Journal of Universal Computer Science, vol. 11, no. 8 (2005), 1426-1439
submitted: 10/3/05, accepted: 5/5/05, appeared: 28/8/05 © J.UCS

Incremental Rule Learning and Border Examples Selection
from Numerical Data Streams

Francisco J. Ferrer—Troyano
(Computer Science Dept., Univ. of Seville, 41012 Sevilla, Spain
ferrer@lsi.us.es)

Jesus S. Aguilar—Ruiz
(Computer Science Dept., Univ. of Seville, 41012 Sevilla, Spain
aguilar@Ilsi.us.es)

José C. Riquelme
(Computer Science Dept., Univ. of Seville, 41012 Sevilla, Spain
riquelme@lsi.us.es)

Abstract: Mining data streams is a challenging task that requires online systems ba-
sed on incremental learning approaches. This paper describes a classification system
based on decision rules that may store up—to—date border examples to avoid unneces-
sary revisions when virtual drifts are present in data. Consistent rules classify new test
examples by covering and inconsistent rules classify them by distance as the nearest
neighbour algorithm. In addition, the system provides an implicit forgetting heuristic
so that positive and negative examples are removed from a rule when they are not near
one another.

Key Words: Classification, decision rules, incremental learning, concept drift, data
streams

Category: H.2.8, 1.2.6, 1.5.2

1 Introduction

Classification and rule learning are important, well-studied tasks in machine
learning and data mining. In order to classify and model large—scale databases,
important works have been recently addressed to scale up inductive classifiers
and learning algorithms [3, 16]. However, a growing number of emerging busi-
ness and scientific applications, where high-rate streams of detailed data are
constantly generated, is frequently challenging the scalability of such methods.
Examples of such data streams include networks event logs, telecommunications
records, and financial and retail chain transactions. Applications of such streams
include credit card fraud protection, target marketing, and intrusion detection,
for which it is not possible to collect all relevant input data before applying the
learning process. In these environments, KDD systems have to operate conti-
nuously - online - and process each item in real-time [4] so that memory and
time limitations make multi—pass scalable algorithms unfeasible due to data are
received at a higher rate than they can be repeatedly analyzed. Furthermore,

Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ... 1427

real-world data streams are not generated in stationary environments, requiring
incremental learning approaches to track trends and adapt to changes in the
target concept.

This paper describes FACIL', an incremental learning algorithm that provides
a set of decision rules induced from numerical data streams. Our proposal extends
previous work [1] by filtering the examples that lie near to decision boundaries,
so that every rule may retain a particular set of positive and negative examples.
This information makes possible to ignore false alarms with respect to virtual
drifts and avoid hasty modifications.

Paper Organization. The rest of the paper is organized as follows. The next
section outlines a background and related work of classification, incremental
learning, concept drift and data streams classification systems. In Section 3, we
motivate and describe the basis of our algorithm. Section 4 describes the data
sets used in our experiments and shows the results achieved. In Section 5, we
discuss the conclusions we reached based on the experimental results and outline
possible directions for future works.

2 Background and Related Work

In the problem of classification, an input data set of training examples T =
{e1,...,e,} is given. Every training example e; = (T}, y;) is a pair formed by a
vector T; and a discrete value y;, named class label and taken of a finite set Y.
Every vector T has the same dimensionality, each dimension is named attribute
and each component z;; is an attribute value (numeric or symbolic). Under the
assumption there is an underlying mapping function f so that y = f(7T), the
goal is to obtain a model from T that approximates f as f in order to classify
or decide the label of non—labelled examples (tests), so that f maximizes the
prediction accuracy.

Within incremental learning, a whole training set is not available a priori but
examples arrives over time, normally one at a time ¢ and not time—dependent ne-
cessarily (e.g., time series). Despite online learning systems continuously review,
update, and improve the model, not every online system is based on an incremen-
tal approach. According to the taxonomy in [13], if T3 = {(T,y) : y = f(T)} for
t=<1,...,00 >, then now ft approximates f. In this context, if an algorithm
discards ft 1 and generates ft from T;, for ¢« =< 1,...t >, then it is on-line
batch or temporal batch with full instance memory. If the algorithm modifies
ft using ft 1 and T}, then it is purely incremental with no instance memory. A
third approach is that of systems with partial instance memory, which select and
retain a subset of past training examples to use them in future training episodes.

! Fast and Adaptive Classifier by Incremental Learning

1428 Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ...

Along with the ordering effects, incremental learning from real-world domains
faces two problems known as hidden context and concept drift, respectively [20].
The problem of hidden context is when the target concept may depend on unk-
nown variables, which are not given as explicit attributes. In addition, hidden
contexts may be expected to recur due to cyclic or regular phenomena (aka recu-
rring contexts) [5]. The problem of concept drift is when changes in the hidden
context induce changes in the target concept. In general, two kinds of concept
drift depending on the rate of the changes are distinguished in the literature:
sudden (abrupt) and gradual. In addition, changes in the hidden context may
change the underlying data distribution, making incremental algorithms to re-
view the current model in every learning episode. This latter problem is called
virtual concept drift [20]. In [14] virtual concept drift is referred to as sampling
shift, and real concept drift is referred to as concept shift.

Formally, in [10] concept drift is defined in terms of consistency and per-
sistence. Consistency refers to the change ¢; = 6; — 6;_; that occurs between
consecutive examples of the target concept from time ¢t — 1 to t, with 6; being
the state of the target function in time ¢. A concept is consistent if €; is smaller
or equal than a consistency threshold e.. A concept is persistent if it is consis-
tent during p times, where p > 3 and w is the size of the window. The drift is
therefore considered permanent (real) if it is both consistent and persistent. Vir-
tual drift is consistent but it is not persistent. Noise has neither consistency nor
persistence. In practice, the output model needs to be updated independently
the concept drift is real or virtual.

Above problems make incremental learning be more complex than batch
learning, so effective learners should be able to distinguish noise from actual
concept drift and quickly adapt the model to new target concept or recurring
contexts. There are two common approaches that can be applied altogether to
detect changes in the target concept [8]. An approach consists in repeatedly
applying the learner to a single window of training examples whose size can be
dynamically adjusted whenever target function starts to drift. In [10] problems
with this approach are studied and an unsupervised algorithm that uses three
windows of different sizes is proposed. Another approach is to apply weighting for
the training examples according to the time they arrive, reducing the influence of
old examples. Weighting based approaches are partial instance memory methods.

Formally, a data stream is an ordered sequence of data items read in increa-
sing order. In practice, a data stream is an unbounded sequence of items liable to
both noise and concept drift, and received at a so high rate that each one can be
read at most once [4]. Thus, data streams contexts compel to learning systems to
give approximate answers using small and constant time per example [6]. Recent
works on data streams classification has been mainly addressed by two different
approaches: decision trees [2, 6, 7] and ensemble methods [9, 17, 19].

Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ... 1429

Domingos & Hulten’s VFDT and CVFDT systems [6] build a decision tree
based on Hoeffding bounds, which guarantee constant time and memory per
example and an output model asymptotically nearly identical to that given by
a batch conventional learner from enough examples. Since VFDT and CVFDT
are evaluated for data streams with symbolic attributes, Jin & Agrawal propose
in [7] a numerical interval pruning approach to reduce the processing time for
numerical attributes, without loss in accuracy. Gama et al.’s VFDTc system [2]
extends the VFDT properties in two directions: the ability to deal with numerical
attributes and the ability to apply nave Bayes classifiers in tree leaves.

Ensemble batch learning algorithms such as Boosting and Bagging have pro-
ven to be highly effective from disk-resident data sets. These techniques perform
repeated resampling of the training set, making them a priori inappropriate in
a data streams environment. Despite what might be expected, novel ensemble
methods are increasingly gaining attention because of they have proved to offer
an improvement in prediction accuracy. In general, every incremental ensem-
ble approach uses some criteria to dynamically delete, reactivate, or create new
ensemble learners in response to the base models’ consistency with the current
data. SEA [17] is a fast algorithm that requires approximately constant me-
mory. It builds separate classifiers on sequential chunks of training examples,
combining them into a fixed—size ensemble according to a heuristic replacement
strategy. From sequential blocks as well, Wang et al. [19] propose using ensemble
of classifiers weighted based on their expected classification accuracy on the test
examples. In [9] Kolter & Maloof propose DWM, an ensemble method based on
the Weighted Majority algorithm [11].

As pointed out in [19], a drawback of decision trees is that even a slight
drift of the target function may trigger several changes in the model and se-
verely compromise learning efficiency. On the other hand, ensemble methods
avoid expensive revisions by weighting the members, but may run the risk of
building unnecessary learners when virtual drifts are present in data. Rule sets
take advantage of not being hierarchically structured, so concept descriptions
can be updated or removed when becoming out—of-date without hardly affec-
ting the learning efficiency. A decision rule is a logic predicate of the form if
antecedent then label. The antecedent is a conjunction of conditions of the form
Attribute=Values, and = is a operator that states a relation between a particular
attribute and values of its domain. Within rule learning, each training example is
said a maximally specific rule. Contrary to partitions obtained with decision tree
based approaches, the regions given by decision rules do not model the whole
space. Thus, new test examples may not satisfy - be covered by - any rule.

Fundamental incremental rule learners include STAGGER [15] (the first sys-
tem designed expressly for coping with concept drift), the FLORA family of
algorithms [20] (with FLORA3 being the first system able to deal with recurring

1430 Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ...

contexts), and the AQ-PM family [13]. Since pure incremental rule learners take
into account every training example, many of them have not still adapted to a
data streams environment, especially those featuring numerical attributes.

3 Border Examples inside Rules

The core of our approach is that rules may be inconsistent by storing positive and
negative examples which are very near one another (border examples). A rule is
said consistent when does not cover any negative (different label) example. The
aim is to seize border examples up to a threshold is reached. This threshold is
given as an user parameter and sets the minimum purity of a rule. The purity of
a rule is the ratio between the number of positive examples that it covers and its
total number of covered examples, positive and negative. When the threshold is
reached, the examples associated with the rule are used to generate new positive
and negative consistent rules. This approach is similar to the AQ11-PM system
[12, 13], which selects positive examples from the boundaries of its rules (hyper—
rectangles) and stores them in memory. When new examples arrive, AQ11-PM
combines them with those held in memory, applies the AQ11 algorithm to modify
the current set of rules, and selects new positive examples from the corners, edges,
or surfaces of such hyper-rectangles (extreme examples).

Our approach differs from AQ11-PM in that a rule stores two positive exam-
ple per negative example covered. The stored examples are not necessary extreme
and the rules are not repaired every time they become inconsistent, reducing the
computational complexity. Since the number ne of negative examples that a
rule can store increases as the number of covered positive examples does, every
time ne increases by one unit, a new positive example is stored. Although this
approach suffers the ordering effects, it does not compromise the learning effi-
ciency and guarantees that an impure rule is always modified from as positive
as negative examples.

3.1 Moderate Generalization

Henceforth, the next notation is used to describe our proposal. Let m be the
number of numerical attributes. Let Y = {y1,...,y.} be the set of class labels.
Let e; = (¥}, y;) be the new i*" training example arriving, where ; is a norma-
lized vector in [0,1]™ and y; is a discrete value in Y. A decision rule r is given
by a set of m closed intervals [I};, I;,] (j € {1,...,m}) which define an hyper—
rectangle inside the space. [denotes lower bound and u upper bound. Rules are
stored in different sets according to the associated label. Since no global training
window is used but each rule handles a different set of examples (a window per
rule), every time a new example arrives the model is updated. In this process,
one of three tasks is at least performed in the next order:

Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ... 1431

45 units

'
v

) 21 units ,

15 u.

Al: (21-15)/45: 13%
A2: (14-10)/30: 13%

10 u.

14 units

30 units

AL:(17-8)/45
20%
A2:(11-8)/30
10%

Figure 1: Moderate generalization prevents any rule can be selected as candidate
to describe a new example(k =10%).

1. Positive covering: x; is covered by a rule associated with the same label
Yi-

2. Negative covering: x; is covered by a rule associated with a different label
v # i

3. New description: x; is not covered by any rule in the model.

Positive covering. First, the rules associated with y; are visited and the
generalization necessary to describe the new example x; is measured according
to definition 1.

Definition 1 (Growth of a rule) Letr be a rule in [0,1]™ formed by m closed
intervals [Lj;, I,). Let x be a point in [0,1]™. The growth G(r,x;) of the rule r
to cover the point x; is defined as:

G(ryai) = 2250, (95 — 75);
9 = uj — i3 vy = Lju — Ijns
wj = max(z;, Ij,); [; = min(x;j, Ij);

This heuristic gives a rough estimate of the new region of the search space that
is taken, biasing in favour of the rule that involves the smallest changes in the
minimum number of attributes. While visiting the rules associated with y;, the
one with the minimum growth is marked as candidate. However, a rule is taken
into account as a possible candidate only if the new example can be seized with
a moderate growth, so that:

Vjed{l,....om}: gj—r; <rk; k€ (0,1]

1432 Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ...

Figure 1 shows an example in which two rules do not satisfy this condition
in one attribute using x = 0.1. Since every example is previously normalized in
[0,1]™, the divisor factor for the domain of each attribute is omitted in definition
1. When the first rule covering x; is found - the resulting growth is therefore 0
- its support is increased by one unit and the index of the last covered example
is updated as i. If the number of negative examples that such a rule can store
increases by one unit, then the example is added to its window.

Negative covering. If x; is not covered by a rule associated to y;, then the
rest of rules associated with a label 3/ # y; are visited. If a different label rule
r’ does not cover z;, the intersection between r’ and the candidate is computed.
If such a intersection is not empty, the candidate is rejected. When the first
different label rule r” covering z; is found, its negative support is increased by
one unit, and z; is added to its window. If the new purity of r”’ is smaller than the
minimum given by the user, then new consistent rules according to the examples
in its window are included in the model. r” is marked as unreliable so that it
can not be generalized and has not taken into account to generalize other rules
associated with a different label. In addition, its window is reset.

New description. After above tasks, the candidate rule is generalized if
does not intersect with any other rule associated with a label 3" # y;. If no rule
covers the new example and there is not a candidate that can be generalized to
cover it, then a maximally specific rule to describe it is generated.

3.2 Refining and Forgetting Heuristic

The set of rules is simultaneously refined while the first two tasks are accom-
plished. Before computing a rule covers the new example, it is removed if the
last extended rule associated with the same label (the last candidate) covers it.
After computing a rule does not cover the new example, it is removed if satisfies
one of two conditions:

— It is an unreliable rule whose support is smaller than the support of any rule
generated from it.

— The number of times the rule hindered a different label rule to be generalized
is greater than its support.

Similarly to AQ—PM, our approach also involves a forgetting mechanism that can
be either explicit or implicit. Explicit forgetting takes places when the examples
are older than an user defined threshold. Implicit forgetting is performed by
removing examples that are no longer relevant as they do not enforce any concept
description boundary. When a negative example x in a rule r has not a same
label example as the nearest one after the number pe of positive examples that
r can store is increased two times since x was covered, the system removes it.

Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ... 1433

P. Accuracy | L. Time | Number of rules

Database mean sd |mean sd |mean sd
Balance 83.17 3.97 |0.07 0.04/38.08 3.81
Breast Cancer [94.69 2.51 |0.03 0.02]9.93 1.96
Glass 68.75 10.6 |0.04 0.02|15.25 1.56

Heart Statlog |77.33 7.81 |0.05 0.02|17.61 241
Tonosphere 90.83 4.66 |0.16 0.05| 7.53 1.69

Iris 94.20 5.25 |0.00 0.01| 3.85 1.36
P-Diabetes 73.45 4.51 |0.06 0.02| 7.51 1.53
Sonar 77.40 9.43 |0.15 0.04| 7.54 0.96
Vehicle 72.21 3.61 |0.39 0.09|33.26 4.16
Vowel 77.67 4.60 |1.67 0.20]66.90 6.48
Waveform 77.62 1.77 |22.46 1.85|87.66 7.40
Wine 92.04 6.07 [0.01 0.01|4.46 0.59
Average 81.61 5.40 |2.10 0.20{24.96 2.83

Table 1: Means and standard deviations of prediction accuracy, learning time in
seconds, and number of rules obtained by C4.5Rules from twelve UCI databases
with numerical attributes.

Analogously, a positive example is removed if it has not a different label example
as the nearest one after pe is increased by two units.

In worst case, a new example involves a new description, visiting therefore
every rule in each set. The computational complexity associated with this case
is O(m - s-€), with m being the number of attributes and s as the model size or
total number of rules. € estimates the average number of examples per rule.

Finally, to classify a new test example, the systems searches the rules that
cover it. If there are reliable and unreliable rules covering it, the latter ones are
rejected. Consistent rules classify new test examples by covering and inconsistent
rules classify them by distance as the nearest neighbour algorithm. If there is no
rule covering it, the example is classified based on the label associated with the
reliable rule that involves the minimum growth and does not intersect with any
different label rule.

4 Empirical Evaluation

Although the STAGGER concepts [15] provide a standard benchmark of tracking
the drift from examples with symbolic attributes, data streams classifiers so far
lacks a standard experimental method to evaluate them with numerical attri-
butes. In [6, 19] both robustness and reliability of incremental classifiers are
evaluated using synthetic data streams generated from a moving hyperplane.

1434 Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ...

P. Accuracy L. Time Number of rules
Database mean b/w sd |mean b/w sd |meanb/w sd
Balance 95.18 % 2.07/0.008 * 0.008/18.36 * 7.79
Breast Cancer [95.50 4.66/0.007 + 0.007| 8.10 1.68
Glass 75.89 x 2.31/0.003 % 0.006]14.71 1.67
Heart Statlog |78.59 2.12(0.010 * 0.007{16.59 1.31
Tonosphere 90.31 2.34/0.013 % 0.005| 7.75 1.20
Iris 98.10 % 0.60(0.000 0.000| 3.00 0.00
P-Diabetes 90.42 % 3.59/0.014 * 0.006| 8.51 0.99
Sonar 75.04 2.43|0.019 % 0.007| 8.57 e 1.04
Vehicle 76.28 x 3.85/0.050 % 0.008(33.89 2.77
Vowel 77.53 3.91|0.060 % 0.006{65.90 0.30
Waveform 84.77 * 7.92/1.220 * 0.070{40.30 * 11.15
Wine 95.05 0.93|0.002 % 0.005/7.70 e 1.24
Average 86.11 % 3.09/0.12 * 0.01{19.43 * 2.59

Table 2: Means and standard deviations of prediction accuracy, learning time
in seconds, and number of rules obtained by FACIL from twelve UCI databases
with numerical attributes.

In [18] an framework for incremental learning with SVMs is proposed and two
incremental variants of the cross—validation experimental method are presented
to evaluate them using real databases available at the UCI repository. The pro-
blem here is that both methods are designed to evaluate BBL algorithms (block
by block learning). FACIL is based on instance by instance learning (1IL) where
the algorithm does not wait for receive a block of examples - or to complete
the window - to update the model, but every time a new example arrives it is
processed online. Precisely, that is why standard cross validation can be applied
to evaluate (IIL) learning algorithms similarly to multi—pass methods so that
one—pass processing of the training examples in a sequential manner according
to the order they arrive is enough.

Similarly to [18], we also evaluate our algorithm as general purpose classifier
using 10—folds cross validation. Both experiments were conducted on a PC with
CPU 1.7GHz and 512 MB of RAM running Windows XP.

4.1 Real databases from the UCI repository

In this set of experiments, concept drift is not present in data and all attributes
are numerical. For the sake of comparison, decision lists generated by C4.5Rules
are included. For every database, 10—fold cross validation is repeated ten times
shuffling the examples so that they are ordered randomly each time. Since noise

Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ... 1435

Number of examples | Maximum growth

Database mean sd K
Balance Scale | 8.37 16.35 100
Breast Cancer | 3.26 4.58 60
Glass 2.99 7.37 40
Heart Statlog | 1.72 241 40
Tonosphere 2.68 5.36 75
Iris 3.75 2.25 80
Pima Diabetes|16.74 18.15 75
Sonar 1.59 2.31 40
Vehicle 3.67 21.98 55
Vowel 2.19 4.1 100
Waveform 10.79 52.31 35
Wine 2.01 2.5 80
Average 5.03 11.84 64.17

Table 3: Number of examples per rule and maximum growth in FACIL according
to Table 2.

is not present in data, the minimum purity per rule is set with an user parameter
from the prediction accuracy obtained by C4.5Rules with values between 80%
and 100%. The maximum growth is increased as prediction accuracy does, being
it fixed when the number of rules surpasses the size of the model provided by
C4.5Rules. Tables 1 and 2 show the average values and standard deviations for
one hundred executions. The number of examples per rule and the maximum
growth are showed in Table 3. Values about accuracy, learning time, and number
of rules that are marked with x or e in Columns b/w - better/worse - involve
an improvement or loss respectively according to t—student with significance
a = 0.05.

In six databases (Balance—Scale, Glass, Iris, Pima—Diabetes, Vehicle, and
Waveform) FACIL obtained a significant increase with respect to prediction accu-
racy. This improvement excels in Pima—Diabetes database, for which the average
value in accuracy (90.42%) exceeds almost 17 units in comparison to C4.5Rules
(73.73%), that is, an improvement greater than 23% using only one more rule. In
addition, model complexity and prediction accuracy are significantly improved at
once in two databases. In Balance—Scale database, the reduction of the number
of rules is greater than 50%, gaining 12 units in prediction accuracy (more than
14%). In Waveform database, for which the model size is reduced to 46% with
respect to C4.5Rules, the accuracy surpasses 7 units, that is, an improvement
greater than 9% using 47 fewer rules. Since FACIL is a single—pas algorithm and
C4.5Rules is multi-pass, learning time is improved in all the studied databases.

1436 Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ...

In this respect, FACIL spent only 1.22 seconds to process Waveform database,
whereas C4.5Rules exceeded 22 seconds, which involves an improvement greater
than 1700%.

On the other hand, the last row in Table 3 shows that the number of examples
stored in memory is small and a moderate generalization generally improves the
global accuracy in different domains.

4.2 Moving Hyperplane

In a second experiment, we create synthetic data with drifting concepts based
on a moving hyperplane as in [6, 19]. A hyperplane in m-dimensional space is
denoted by equation:

m
E a;Ti = ag
i=1

First, examples are randomly generated and uniformly distributed in multi-
dimensional space [0, 1]™. The examples satisfying > ., a;z; > ao are labelled
as positive, and examples satisfying > ., a;z; < ao as negative. Weights a;
(1 <4 < m) are initialized by random values in the range of [0,1]. The value
of ag is chosen so that the hyperplane cuts the multi-dimensional space in two
parts of the same volume, that is, ag = %ZT; a;. Thus, roughly half of the
examples are positive, and the other half are negative.

As in [19], concept drifts are simulated with three parameters. Parameter «
specifies the total number of dimensions whose weights are involved in changing.
Parameter § € R specifies the magnitude of the change (every N examples) for
weights a1, ..., a4, and v; € {—1,1} specifies the direction of change for each
weight. Each time the weights are updated, ag = %Z:’;l a; is recomputed so
that the class distribution is not disturbed.

In addition, class noise is introduced by randomly switching the labels of
5% of the examples. As in [19], 40% dimensions’ weights are changing at +0.10
per 10000 examples. Tables 4-7 show the results with both implicit and explicit
forgetting after 100000 examples are processed. In both cases, minimum purity
is set to 90%. Training and test examples are generated on the fly and directly
passed to the algorithm. After 900 training examples are generated, 100 test
examples are used to evaluate the algorithm.

Column Time shows the time in seconds spent on building the model and
classifying new test examples. The final number of rules is indicated in Column
Size. Since running time depends on the number of rules, this factor is alternately
limited to 50 and 100 rules per label. The goal here is evaluate the computational
cost as a function of the number of attributes. In general, explicit forgetting heu-
ristics provides a performance significantly higher than the implicit one. Average

Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ... 1437

Number of attributes | Accuracy (%) Time (s) Size
10 96.36 27 10
20 93.25 125 9
30 91.04 248 3
40 89.70 440 2
50 83.88 953 4

Table 4: Prediction accuracy, time in seconds, and number of rules obtained
by FACIL using explicit forgetting, maximum growth x = 50% , and maximum
number of rules equal to 50.

Number of attributes | Accuracy (%) Time (s) Size
10 84.61 82 153
20 67.13 214 150
30 63.17 276 125
40 59.65 759 22
50 59.50 851 9

Table 5: Prediction accuracy, time in seconds, and number of rules obtained
by FACIL using implicit forgetting, maximum growth x = 50% , and maximum
number of rules equal to 100.

explicit accuracy is higher than 90% and average running time is higher than 100
examples per second. However, the latter holds satisfactory trade—offs between
learning time and model complexity from low dimensionality data, so that:

— With ten attributes, learning time is greater than 3500 examples per second
and accuracy exceeds 98%.

— With fifty attributes, learning time is greater than 600 examples per second
and accuracy exceeds 88%.

5 Conclusions and Future Work

In this paper, we described and evaluated FACIL, an incremental rule learner
with partial instance memory based on moderate generalization and example
nearness. Similarly to AQ-PM, our proposal is not based on a window policy
but examples are rejected when they do not describe a decision boundary. On
the contrary, FACIL builds and refines inconsistent rules simultaneously without
adversely affecting the learning efficiency and avoiding unnecessary revisions
when virtual drifts are present in data. Experimental results show an excellent
performance of our approach as a general purpose classification method.

1438 Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ...

Number of attributes | Accuracy (%) Time (s) Size
10 98.32 40 7
20 94.57 70 12
30 89.26 106 10
40 89.19 135 7
50 87.72 155 10

Table 6: Prediction accuracy, time in seconds, and number of rules obtained
by FACIL using explicit forgetting, maximum growth « = 75%, and maximum
number of rules equal to 100.

Number of attributes | Accuracy (%) Time (s) Size
10 87.93 70 29
20 55.61 262 27
30 53.48 248 53
40 52.25 469 65
50 51.21 495 36

Table 7: Prediction accuracy, time in seconds, and number of rules obtained
by FACIL using implicit forgetting, maximum growth x = 75%, and maximum
number of rules equal to 50.

Our future research directions are oriented to drop irrelevant dimensions,
and recover dropped attributes turned relevant later. We are also evaluating
alternative growth measures for tackling with symbolic attributes in order to
compare our system with others data stream classifiers as CVFDT [6] and VFDTc

[2].

References

1. F. Ferrer-Troyano, J. Aguilar-Ruiz, and J. Riquelme. Discovering decision rules
from numerical data streams. In Proc. of the 19" ACM Symposium on Applied
Computing - SAC’04, pages 649-653.

2. J. Gama, P. Medas, and R. Rocha. Forest trees for on-line data. In Proc. of the
19" ACM Symposium on Applied Computing - SAC’04, pages 632-636.

3. J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest — a framework for fast
decision tree construction of large datasets. In Proc. of the 24" Int. Conf. on
Very Large Data Bases — VLDB’98, pages 416—-427, 1998.

4. L. Golab and M. Ozsu. Issues in data stream management. SIGMOD Record,
32(2):5-14, 2003.

5. M. Harries, C. Sammut, and K. Horn. Extracting hidden context. Machine Lear-
ning, 32(2):101-126, 1998.

6. G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
Proc. of the 7'" ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining - KDD’01, pages 97-106.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Ferrer-Troyano F.J., Aguilar-Ruiz J.S,, Riquelme J.C.: Incremental ... 1439

R. Jin and G. Agrawal. Efficient decision tree construction on streaming data.
In Proc. of the 9" ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining - KDD’083.

R. Klinkenberg. Learning drifting concepts: example selection vs. example weigh-
ting. Intelligent Data Analysis, Special Issue on Incremental Learning Systems
Capable of Dealing with Concept Drift, 8(3), 2004.

. J. Z. Kolter and M. Maloof. Dynamic weighted majority: A new ensemble method

for tracking concept drift. In Proc. of the 3" IEEE Int. Conf. on Data Mining -
ICDM’03, pages 123-130, 2003.

M. Lazarescu, S. Venkatesh, and H. Bui. Using multiple windows to track concept
drift. Technical report, Faculty of Computer Science, Curtin University, 2003.

N. Littlestone and M. Warmuth. The weighted majority algorithm. Information
and Computation, 108:212-261, 1994.

M. Maloof. Incremental rule learning with partial instance memory for chan-
ging concepts. In Proc. of the 15" IEEE Int. Joint Conf. on Neural Networks
- IJCNN’03, pages 27642769, 2003.

M. Maloof and R. Michalski. Incremental learning with partial instance memory.
Artificial Intelligence, 154:95-126, 2004.

M. Salganicoff. Tolerating concept and sampling shift in lazy learning using pre-
diction error context switching. Al Review, Special Issue on Lazy Learning, 11(1-
5):133-155, 1997.

J. Schlimmer and R. Granger. Incremental learning from noisy data. Machine
Learning, 1(3):317-354, 1986.

J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for
data mining. In Proc. of the 22" Int. Conf. on Very Large Databases — VLDB’96,
pages 544-555, 1996.

W. Street and Y. Kim. A streaming ensemble algorithm SEA for large-scale clas-
sification. In Proc. of the 7" ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining - KDD’01, pages 377-382.

N. Syed, H. Liu, and K. Sung. Handling concept drifts in incremental learning
with support vector machines. In Proc. of the 5" ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining - KDD’99, pages 272-276. ACM Press,
1999.

H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using
ensemble classifiers. In Proc. of the 9" ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining - KDD’03, pages 226—235.

G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden
contexts. Machine Learning, 23(1):69-101, 1996.

