uses at most 
mlog(n/m) space, where n is the union size of the estimated data streams, and m is the 
size of working bucket.  

3.1 A New Summary Data Structure Change-Sketch 

The proposed in-memory summary data structure, called Change-Sketch, is a list of 
entries of the form (q, q.count, q.wid, q.rate), where q is a data item in the streams, 
q.count is an integer representing its estimated support, the value of q.wid assigned to 
a new entry q is the window identifier of current window, and q.rate is the number of 
frequency vibration of item q. An item q is stored in the current Change-Sketch if 
q.count ≥ ase⋅m⋅(wcurrent-id − q.wid), where m is the window size and m = ⎡1/ase⎤. Note 
that the parameter ase is an acronym of the user-specified approximate support error 
threshold. 

Two operations are used to maintain the structure Change-Sketch:  

(1) Update Change: For each entry (q, q.count, q.wid, q.rate) ∈ Change-Sketch, 
MFC-append increases q.count by computing the frequency changes of q in the 
current window. If the updated entry q take place a frequency vibration, its 
q.rate is increased by one. If the changed support of updated entry q is less 
than the user-specified minimum changed support threshold mcs, the entry is 
deleted from the current Change-Sketch. 

(2) New Change: If an item p ∉ Change-Sketch, and its changed support is larger 
than or equal to the threshold ase⋅m⋅(wcurrent-id − p.wid), a new entry of the form 
(p, 1, p.wcurrent-id, 0) is created into the current Change-Sketch. 

3.2 Algorithm MFC-append 

Algorithm MFC-append uses the notations and conventions illustrated in Figure 3. In 
the framework of mining changes of items over data streams, the streaming data is 
broken into fixed sized buckets B1, B2, …, Bi, …, BN, where BN is the “latest” bucket 
with bucket identifier N, and B1 is the “oldest” one. Note that each bucket contains k 
items. The bucket length from Bi to Bj is denoted as B(i, j), where i ≥ j. Let t1, t2, …, tn 
be the timepoints (the smallest unit of time) which group the buckets so far in the 
streams, where tn is the most recent timepoint, and t1 is the oldest one. The form of 
bucket Bi is (StreamID, ti, items), where ti is the timepoint when the items appeared in 
the stream with identifier StreamID. 

The window-id of ti is denoted as wi, and the number of buckets arrived from ti-1 
to ti is |wi|, and the number of items (i.e., size) in wi is denoted as |wi|. The size of 
buckets arrived in T equals |wk| + |wk+1| + … + |wn|, ∀k = 1, 2, …, n. As described 
above, the goal of this paper is to find the set of all FFCIs, VFCIs, and SFCIs in a 
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time period T = tk ∪ tk+1 ∪ … ∪ tn, ∀k = 1, 2, …, n. Hence, the pair of input data 
streams P and Q are divided into two sequences of basic windows, i.e., P = w1[BP1 + 
BP2 + … + BPi] + w2[BPi+1 + BPi+2 + … + BPj] + … + wm[BPk + BPk+1 + … + BPcurrentid-

1] , and Q = w1[BQ1 + BQ2 + … + BQi] + w2[BQi+1 + BQi+2 + … + BQj] + … + wm[BQk + 
BQk+1 + … + BQcurrentid-1]. The notation wi[BStreamIDj + BStreamIDj+1 + … + BStreamIDk] 
denotes that the buckets of data stream with id StreamID arrived at timepoint ti, and 
the “latest” bucket id is denoted as BStreamIDcurrent, whose value is ⎡n/m⎤ + 1. For 
example, there are five buckets in the first window w1 of Figure 1, in which two 
buckets (BP1and BP2) in stream P, and three buckets (BQ1, BQ2, and BQ3) in stream Q. 

t0 t1 t2 … tn-1 tnTimepoints

Current timepoint

BQ1 BQ2 BQ3 BQ4 BQ5 BQi

BP1 BP2 BP3 BPi-2 BPi-1  BPi BPcurrentidBatch buckets

Stream P

Stream Q

Data elements that will be 
seen in the future

w1 w2 … wn

Increasing time

Batch Buckets

 
Figure 3: Notations and conventions used in the proposed algorithms 

The algorithm description of MFC-append is shown in Figure 4. Four parameters 
are used in MFC-append algorithm: mcs, ase, maxcr, and mincr, where mcs is an 
acronym of the minimum changed support threshold, ase is an acronym of the 
approximate error support threshold, maxcr is an acronym of the maximum changed 
rate, and mincr is an acronym of the minimum changed rate. At any moment, a list of 
FFCIs with their estimated changed supports and changed rates is generated by the 
proposed algorithm. These approximate answers (i.e., a list of FFCIs) have the 
following guarantees. First, all items whose changed support exceed mcs⋅n are output, 
i.e., no false negative. Second, no items whose changed support is less than 
(ase−mcs)⋅n are output. Third, estimated changed supports are less the true changed 
supports by at most ase⋅n. Finally, all items whose changed rate exceed mcr⋅n or less 
than mcr⋅n are output, respectively. 
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Algorithm MFC-append  
Input: (1) Two continuous append-only data streams, P = <p1, p2, …, pn, …> and Q = <q1, q2, 

…, qn, …> with time-varying data rate, (2) A user-defined approximate support error 
threshold, ase, i.e., the window size m is ⎡1/ase⎤, (3) A user-defined minimum changed 
support threshold, mcs, (4) A user-specified maximum changed rate maxcr, (5) A user-
specified minimum changed rate minicr. 

Output: A list of FFCIs, VFCIs, and SFCIs. 
Begin 

Change-Sketch( )←{ }; 
  Repeat: 

for each bucket from the data streams (P and Q) do 
for each item q in wi(C, Bi) do  /* i = 1, 2, …, ⎡n/m⎤+1 */ 
      Change-Sketch(q, q.count++, q.wid, q.rate); 
      for each item q in wi(D, Bi) do 
           Change-Sketch(q, q.count--, q.wid, q.rate); 

      while Change-Sketch(q, q.count, q.wid, q.rate) ≠ ∅ then  
          if |q.count| ≥ mcs⋅m⋅(wcurrent − q.wid) then 

               item q is a frequent frequency change pattern in Change-Sketch; 
else if |q.q.count |≥ ase⋅m⋅(wcurrent – q.wi) then   

        preserve q in Change-Sketch; 
     else remove q from Change-Sketch; 

if q.wi change its symbol (either from positive frequency to negative one or from  
negative one to positive one)  

then q.rate++; 
End 

Figure 4 : Algorithm description of MFC-append 

The maintenance process of Change-Sketch is described as follows. Let the 
window identifier of current window be k. Initially, Change-Sketch is empty. For each 
item q in the current window of item-stream P, MFC-append first checks Change-
Sketch to see whether an entry with id q already exists or not. If the entry exists in the 
current Change-Sketch, the frequency of q (i.e., q.count) is increased by one. 
Otherwise, a new entry of the form (q, 1, k, 0) is created in the current Change-Sketch. 
After processing all items in wk of stream P, MFC-append computes all the items in 
wk of another stream Q to maintain the changed information in Change-Sketch. The 
computation first checks Change-Sketch to see whether an entry q already exists or 
not in the Change-Sketch. If the search succeeds, the proposed algorithm updates the 
entry with id q by decreasing its frequency q.count by one. Otherwise, a new entry of 
the form (q, -1, k, 0) is created in the current Change-Sketch. Now, if the updated 
entry q take place frequency vibration, q.rate is increased by one, i.e., from zero to 
one.  

In order to bound the memory usage in mining changes of items over data 
streams, a pruning mechanism of Change-Sketch is proposed. The technique deletes 
some entries of Change-Sketch before MFC-append computes the next working 
window with window-id k+1. It is a trade-off between the accuracy of the outputs and 
the memory requirement of Change-Sketch. The pruning is described as follows. An 
entry of the form (q, q.count, q.wi, q.rate) is deleted, if |q.count| < ase⋅m⋅(wcurrent-id − 
q.wid). After the pruning, MFC-append computes the next working windows with 
window-id wk+1 of data streams P and Q in the same way as described above.  
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When a user requests the results of the set of all FFCIs, VFCIs, and SFCIs 
embedded in the data streams, MFC-append algorithm outputs the entries whose 
|q.count| ≥ mcs⋅m⋅(wcurrent-id − q.wid), |q.rate| ≥ mincr⋅m⋅(wcurrent-id − q.wid), and |q.rate| ≥ 
maxcr⋅m⋅(wcurrent-id − q.wid), respectively, by one scan of the current Change-Sketch. 

3.3 Space Analysis of Change-Sketch 

In this section, we prove that MFC-append algorithm uses at most O(mlog(n/m)) 
space, where n denotes the current length of the estimated data streams, and m = 
⎡1/ase⎤ is the size of working bucket. 
 
Theorem 1: The space requirement of MFC-append algorithm is O(mlog(n/m)). 
 
Proof: Let wcurrent-id be the current window-id, i.e., wcurrent-id = ⎡n/m⎤ , where m is the 
size of working bucket. Let ci denote the number of items in Change-Sketch, whose 
window id is wcurrent-id − i+1. Since the size of each working bucket is m, we get the 
following constraints: 

∑
=

k

i 1
ici ≤ km for k = 1, 2, …, wcurrent-id. (1) 

We claim that 

∑
=

k

i 1
ci ≤ ∑

=

k

i 1 i

m
  for k = 1, 2, …, wcurrent-id. (2) 

We prove Inequality (2) by induction on k. If k = 1, then the claim is true because 
c1 ≤ m, i.e., we prove it from Inequality (1) directly. We now assume that Inequality 
(2) is true for k = 1, 2, …, j-1, and prove that this assumption implies that it is true for 
k = j. We now add Inequality (1) for k = j to j-1 instances of Inequality (2) and we 
have 

∑
=

j

i 1
ici + ∑

=

1

1i
ci + ∑

=

2

1i
ci + … + ∑

=

1-

1

j

i
ci ≤ jm + ∑

=

1

1i i
m

 + ∑
=

2

1i i
m

+ … + ∑
=

1-

1

j

i i
m

. 

⇒ c1 + 2c2 + … + (j-1)cj-1 + jcj + [c1 + (c1 + c2) + … + (c1 + c2 + … + cj-1)] ≤ jm + 
[m + (m + m/2) + … + (m + m/2 + … +  m/(j−1))]. 

⇒ jc1 + jc2 + … + jcj-1 + jcj ≤ jm + [(j−1)m + (j-2)m/2 + … + m/(j−1)] 

⇒ j ∑
=

j

i 1
ci ≤ jm + ∑

=

1-

1

j

i i

mij )( −
. 

Upon rearrangement, we get j ∑
=

j

i 1
ci ≤ jm + ∑

=

1-

1

j

i i

mij )( −
, which then easily 

simplifies to Inequality (2) for k = j, then we can complete the induction. 
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Since |Change-Sketch|= ∑
=

currentw

i 1
ci, from Inequality (2), we get |Change-Sketch| ≤ 

∑
=

currentw

i 1 i
m ≤ m log(wcurrent-id) = m log(n/m).       

 
 

Note that, if ase ≤ (1/m), the space is effectively Ω(m log(n/m)). If we set ase = 
(d/m) for some small d, then it requires time at worst O(m log(n/m)), but this occurs 
only every 1/m items, and so the total time is O(n log(n/m)). 

3.4 MFC-dynamic: Online Mining Changes of Items over Distributed DDSs 

In this section, a MFC-append based-algorithm, called MFC-dynamic (Mining 
Frequency Changes of dynamic data streams), is proposed to mine the set of all FFCIs, 
VFCIs, and SFCIs over dynamic data streams. Note that a data stream is called a 
dynamic data stream (or DDS in short) if there are removal as well as addition of data 
items.  

An effective encoding method is used in the proposed algorithm to distinguish 
the inserted items and deleted items over DDSs, and described as follows. If an item q 
is an inserted item, MFC-dynamic encodes it to be a “positive” item, and denotes it as 
+q. Otherwise, the proposed algorithm encodes it to be a “negative” item, and denotes 
it as −q. After processing the encoding, MFC-append algorithm is used to find the set 
of all FFCIs, VFCIs, and SFCIs over dynamic data streams. Figure 5 gives the 
description of MFC-dynamic algorithm. From the interpretation of MFC-dynamic, a 
space usage guarantee, which is similar to Theorem 1, is given as follows. 

Claim 1. Whenever the deletions of item p occurs, frequency (p)Deleted ≤ frequency(p), 
where frequency(p)Deleted is the number of item p needed to be drop. 
Claim 2. If an item q ∉ Change-Sketch, if and only if |q.count| < ase⋅m⋅(wcurrent-id − 
q.wid) 
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Algorithm MFC-dynamic  
Input: (1) Two dynamic data streams, C={c1, c2, …, cn, …} and D={d1, d2, …, dn, …} with 

time-varying data rate, (2) A minimum change support threshold, mcs, (3) An 
approximation support error threshold, ase, (4) A maximum change rate threshold, 
maxcr, (5) A minimum change rate threshold, minicr. 

Output: A list of change patterns { qi, …, qj } over dynamic data streams. 
Begin 

Dynamic_Encode_Streamming_Items(C, D); 
MFC-append(C, D, mcs, ase, maxcr, minicr) ; 

End 
Procedure Dynamic_Encode_Streamming_Items(C, D); 
Begin 

for each bucket wCi
 of stream C and bucket wDi

 of stream D  
if the item q is an inserted item then 

Set it to be a positive (+q) item; 
                  else 

Set it to be a negative (-q) item; 
end 

   endfor 
End 

Figure 5 : Algorithm MFC-dynamic 

Theorem 2. The space requirement of MFC-dynamic algorithm is O(mlog(n/m)). 

Proof: According to the pruning rule, only items with frequency f or larger within the 
last updated f windows age are not pruned. Thus, at most m/f items could have been 

survived from that window which gives m ∑
=

n/m

i i1

1
 as the upper-bound on the number of 

items we are keeping track of. Now, using the well know inequality ∑
=

p

i i1

1
 ≤ log(p), the 

result follows directly. 
 

4 Performance Evaluation 

4.1 Synthetic Data Generation 

In the experiments of MFC-append, we generated three datasets |D| of 10,000, 
100,000, and 1,000,000 transactions of single-item, and searched for frequent 
frequency changes while varying the Zipf parameter from 0 (uniform) to 3 (highly 
skewed), and the ase from 1% to 0.001%.  

In order to evaluate algorithm MFC-dynamic, the generation approach of 
synthetic data was modified from [Cormode, 03]. The generated data consists of three 
parts: first, a sequence of insertions distributed uniformly over a small range; next, a 
sequence of inserts was drawn from a Zipf distribution with varying parameter (from 
0 to 3); lastly, a sequence of deletes was distributed uniformly over the same range as 

1421Li H.-F., Lee S.-Y., Shan M.-K.: Online Mining Changes of Items ...



the starting sequence. We examine MFC-dynamic in the fourth dataset of 1,000,000 
transactions of single-item, Zipf parameter from 0 to 3, and ase from 1% to 0.001%. 
Table 1 summarizes the meaning of various parameters used in our experiments.  
 

|D| 
ase 
mcs 
maxcr 
minicr 
Zipf 

Number of transactions of single item in data streams. 
Approximate error support. 
Minimum changed support. 
Maximum change rate. 
Minimum change rate.  
From 0 (uniform) to around 3 (highly skewed). 

Table 1: Meanings of various parameters 

4.2  Experimental Results 

In this following experimental testing (results as Figure 6 and Figure 9), we use 
threshold mcs = 0.01, and ase = 0.1⋅mcs. First, we computed recall and precision for 
MFC-append, with the results shown in Figure 6. In this Figure, we can see that 
MFC-append algorithm has excellent precision (0.90-1) and recall (0.6-0.81) on the 
synthetic data |D|=10,000 transactions, and the recall decreases as the parameter ase 
increases, while the precision increases as the ase decreases. An important 
observation is that the Zipf parameter (from 0 to 3) does not affect the recall and 
precision of MFC-append.  

In Figure 7, we can see that MFC-append has precision (0.93-1) and recall (0.57-
0.76) on the synthetic data |D|=100,000 transactions. In Figure 8, we can see that 
MFC-append has precision (0.92-1) and recall (0.51-0.71) on the synthetic data 
|D|=1,000,000 transactions. 

In Figure 9, we can see that the MFC-dynamic has the similar experimental 
results as algorithm MFC-append. The recall increases as the ase decreases while the 
precision decrease as the ase increases, and the various Zipf parameters do not 
influence the recall and precision of MFC-dynamic. 

Recall on Synthetic Data (|D|=10,000)
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Figure 6: Experiments on synthetic data (104 transactions) for MFC-append. Left: 
testing recall (proportion of the frequent change patterns reported). Right: testing 
precision (proportion of the output frequency change patterns which are frequent) 
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Figure 7: Experiments on synthetic data  (105 transactions) for MFC-append. Left: 
testing recall. Right: testing precision 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Experiments on synthetic data (106 transactions) for MFC-append. Left: 
testing recall. Right: testing precision 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 9: Experiments on synthetic data (106 transactions) for MFC-dynamic. Left: 
testing recall. Right: testing precision 
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5 Conclusions 

In this paper, we propose two single-pass algorithms, called MFC-append and MFC-
dynamic, for mining frequent frequency changed items, vibrated frequency changed 
items, and stable frequency changed items over continuous append-only and dynamic 
data streams, respectively. A new summary data structure, called Change-Sketch, is 
developed to store the essential changed patterns of data streams. The space 
complexity of Change-Sketch is O(mlog(n/m)), and the proposed algorithms take 
O(log(n/m)) time in worst case to compute each new arrived item, but only O(1) 
amortized time per item. The experimental results show that our algorithms have 
linear scalability and high accuracy in the analytical outputs. 
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