
Integrating Educational Tools for Collaborative
Computer Programming Learning

Crescencio Bravo
(Escuela Superior de Informática, Universidad de Castilla – La Mancha, Spain

Crescencio.Bravo@uclm.es)

Maria Jose Marcelino
(Centro de Informática e Sistemas da Universidade de Coimbra, Portugal

zemar@dei.uc.pt)

Anabela Gomes
(Instituto Superior de Engenharia de Coimbra, Portugal

anabela@isec.pt)

Micaela Esteves
(Escola Superior de Tecnologia e Gestão de Leiria, Portugal

micaela@estg.ipleiria.pt)

Antonio Jose Mendes
(Centro de Informática e Sistemas da Universidade de Coimbra, Portugal

toze@dei.uc.pt)

Abstract: Computer Programming learning is a difficult process. Experience has demonstrated
that many students find it difficult to use programming languages to write programs that solve
problems. In this paper we describe several educational computer tools used successfully to
support Programming learning and we present a global environment which integrates them,
allowing a broader approach to Programming teaching and learning. This environment uses
program animation and the Computer-Supported Collaborative Learning (CSCL) paradigm.

Keywords: Collaborative Programming, Computer Programming Teaching and Learning,
Program Animation and Simulation
Categories: K.3.2

1 Introduction

Computer Programming learning is a difficult process. To become a good
programmer, a student must develop several skills that go well beyond knowing the
syntax of a programming language. Experience has shown that most difficulties arise
from students’ low capacity to develop algorithms that solve problems effectively.
This is mostly due to the lack of a suitable mental model. These difficulties are
independent from the programming language or programming paradigm used. With
the objective of improving Programming teaching and learning we have developed
several educational tools that take advantage of program animation and visualization
and also collaboration between students during program development [Bravo, 2004;

Journal of Universal Computer Science, vol. 11, no. 9 (2005), 1505-1517
submitted: 15/2/05, accepted: 30/6/05, appeared: 28/9/05 © J.UCS

Esteves, 2004; Gomes, 2001; Redondo, 2003].
The dynamic nature of programs suggests that their operations and interactions

are, in general, better described by means of dynamic visual representations. A
program animation tool allows the visualization of dynamic graphical representations
of program execution. Some authors [Levy, 2003] confirm the effectiveness of
program animation when it is integrated in long term teaching experiences. The
underlying idea is to facilitate students’ work, allowing them to interact in the first
learning stages with visual representations of algorithms instead of with C or Java
code (or any other programming language).

The materialization of Collaborative Learning using computer environments
results in the CSCL paradigm [Koschmann, 1996a]. In collaborative environments,
the dialogue among users during their activity, the joint work and the resulting
product are the elements that sustain, promote and cause learning. In particular, Real
Time Collaborative Programming allows geographically distributed students to work
concurrently and collaboratively in the same programming task in order to design,
code, debug, test and document [Shen, 2000]. Previous studies [Nosek, 1998;
Williams, 2000] indicate that Collaborative Programming not only accelerates
problem resolution processes, but substantially improves the quality of the software
products that are built.

In this paper we describe how different educational tools used independently for
Programming learning have been integrated from the technological point of view.
They are based on program simulation and animation, planning, and on collaboration
among the users. Each tool operates at a different level and has interest and utility by
itself. In this integration, technologies such as XML1, JMS2 and JSDT3 are used. XML
offers the possibility to exchange structured data among applications. JMS is a
messenger API for Java that allows components of applications to create, send,
receive and manage messages. JSDT is a toolkit especially suitable for the
development of distributed synchronous collaborative applications.

This paper is organized as follows: section 2 describes the tools we have
developed to support different stages of Programming learning; section 3 outlines a
global methodology for Programming learning based on the integration of those tools
previously described; and finally, the conclusions and implications of this work are
presented.

2 Software Tools for Programming Teaching and Learning

Software tools that allow the interactive development and testing of programs are a
useful complement to the theoretical contents in Programming teaching and learning.
In the following sections we describe some tools we have developed in the framework
of our research in this area.

1 Extensible Markup Language: http://www.w3.org/XML/
2 Java Message Service: http://java.sun.com/products/jms/
3 Java Shared Data Toolkit: http://java.sun.com/products/java-media/jsdt/

1506 Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

2.1 SICAS

SICAS (Interactive System for Algorithm Development and Simulation) [Gomes,
2001] is a system designed to support learning of the basic concepts of procedural
programming. Its main objective is the development of problem solving skills, namely
in the utilization of control structures and subprograms to solve problems. This
system includes support to two different activities:

• Design/Edition of solutions (algorithms) to teacher proposed problems. The
algorithm is specified using a visual representation, where graphical symbols
that represent the algorithms building blocks (selections, repetitions,
procedures…) are used. This representation is independent of any
programming language that may be used in the course, allowing students to
focus on the algorithm design and not on any specific language syntax. It is
also useful to convey the idea that a well designed algorithm can be
implemented in several programming languages without a significant effort.

• Execution/Simulation of solutions. The student can verify how his/her
algorithm works. SICAS simulates the algorithm and shows its results using
animation. Students can analyze how the algorithm behaves in detail and at
their own pace, identifying and correcting eventual errors.

SICAS does not include theoretical contents, but it consists of an environment of

experimentation and discovery, which enables the detection of errors, their correction
and the learning based on these activities. In our opinion, these activities improve
problem solving skills resulting in the ability to build programs. In several tests we
confirmed that the students who used SICAS built better algorithms and made them
faster than those who did not use SICAS [Rebelo, 2005].

Console

Variables

Simulation and
Visualization

Console

Variables

Simulation and
Visualization

Figure 1: A SICAS animation session

1507Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

Once a valid solution has been designed, SICAS allows the automatic generation
of code in the form of pseudo-code, C language or Java language. Fig. 1 is a
screenshot of SICAS. The main area is the visualization and simulation area (center),
which contains the algorithm representation. The variable list (with their values) can
be seen on the right and the output console at the bottom.

2.2 PlanEdit

DomoSim-TPC is a collaborative environment for the distance learning of domotical
design by means of problem solving activities. This environment incorporates a tool
called PlanEdit [Redondo, 2002], which is used to build an abstract solution to a
problem by means of the planning of its design.

This tool is also being used to support Programming learning. We consider a
program as a set of instructions (or blocks of instructions) organized according to the
program control flow. From this point of view, a similar approach to the one used in
DomoSim-TPC can be followed to build an abstract solution to a programming
problem, considering the sentences of a program as the objects that PlanEdit
[Redondo, 2003] manipulates. It is necessary to have an intermediate representation
language that allows the planning of a program with a high level of abstraction and
that facilitates reflection on the decisions made. That is to say, we need a language
that encourages discussion about the sentences (instructions) that should be part of a
program and about how they relate to the rest of the program. This language must
represent the different types of instructions: assignment, loop, selection and call to
procedures.

During the Planning of Program Design with PlanEdit three workspaces are used:

• The plan editor (individual workspace) is used to build design plans

individually, so that users can outline the solution to a programming problem
using a representation language developed for this purpose. Different
representations can be used to visualize the plans of program design:
sequence of actions followed to build the activity diagram, flow diagrams
(like in SICAS), pseudo-code equivalent to the diagram planned or an
equivalent to the pseudo-code in some programming language.

• The messaging and representation of the group process (discussion and
justification workspace) utility organizes and presents all the dialogue
contributions that the group has generated during the activity, including
those that the teacher or the system itself can generate. Some of these
contributions are design proposals previously elaborated with the plan editor,
others are comments, questions, etc. In the user interface (Fig. 2), the
contributions are shown in a tree structure, and different buttons allow the
users to issue contributions.

• The table of contents (results workspace) allows users to organize and
present the final solution elaborated and agreed upon by the group. In this
workspace only the contents generated by the group are shown, separated
from the process followed to obtain them. A hierarchical structure is used to
represent the results of the activity in the form of a table of contents.

1508 Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

Discussion tree

Problem formulation

Dialog
actions

Figure 2: PlanEdit’s workspace for group discussion

We can identify a clear equivalence in objectives between PlanEdit and SICAS,
although they use a different representation language. SICAS approaches learning
from an individual perspective, whilst PlanEdit promotes a collaborative process of
construction and discussion of solutions.

2.3 COLLEGE

The laboratory (practical classroom) is the natural space for practical programming
tasks. However, students do not always finish them in the time defined, so that an
extension of this space –and time– is necessary. With COLLEGE [Bravo, 2004]
distance work is allowed and encouraged. Thus, the students can work at home, at
free-use laboratories, or they can use laptops and the wireless networks of the
campuses in order to collaboratively solve programming problems.

COLLEGE (COLLaborative Edition, compilinG and Execution of programs)
facilitates the collaborative learning of Programming. The collaboration between
students, besides offering cognitive benefits, is a motivating aspect since the students
use tools that are familiar to them, such as the chat or the electronic mail.

This system materializes the application of the structuring model and of the
synchronous collaboration support mechanisms of the DomoSim-TPC system [Bravo,
2002b] to the Collaborative Programming systems. Thus, a distributed collaborative
system that can be used from the labs as well as from home has been developed. Its
user interface is shown in Fig. 3. According to the structuring model, in the process of
programming we distinguish various stages: (1) edition/revision of the source code,
(2) compilation of the source code, and (3) execution of the object programs. These
stages correspond with three shared workspaces. The edition of the source code is
carried out by a single user, which follows the Driver-Observer model characteristic
of Pair Programming [Williams, 2001]. The edition floor is agreed on by the students,

1509Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

who, using the coordination support of COLLEGE, also democratically decide when
to compile and to execute.

Session
panel

Group
state

Compilation/Execution
console

Edition area

Edition
state

Tele-pointer

Structured
chat

Figure 3: COLLEGE interface

Besides the tasks of the Programming domain, the system offers a collaborative
support that consists mainly of an instant messaging tool (structured chat) and a
decision-making tool. In addition, the system offers awareness functionalities to
facilitate the perception and carrying out of group work (session panel, tele-pointers
and other techniques [Bravo, 2002a]).

This system has been implemented using the Collaborative Systems
Synchronization Infrastructure (CSSI) developed by the CHICO Group [Bravo,
2004]. This infrastructure, with a centralized architecture, is based on JSDT, and
allows developers to turn a mono-user application into a collaborative one, making
use of a session management tool and using abstractions such as client, message and
channel.

2.4 OOP-Anim

OOP-Anim [Esteves, 2004] is an environment for the learning of basic concepts of
Object-Oriented Programming (OOP) and to use them to solve problems. In essence it
is a tool for visualization and animation of object-oriented programs created by
students. With this tool the students build solutions to problems, simulate the
execution of these solutions, detect errors and hopefully try to correct them. Fig. 4
shows a screenshot of the system. It is divided into four parts: program listing,
animation area, output area and control panel for managing the animation.

1510 Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

Program

Control

Output

AnimationProgram

Control

Output

Animation

Figure 4: OOP-Anim interface

At an initial stage, this environment can be useful for the analysis of example
programs presented by the teacher to the students. The student becomes familiar with
the concepts of class and object and their relations (common concepts of OOP).
However, although most students can understand programs previously written,
creating their own programs is not so easy. In this phase, OOP-Anim can assist the
student showing how his/her program works, helping him/her to locate, understand
and correct errors. As we mentioned when describing SICAS we believe that self-
detection and correction of errors is a very rich learning activity for programming
students.

3 Tools Integration

We think that the environments described above are useful independently of each
other. However, if they are integrated in a wider environment, allowing easy
communication between the different tools, the resulting environment can be even
more useful to students. For example, this communication will allow the animation in
OOP-Anim of a code written collaboratively in College by simply pressing a button.

The integration of formats and media is important for the management of
knowledge through different representations and tools [Hoppe, 2002]. With this in
mind, our objective is to integrate and coordinate the previous tools to obtain a
productive synergy for Programming teaching and learning. Initially, each of the tools
was designed for a particular purpose and has proved to be effective for it. SICAS
improves the students’ skills for algorithm construction, PlanEdit aids students in
making explicit and discussing strategies for programming problem solving, OOP-

1511Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

Anim helps the students to analyze and understand object-oriented programs, and
COLLEGE supports collaborative programming. We are seeing these benefits in
some of the experiments we are carrying out, firstly with each separate system , and
then with the complete environment (see the Conclusions section). Before
approaching this integration, we shall describe the educational methodology that
justifies it and situates the use of this synergy.

3.1 Educational Methodology

Object-Oriented Programming (OOP) has been gaining an increasing importance in
recent years. Consequently, many universities have adopted OOP languages (Java for
example) in their initial programming courses. Our own institutions have followed the
same path. However, one of the objectives of first year programming courses is to
prepare students for other courses that appear in the following years. Some of them
need the students to dominate C and procedural programming. This leads to the
decision to use procedural programming in the first semester and object-oriented
programming in the second semester. Java is used in both courses.

We follow a common educational methodology in which students first approach
easy problems, and then progressively progress to more complex ones. The problem
abstraction arises from adopting PBL (Problem-Based Learning) [Koschmann, 1996b]
as a learning method. Students learn as result of collaboratively solving real or
simulated programming problems with well-defined objectives. When the teacher
defines a problem, along with other information given he/she indicates the tools
students should use to solve it and the order in which they should be used.

In our opinion, visual representation of algorithms can facilitate students’ work in
the initial stages of Programming learning. Students can start using SICAS
individually, and then in groups together with PlanEdit and the asynchronous
collaborative infrastructure of DomoSim-TPC. The next step consists in students
coding their algorithms in the chosen programming language. These programs will be
created individually or in groups using COLLEGE, but it should be possible to
automatically express them through flow diagrams, so that they can be visualized in
SICAS. When students progress to object-oriented programming, programs developed
with COLLEGE should be easily transferred to OOP-Anim, so that students can see
their animation, facilitating comprehension and the detection and correction of errors.

In CSCL scenarios shared workspaces with specific visual representations are
used to facilitate and enrich the communication and synchronous collaboration
[Hoppe, 2002]. In accordance with this, we have considered it interesting to include
synchronous collaborative support in OOP-Anim. This system can be started
autonomously or directly from COLLEGE. We should point out that programs
animated with OOP-Anim should not be very big or too complex, since the number of
objects (attributes, methods, references…) that can be visualized with this tool in an
effective way is limited.

Fig. 5 shows the aforementioned methodological approach. As the student
progresses in learning, he/she makes use of the most suitable tool for the difficulty
and type of problem. Thus, at the initial stages, in which the work is typically on easy
problems and the students build algorithms instead of programs, they use SICAS and
PlanEdit, taking advantage of algorithm simulation and asynchronous collaboration.
In more advanced stages OOP-Anim and COLLEGE are used, allowing users to deal

1512 Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

directly with the source code. However, the global system is flexible and allows the
students to move to the tool they consider more suitable for their task.

SICAS

Work

Programming
Paradigm

Difficulty

PlanEdit COLLEGEOOP-Anim

Learning Evolution

Easy
Algorithms

Complex
Algorithms

Individual

Group

Easy
Programs

Complex
Programs

Structured

Object Oriented

Structured

Figure 5: Educational methodology for Computer Programming learning

At the moment, SICAS is a mono-user environment, while the other tools support
group work. SICAS and PlanEdit are based on structured programming and are
independent of the programming language used, although the automatic code
generation currently available only supports C and Java. OOP-Anim only supports
Java, and COLLEGE allows any language that can be compiled and executed using
external programs.

To illustrate the joint use of the tools, we present an example. A teacher proposes
a problem consisting of developing an easy Java program to solve a second degree
equation. The teacher has previously organized the students in groups and proposes to
them that they use SICAS, PlanEdit and COLLEGE in this order (it is a structured
programming problem). First, the students use SICAS to develop an algorithm
expressed using a flow diagram to solve the problem. They approach this task
individually. Then, they discuss their solution asynchronously with the other group
members using PlanEdit, considering the flow diagram as well as the process carried
out to obtain it (plan). This discussion will result in a group agreed solution. This
solution can then be used to generate code in the target programming language. The
code can then be transferred to COLLEGE where students will synchronously
collaborate to complete, compile and test the solution.

3.2 Technological Architecture

To support the above described educational methodology, it is necessary to develop
some transformation tools that allow direct and inverse engineering between the
models used in each of the four applications (see Fig. 6):

• H.FD>Pl: It turns a flow diagram (FD) of SICAS into a plan of PlanEdit. A

FD is a visual model of related objects that is transformed into a sequence of
high level instructions. This transformation is based on the correspondence
between the visual objects (assignment, condition, flow…) and the types of
instructions (assignment, selection, loop…).

1513Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

• H.Pl>FD: It consists in the inverse operation, converting a plan into a FD
using the same rules.

• H.FD>Pr: It turns an FD into a program expressed in a programming
language (C and Java are currently supported). This transformation is based
on patterns that define a relationship between a sequence of instructions and
each FD structure.

• H.Pr>FD: It is the inverse transformation, turning a program into its
corresponding FD.

SICASSICAS

COLLEGECOLLEGE OOP-AnimOOP-Anim

PlanEditPlanEdit

JSDT Server

JMS Server

Plan (Sequence
of Instructions)

Flow
Diagram

Flow
Diagram

Program
(C, Java...)

H.FD>Pr

H.Pr>FD

H.FD>Pl

H.Pl>FD

Session
Program

XML Files
Problems

JMS Messages JMS Messages

JSDT MessagesJSDT Messages

Figure 6: Technologies used to integrate SICAS, PlanEdit, COLLEGE and OOP-
Anim

These four transformations are expressed by XML documents, which are the link
between the tools, since they maintain their original independence. Thanks to this
notation, computational representations are built, and they can be manipulated by
other software tools. The information contained in these specifications consists not
only of the manipulated models (algorithms and programs), but also includes
information about the users that have built the models, the problems solved, the
programming language used, etc. These transformation tools are currently included as
components of the corresponding educational tools.

Each tool is independent and has its own storage services. However the global
system has a library of problems expressed by XML documents. We took advantage
of problem structuring in DomoSim-TPC [Bravo, 2002b] to describe a programming

1514 Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

problem. Each problem has an identification, a formulation, a complexity level, a help
level –the help the tools offer–, a set of constraints and a set of requirements that
make up the objectives. In the same way, the solutions built are stored in XML
documents with the same structure used in the transformations.

There is a more direct connection between SICAS and PlanEdit. A notification
system based on JMS has been used to keep the models built by both tools
synchronized. When users work in synchrony, any change made in a PlanEdit plan is
notified to SICAS that updates its FD. In the opposite direction a similar notification
is made. Although the messages are available to be processed immediately after being
sent, usually these tools are not used simultaneously. In this case the messages are
picked up by the JMS server that will deliver them when the destination tool requires.

The same notification technique could be used to connect SICAS and COLLEGE
directly. When the users work with COLLEGE and OOP-Anim, this tool behaves as a
workspace of COLLEGE. When the students invoke the animation function in
COLLEGE, the program in its editor is provided to OOP-Anim and a synchronous
session is started in which the group members access the program animation. This
requires the use of the session started with COLLEGE, which contains information
about the group of users. This synchronous connection between the two tools requires
a JSDT server that distributes the interactions that took place during the users’ work.

Fig. 6 shows the communication architecture devised to connect the four tools.

4 Conclusions

In this paper we have presented some educational tools to support Computer
Programming teaching and learning. These tools, by themselves, have proved to be
effective for their particular aim and at specific moments and learning stages. The
new objective we have outlined is to integrate them and, consequently, to create a
new and more powerful environment. The new environment can be used throughout
the learning process, from initial stages, in which easy programming problems are
solved, to more advanced stages, in which more complex tasks are approached.

Currently, this integration is being used for Programming learning, in laboratories
and at distance, in individual experiences and in group experiences with students from
the University of Coimbra in Portugal and the University of Castilla – La Mancha in
Spain. We expect to obtain a very significant set of results that allow us to confirm the
hypothesis that its utilization leads to improvement in the whole learning process. It
will also provide us with a valuable set of information that will allow us to improve
the tools, so that we can provide our students with better support. To carry out these
experiences we are proceeding in the following way:

• Three sub-sets of students from the total number available and a library of

problems with increasing complexity have been defined.
• The first sub-group solves the problems in the library individually in a

traditional way, that is to say, using the editors, compilers and tools that are
usually used in educational centers.

• The second sub-set solves the same problems individually or in groups, but
using only one of the four tools presented.

1515Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

• The third sub-set solves the same problems following the proposed
methodology and using the integrated system we have developed.

• The solutions developed by the three sub-sets, as well as the behavior and
work of the students, will be compared using statistical techniques.

A future objective consists in adapting the integration mechanisms to common

educational standards. To do this, we are analyzing the state of the different standard
proposals, such as IMS-LD4, LOM5, SCORM6 and LTSA7, in order to consider their
suitability for our requirements. It is necessary to point out that these specifications
can be expressed by means of XML, which would facilitate the task indicated thanks
to XSLT transformations8.

References

[Bravo, 2002a] C. Bravo, M.A. Redondo, M. Ortega, M.F. Verdejo, Collaborative Discovery
Learning of Model Design, In S.A. Cerri, G. Gourdères, F. Paraguaçu (eds.), Intelligent
Tutoring Systems, Springer Verlag, Lecture Notes in Computer Science, Berlin, 2002, 671-680

[Bravo, 2002b] C. Bravo, Un Sistema de Soporte al Aprendizaje Colaborativo del Diseño
Domótico Mediante Herramientas de Modelado y Simulación, Doctoral Thesis, Computer
Science Department, University of Castilla - La Mancha, ProQuest Information and Learning
(Current Research), 2002, http://wwwlib.umi.com/cr/uclm/fullcit?p3081805

[Bravo, 2004] C. Bravo, M.A. Redondo, M. Ortega, Aprendizaje en grupo de la programación
mediante técnicas de colaboración distribuida en tiempo real, In Proceedings of V Congreso
Interacción Persona Ordenador, Lleida, Spain, 2004, 351-357

[Esteves, 2004] M. Esteves, A.J. Mendes, A simulation tool to help learning of object oriented
programming basics, In Proceedings of 34th ASEE/IEEE Frontiers in Education Conference,
Savannah, Georgia, USA, 2004, F4C7-F4C12

[Gomes, 2001] A. Gomes, A.J. Mendes, SICAS: Interactive system for algorithm development
and simulation, In M. Ortega, J. Bravo (eds.), Computers and Education in an Interconnected
Society, Kluwer Academic Publishers, 2001, 159-166

[Hoppe, 2002] H.U. Hoppe, K. Gabner, Integrating Collaborative Mapping Tools with Group
Memory and Retrieval Functions, In Proceedings of CSCL’2002, Boulder, Colorado, USA,
2002, 716-725

[Koschmann, 1996a] T. Koschmann (ed.), CSCL: Theory and practice of an emerging
paradigm, Lawrence Erlbaum Associates, 1996

[Koschmann, 1996b] T. Koschmann, A.C. Kelson, P.J. Feltovich, H. Barrows, Computer-
Supported Problem-Based Learning: A Principled Approach to the Use of Computers in
Collaborative Learning, In T. Koschmann (ed.), CSCL: Theory and practice of an emerging

4 IMS Learning Design: http://www.imsglobal.org/learningdesign/index.cfm
5 Learning Object Metadata: http://ltsc.ieee.org/wg12/index.html
6 Sharable Content Object Reference Model:

http://www.adlnet.org/index.cfm?fuseaction=scormabt
7 Learning Technology Systems Architecture: http://edutool.com/ltsa/
8 Extensible Stylesheet Language Transformation

1516 Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

paradigm, Lawrence Erlbaum, 1996, 83-124

[Levy, 2003] R. Levy, M. Ben-Ari, P.A. Uronen, The Jeliot 2000 program animation system, In
Computers & Education, 40, 2003, 1-15

[Nosek, 1998] J.T. Nosek, The Case for Collaborative Programming, In Communications of the
ACM, 41 (3), 1998, 105-108

[Rebelo, 2005] B. Rebelo, M.J.Marcelino, A.J.Mendes, Evaluation and utilization of SICAS – a
system to support algorithm learning, In Proceedings of CATE05 – Computers and Advanced
Technology in Education, Oranjestad, Aruba, August, 2005 (accepted for publication)

[Redondo, 2002] M.A. Redondo, C. Bravo, M. Ortega, M.F. Verdejo, PlanEdit: An adaptive
tool for design learning by problem solving, In P. de Bra, P. Brusilovsky, R. Conejo (eds.),
Adaptive Hypermedia and Adaptive Web-Based Systems, Springer Verlag, Lecture Notes in
Computer Science, Berlin, 2002, 29-31

[Redondo, 2003] M.A. Redondo, A.J. Mendes, M.J. Marcelino, C. Bravo, M. Ortega,
Planificación colaborativa del diseño para el aprendizaje de la Programación, In Proceedings of
VIII Taller Internacional de Software Educativo (TISE’03), Santiago de Chile, 2003

[Shen, 2000] H. Shen, C. Sun, RECIPE: a prototype for Internet-based real-time collaborative
programming, In Proceedings of the 2nd International Workshop on Collaborative Editing
Systems in conjunction with ACM CSCW Conference, Philadelphia, Pennsylvania, USA, 2000,
3-4

[Williams, 2000] L.A. Williams, R.R. Kessler, All I really need to know about pair
programming learned in kindergarten, In Communications of the ACM, 43 (5), 2000, 108-114

[Williams, 2001] L.A. Williams, R.L. Upchurch, In Support of Student Pair-Programming, In
Proceedings of 32nd SIGCSE Technical Symposium on Computer Science Education,
Charlotte, NC, USA, 2001, 327-331

1517Bravo C., Marcelino M.J., Gomes A., Esteves M., Mendes A.J.: Integrating ...

