

Authoring and Diagnosis of Learning Activities with
the KADD ET Environment

Begoña Ferrero
(University of the Basque Country, Spain

bego.ferrero@ehu.es)

Maite Martín
(University of the Basque Country, Spain

jibmarom@si.ehu.es)

Ainhoa Alvarez
(University of the Basque Country, Spain

ainhoa.alvarez@ehu.es)

Maite Urretavizcaya
(University of the Basque Country, Spain

maite.urretavizcaya@ehu.es)

Isabel Fernández-Castro
(University of the Basque Country, Spain

isabel.fernandez@ehu.es)

Abstract: This paper describes KADD ET, a cognitive diagnostic environment created to assess
the conceptual and procedural learning activities of students. It is composed of a diagnostic
engine, DETECTive, and a knowledge acquisition tool developed to fulfil its knowledge
representation needs, KADI. Both of them share a Model of Learning Tasks (MLT) as a
diagnostic basis. One of the main goals of this environment is to provide teachers with easy-to-
use tools that facilitate the construction of learning environments with diagnosis capabilities
customized to their particular subject domains and adaptation styles.

Keywords: Learning Environments, Cognitive diagnosis, Authoring Tools, Error libraries,
Model Tracing
Categories: K.3, K.3.1

1 Introduction

The latest developments in educational computer sciences have made reference to
several approaches to educational systems, but regardless of the learning method
used, what they all share is the student’s learning activities. These activities play a
major role because they encourage “learning by doing” [Anzai & Simon 79],
reinforce the knowledge acquired and can even be used from a perspective of self-
assessment. In addition, the results obtained can be used to identify conditions for
adapting the current teaching/learning strategies. In this context, the level of user
adaptation is seen as a crucial issue for improving the learning process. This aspect

Journal of Universal Computer Science, vol. 11, no. 9 (2005), 1530-1542
submitted: 15/2/05, accepted: 30/6/05, appeared: 28/9/05 © J.UCS

has usually been tackled by including specific components devoted to diagnostic
functions in educational systems. However, the diagnosis capability involves a
development that is not trivial, which means that it can be more or less simple
depending on the type of learning activity, but that it can become quite complex when
working with procedural domains.

On the other hand, building adaptive systems from scratch has proved to be so
difficult that it prevents their massive use [Murray 97, 03]. This has resulted in the
creation of authoring tools aimed at enabling teachers to build their adaptive learning
systems tailored to the selected domains.

In this paper we present the KADD ET environment, which focuses on generating
adaptive systems oriented to the performance and diagnosis of learning activities. We
have defined a hybrid and generalised diagnostic approach that combines several
techniques integrated within a Model of Learning Tasks (MLT). KADD ET is comprised
of two main systems: DETECTive, a diagnostic engine capable of evaluating learning
activities related to any domain—provided it is well described according to the
requeriments specified by the MLT; and KADI, as a complementary authoring tool
aid oriented to teachers. In the next section we present the main objectives of the
proposal and some related work. Then, the general characteristics and structure of the
above mentioned systems are described. Finally, we will draw some conclusions and
suggest future lines for research.

2 Main Objectives and Related Works

This work has pursued a double goal: first, to define and implement a generic
diagnostic engine customizable and valid for a wide range of domains, and second, to
build an appropriate authoring tool usable by the teachers. Thus, during the
acquisition phase, the authoring tool automatically customizes the diagnostic engine
to the specific domain according to the teacher’s requirements. Later on, the student
uses the tailored system to perform learning activities that will be diagnosed
according to the previously supplied domain description—diagnosis phase. This
approach provides a supporting tool with monitoring and diagnosing capabilities for
learning, which should be complemented by other means, i.e. by a conventional
educational process or through an external learning system.

Various approaches to the diagnosis of learning tasks have achieved interesting
results. However, most of them need a hard knowledge of engineering work that the
authoring process is supposed to help overcome. In the next sections we present the
most promising diagnosing techniques, a study of authoring tools from a generic
diagnosis perspective and, finally, our starting hypothesis.

2.1 Techniques for Cognitive Diagnosis

The cognitive diagnosis field mentions several diagnostic techniques. Among them,
Error libraries, Model-Tracing and Constraint Based Modelling are the most widely
used approaches; they have been applied to several types of domains and are claimed
to be generic. Other techniques—such as Machine Learning [Kono et al. 94],
Bayesian Belief Networks [Millán et al. 00] and Fuzzy Logic [Katz et al. 94]— have
also yielded promising results for students’ diagnosis. However, most of them require

1531Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

a deep knowledge representation that closely relates them to the domain and,
therefore makes them unfeasible for a generic system.

Error libraries [Burton 82] are based on the explicit representation of erroneous
knowledge obtained from the recording and interpreting of wrong answers given by
students. Although its interest is evident, the cost of building such libraries is very
high [Baffes et al. 96], and not very realistic if the teacher is solely responsible for it.

The Model-Tracing technique [Anderson et al. 90] is easy to implement as it does
not require exhaustive studies or complex techniques, and has a low computational
cost. It consists of a step-by-step monitoring of the student’s actions with regard to
one or more problem solving models. The differences found among the correct and
tentative solutions reflect the learner’s deviations. This technique requires a set of
solution models whose completeness determines diagnosis reliability [Ohlsson 94].

Constraint-based modelling [Mitrovic et al. 99] expresses the domain as a set of
constraints on correct solution paths. It does not require a runnable expert module, a
bug library or a sophisticated inference mechanism. Nevertheless, the estimated cost
of representing and verifying the domain model as a set of constraints is rather high
[Ohlsson 94] [Suraweera & Mitrovic 04].

Although the techniques considered are claimed as generic, taken separately,
none of them fully meets an environment’s needs for building diagnostic systems. For
instance, they would need a complete set of problem solving models, constraints or
error libraries and might not be valid for different types of domain. So, our approach
tries to alleviate problems of completeness and domain customization by adequately
combining a group of techniques. Hybrid diagnosis approaches, mainly centered on
plan recognition, have already been successfully used in tutoring systems [Greer &
Koehn 95][Goldman et al. 99], showing that the combination of techniques yields
better results than each individual technique by itself.

2.2 Diagnosis Issues in Authoring Tools for Learning Systems

Authoring tools for teaching/learning systems are many and diverse in both goals and
characteristics [Murray et al. 03]. For the purposes of this study, we will only
consider those that build practice-oriented systems, i.e. systems that provide students
with environments enabling them to put their knowledge into practice, and give the
advice required to “learn by doing”. SIMQUEST, RIDES, XAIDA and Demonstr8 all
belong to this group of systems.

SIMQUEST [Joolingen et al. 96] focuses on the conceptual characteristics of the
domain and allows discovery learning environments using simulations to be created.
The diagnosis is made only by comparing the learner’s final result with the result
expected. The XAIDA system [Hsieh et al. 99] is suitable only for learning perfectly
identified maintenance tasks, and applies the model tracing paradigm to monitor the
students’ activity by simulating their steps. It takes into account the correct
sequencing and other knowledge, such as the justification of the steps or the
misconceptions. RIDES [Munro et al. 97] allows the generation of training systems
focused on interactive graphic simulations. The author must define procedures
comprised of a fixed sequence of actions, and the system in turn detects the student’s
actions, preventing malfunctions by means of a model tracing process. DEMONSTR8
[Blessing 97] describes the domain through production rules that represent the right
knowledge, with the student’s knowledge being represented as a Bayesian belief

1532 Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

network. It monitors each of the student’s steps during task performance, and applies
the model tracing technique, updating the network according to the diagnosis results.

Most of the authoring tools studied include a unique diagnostic mechanism that is
closely related to the domain, and therefore they are of little value for different types
of subject areas. Thus, in this work we aim to define generic diagnostic models,
independent from the learning domains, in order to obtain a greater flexibility and
portability to different domains.

2.3 A Starting Hypothesis

None of the described diagnostic techniques taken separately can fulfil our first goal
of defining a generic diagnostic engine. But we claim that a combination of some of
them could retrieve adequate diagnosis information to improve the student’s learning
process, and solve or reduce the problems showed by each of them. Therefore, we
propose a hybrid and generalised diagnostic system that combines error libraries, the
model-tracing technique, and a variant of the constraint-based modelling. In this
approach, the teacher must define the learning domain by means of problem solving
models, restrictions and bugs. These specifications will be used later when the student
solves an exercise: the problem solving models will be the basis for the model tracing
technique, while the bugs library and restrictions will show information about the
most relevant and usual errors. Nevertheless, as the information defined by the expert
may still be incomplete, we will also represent procedural knowledge including the
prerequisites and postrequisites of each procedural action.

On the other hand, our second goal is to build an authoring environment to
provide teachers with tools that enable them to create diagnostic learning systems
based on sophisticated techniques on their own. Thus, they will define the domain
knowledge requisites in a flexible and guided way, using the appropriate combination
of techniques, so as not to force a unique knowledge representation schema.

3 KADD ET: A Diagnosis Environment for Learning Tasks

KADD ET is a developing environment oriented to the creation of “learning by doing”
systems that allow for authoring and diagnosing processes. It has been conceived
according to the following strategic purposes: “Genericity” to enable its instantiating
to diverse domains; “Suitable and sufficient diagnosis”, to be useful in the learning
process; and “Usability” to encourage and favor its use.

The two functionalities described have led us to design and create two closely
related systems, DETECTive and KADI, as well as a common shared theoretical
basis—the Model for Learning Tasks. The latter allows for the description of the
subject domain and the learning tasks from the perspective of the diagnosis of the
student’s knowledge. The next sections show the main components of KADD ET.
Nevertheless, for the sake of brevity, we will focus only on the procedural domains,
which, being more complex, are more interesting than the conceptual domains.

1533Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

3.1 Model for Learning Tasks. A Theoretical Basis

The Model for Learning Tasks (MLT)1 defines an ontology [Welty 03] that identifies
the components of the domain that need to be described in order to formalize the
diagnosis process of students accomplishing procedural tasks. In addition, the model
proposes the component interrelations, properties and scope. Keeping these needs in
mind, the MLT defines elements for describing: (a) the procedural domain; (b) the
learning tasks, or exercises; and (c) the results of the diagnosis process.

The domain is primarily defined by two items: the manipulatable objects and the
procedures (or basic student actions). For the objects, the MLT establishes a minimal
characterization, enabling the users to introduce new relationships and characteristics
to define their peculiarities. Due to the application of procedures, an object takes
different values or states during its lifetime. On the other hand, the specification of a
procedure sets forth the states in which it can be executed (prerequisites), the
variations produced by its performance on the objects of the scenario (simulation
actions), and the new states of the objects involved (postrequisites). In order to define
the procedures, the MLT provides the following elements: parameter of the
procedure, condition, graph, node, link and simulation action (see Figure 1).

Figure 1: MLT elements for Domain Representation: Procedure

A learning task or Exercise [Almond et al. 02] allows variations and gaps in the
learner’s knowledge to be inferred. It defines its assessment criteria and is associated
with some contents of the subject area by means of a set of learning objectives. In
particular the Practical Exercise (Figure 2) describes the scenario to which learners
will apply their knowledge, i.e. the set of domain objects that are suitable for
manipulation at each moment of the problem solving process. In addition, the most
frequent solving behaviors compose several solution patterns, and a series of
recurrent or standard Errors identifies gaps in knowledge. According to these ideas,
an MLT Exercise is defined by its presentation, the initial and final states of the
scenario and a set of potential solutions. Additionally, the exercise includes
pedagogical information about its difficulty, estimated time for completion, number
of allowed attempts, and so forth. An exercise Solution pattern includes its evaluation
and a resolution plan (be it right or wrong) that defines the sequence of steps (basic
actions) to be taken. Our model distinguishes two types of errors: Deviations and
Predefined Errors.

1 MLT has been achieved on the basis of an empirical development and later refinements made to different
domains. They are: Derivation in mathematics [Ferrero et al. 97], Photography- [Dorronsoro 93], Labour
disability- Help and Monitoring in the work of mentally disabled people [Urretavizcaya et al. 99], the
world of blocks [Ferrero et al. 99], and the industrial domain of the Machine tool [Lozano et al. 04].

PROCEDURE
Name : TEXT
Parameters : <parameter> *

Description : TEXT
Objectives: <objective>*

Pre-conditions : <condition> *

Post-conditions : <condition> *

Actions: GRAPH

NODE
Parent-link : <link> *

Child - link : <link>
Step : <PROCEDURE/ACTION>

GRAPH
Root: <node> LINK

Parent-node: <node>
Link -type: S/C/D
Child -nodes : <node>*

Types of link:
S-sequence

C-conjunction (and)

D-disjunction (or)

PROCEDURE
Name : TEXT
Parameters : <parameter> *

Description : TEXT
Objectives: <objective>*

Pre-conditions : <condition> *

Post-conditions : <condition> *

Actions: GRAPH

NODE
Parent-link : <link> *

Child - link : <link>
Step : <PROCEDURE/ACTION>

GRAPH
Root: <node> LINK

Parent-node: <node>
Link -type: S/C/D
Child -nodes : <node>*

Types of link:
S-sequence

C-conjunction (and)

D-disjunction (or)

Types of link:
S-sequence

C-conjunction (and)

D-disjunction (or)

1534 Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

Figure 2: MLT elements for representing a learning task- practical exercise

Finally, the diagnosis result identifies those aspects relevant to the teacher, to the
student or even to other support systems, with a focus on the Learner’s response,
which describes the solution given by the student as a linear sequence of resolution
steps with information about the procedure performed, its diagnosis, the list of
identified errors, and a numerical score.

3.2 DETECTive. A practical implementation

DETECTive implements the MLT ontology and bases its diagnosis on the MLT
elements instantiated for a specific domain; it also carries out a Multiple Diagnosis
Model based on different techniques. An example of a simple procedural domain
inspired by the blocks’ world will help us illustrate the main working ideas (Figure 3);
its scenario is composed of a main box B0, with some cubic blocks (Bi) to be stored
by a robot-hand by means of a set of procedures (Pick_Up, Leave_in_Box,
Leave_on_Table, Pick_up&Leave_in_box).

Figure 3: Scenario objects and MLT elements for a Robot Domain

Put -Blocks -in-Box
Is_a: PRACTICAL EXERCISE

Name : “Put Blocks in Box”
…
Scenario : <B1, B2, B3, B4, T (table), H, BO>
Initial state : (BO, contain, nil), (B1, free, yes)

(T, contain, <B1, B2, B3, B4>) (B2, free, yes)
(B3, free, yes) (B4, free, yes)

Final State : (BO, contain, <B1, B2, B3, B4>),(T, contain, nil)
Solution: <SOL -PATTERN1, SOL -PATTERN2>

Block
Is_a: OBJECT

Name : Cubic Block with square face
Description: Cubic Block with square face and width z.
Identification : B
free: < YES/NO> (up face free)
size: integer

B4
Instance_of: BLOCK

B3
Instance_of: BLOCK

B2
Instance_of: BLOCK

B1
Instance_of: BLOCK

BO

x
z

5x/3

B3

z

x

x

B2

z

2x/3

2x/3

B1

z
x/3B4

z
x/3

!H
Pick_up .

Leave_in_box .

Leave_on_table .

Pick_up&leave_in_box .

Hand
Is_a: OBJECT
Name : Robot’s Hand
Description : Blocks manipulator
Identification : H
Contain: <Block> +

Box
Is_a: OBJECT
Name : Box
Description : blocks container
Identification : BO
Contain: <Block> *

BO
Instance_of: BOX

Put -Blocks -in-Box
Is_a: PRACTICAL EXERCISE

Name : “Put Blocks in Box”
…
Scenario : <B1, B2, B3, B4, T (table), H, BO>
Initial state : (BO, contain, nil), (B1, free, yes)

(T, contain, <B1, B2, B3, B4>) (B2, free, yes)
(B3, free, yes) (B4, free, yes)

Final State : (BO, contain, <B1, B2, B3, B4>),(T, contain, nil)
Solution: <SOL -PATTERN1, SOL -PATTERN2>

Block
Is_a: OBJECT

Name : Cubic Block with square face
Description: Cubic Block with square face and width z.
Identification : B
free: < YES/NO> (up face free)
size: integer

B4
Instance_of: BLOCK

B3
Instance_of: BLOCK

B2
Instance_of: BLOCK

B1
Instance_of: BLOCK

BO

Put -Blocks -in-Box
Is_a: PRACTICAL EXERCISE

Name : “Put Blocks in Box”
…
Scenario : <B1, B2, B3, B4, T (table), H, BO>
Initial state : (BO, contain, nil), (B1, free, yes)

(T, contain, <B1, B2, B3, B4>) (B2, free, yes)
(B3, free, yes) (B4, free, yes)

Final State : (BO, contain, <B1, B2, B3, B4>),(T, contain, nil)
Solution: <SOL -PATTERN1, SOL -PATTERN2>

Block
Is_a: OBJECT

Name : Cubic Block with square face
Description: Cubic Block with square face and width z.
Identification : B
free: < YES/NO> (up face free)
size: integer

B4
Instance_of: BLOCK

B3
Instance_of: BLOCK

B2
Instance_of: BLOCK

B1
Instance_of: BLOCK

BO

x
z

5x/3

B3

z

x
z

5x/3

B3

z

x

x

B2

z

2x/3

2x/3

B1

z
x/3B4

z

x

x

B2

z

2x/3

2x/3

B1

z
x/3B4

z
x/3

!H
Pick_up .

Leave_in_box .

Leave_on_table .

Pick_up&leave_in_box .

Hand
Is_a: OBJECT
Name : Robot’s Hand
Description : Blocks manipulator
Identification : H
Contain: <Block> +

Box
Is_a: OBJECT
Name : Box
Description : blocks container
Identification : BO
Contain: <Block> *

BO
Instance_of: BOX

 PRACTICAL EXERCISE
Name : T EXT
Description : T EXT
Objectives : < objective > *
Presentation : T EXT
Essay - max : N UMBER
Score - max : N UMBER
Formulation : : TEXT
Scenario : < domain objects > *
Initial state : < state of dom . objects >
Final State : < state of dom . objetcts >
Solution : < pattern > *

PATTERN
Message : T EXT
Valuation : N UMBER
Solution Plan : <STEP>*

STEP
Diagnosis: T EXT
Errors : <PREDEFINED ERROR>*
Procedure : < P ROCEDURE >
Parameters : < P ARAMETER >
Description : T EXT

DEVIATION
Name : T EXT
Message : T EXT
L - objectives : <OBJECTIVE>
Penalization : N UMBER
Previous - procedure : P ROCEDURE
Following - procedure : P ROCEDURE
Parameter : P ARAMETER

PREDEFINED - ERROR
Name : T EXT
M essage : T EXT
Penalization : N UMBER
....

PRACTICAL EXERCISE
Name : T EXT
Description : T EXT
Objectives : < objective > *
Presentation : T EXT
Essay - max : N UMBER
Score - max : N UMBER
Formulation : : TEXT
Scenario : < domain objects > *
Initial state : < state of dom . objects >
Final State : < state of dom . objetcts >
Solution : < pattern > *

PATTERN
Message : T EXT
Valuation : N UMBER
Solution Plan : <STEP>*

STEP
Diagnosis: T EXT
Errors : <PREDEFINED ERROR>*
Procedure : < P ROCEDURE >
Parameters : < P ARAMETER >
Description : T EXT

DEVIATION
Name : T EXT
Message : T EXT
L - objectives : <OBJECTIVE>
Penalization : N UMBER
Previous - procedure : P ROCEDURE
Following - procedure : P ROCEDURE
Parameter : P ARAMETER

PREDEFINED - ERROR
Name : T EXT
M essage : T EXT
Penalization : N UMBER
....

1535Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

The MLT ontology elements for domain definition (Figures 1 and 2) are
organized at the Abstract level. The Concrete level instances the Abstract Level,
characterizing the domain ontology with its manipulatable objects, procedures and
exercises (Figure 3). The Resolution Level includes the exercise solution patterns that
determine how the simulation actions associated with the domain procedures are to be
performed. Figure 4 shows a part of each of the above described levels.

3.2.1 Diagnosis Model

Our proposal for the Multiple Diagnosis Model (MDM) applies a multiple process to
the student’s solution in order to detect its malfunctions and potential errors. The
diagnosis of procedural exercises starts with a Model-Tracing treatment, which
consists of searching for a solution plan that matches the learner’s action. Since the
domain description may be incomplete and the lack of solution plans relevant to the
current exercise, the process incorporates other mechanisms that increase the number
of recognizable potential actions: Dynamic plan adaptation, using information from
the deviations and Prerequisite verification of the procedures identified in the
domain. These mechanisms allow for the establishment of two complementary types
of diagnoses: Pattern-based Diagnosis, through model-tracing and dynamic
adaptation, and Specific Diagnosis centered on the prerequisite verification. As long
as the learner’s actions match the actions retrieved in a solution plan, DETECTive
performs a Pattern-based Diagnosis; otherwise, it makes a Specific Diagnosis.

Figure 4: Elements of the Knowledge Levels

RESOLUTION LEVEL: Execution & Solution knowledge

CONCRETE LEVEL: Domain and
Task knowledge

ABSTRACT LEVEL: Meta_knowledge
(procedural domain)

PRACTICAL EXERCISE

OBJECT SOL PATTERN PROCEDURE ERRORS
How to
define

Hand

Block

Box

Leave_table

Leave_box

Pick_up&Leave_box

Pick_up What to
define

SOL. PATTERN 1

SOL. PATTERN 2

 Pick_up&leave (B3, BO)

 Pick_up&leave (B1, BO)
 Pick_up&leave (B2, BO)

 Pick_up&leave (B4, BO)

B1 B2
B3

B4

BO

insert(BO•contain, O?x)

assert(H, contain, nil)

assert(O?x, free, YES)

 Pick_up&leave (B2,BO)

 Pick_up&leave (B1,C)
 Pick_up&leave (B4, BO)

 Pick_up&leave (B3, BO)

and

Is_a
Part_of

Instance_of

How to
simulate
and solve

TASK MODEL

1536 Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

The Pattern-based Diagnosis relies on three main mechanisms: (i) monitoring of
the Learner’s Solution, as the procedure executed at each time of the problem solving
process needs to be known; (ii) checking the solution plans included in the exercises,
which tells which procedures are feasible at any time in order to determine the
correction of the student’s steps; and (iii) adapting plans through the domain
deviations.

Initially, it considers all plans defined for the problem, i.e. Active Plans. The
suitability of the learner’s step is determined by comparing it with the information
included in the follow-up item of the Active Plans, in such a way that the Active Plans
that do not include the learner operation become Rejected Plans. When none of the
plans reflects the student’s action, the Dynamic Plan Adaptation proceeds. This
process takes every previously Rejected Plan, and searches for a Deviation to explain
the difference between the learner’s step and the step described in the plan. If it
succeeds, the Rejected Plan is restructured with the error-associated information and
becomes a new Active Plan. Thus, a new pattern with a plan that fits the learner’s
response is available. Patterns whose rejected plans cannot be adapted become
Removed Patterns. If upon completion of the monitoring of the current student’s step,
one or more plans remain active, it means that the step has been acknowledged and
the Pattern-based Diagnosis goes on accordingly. If none of the Rejected Plans can be
adapted, the Pattern-based Diagnosis finishes, the student’s Solution tracing is
suspended, and the Specific Diagnosis based on the domain knowledge is triggered.

The monitored acknowledgment of each student’s step involves its simulation and
diagnosis. On the one hand, the execution of the simulation actions of the procedure
associated with the step changes the Current State of the scenario. On the other hand,
the information about the step of the active plan (not adapted or adapted through an
error), allows the retrieval of information for the diagnosis of the student’s step.

The Specific Diagnosis verifies the learner’s step applicability by comparing the
current state of the scenario to the prerequisites of the procedure involved. So, if the
prerequisites of the student’s procedure-step are true, then it is simulated and
diagnosed, and the process continues. Otherwise, the learner’s response is wrong and
the process stops. Thus, if the simulation of the learner responses reaches the
exercise’s final state, we will safely say that such a solution is complete and solves
the problem.

3.2.2 Modular Architecture

DETECTive has been implemented via a modular architecture that allows it to be
easily changed, widened and integrated with other systems. It is comprised of six
modules (Figure 5): Diagnosis/Assessment Module, Functional Domain, Control
Module, Simulator, Reporting Module and Student’s Module.

The Functional Domain includes the domain-specific information, stored in two
knowledge bases and one Error Catalogue, and implements the MLT Concrete and
Resolution levels. The Control Module supervises and controls the diagnosis process:
(a) proposing the exercise to the learner; (b) retrieving each solving step taken by the
student and triggering the suitable diagnosis mechanisms; and (c) updating the
diagnostic information on each step with its assessment (right, error, non-optimum ...)
and the errors detected by the Diagnosis/Assessment Module. All these data complete
the Diagnosis Result that makes up the Student’s Module.

1537Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

The Diagnosis/Assessment Module diagnoses each of the student’s steps
following the MDM shown in section 3.2.1. For this purpose, and once the student’s
step has been revised and acknowledged, it triggers the Simulator that carries out the
procedure in terms of its simulation actions described in the Functional Domain. The
Student’s Module manages the information about the diagnosis of the exercises made
by the learner. At present, it comprises a record of the diagnostic results. The
Reporting Module is triggered from the Control Module upon completion of the
diagnosis of one exercise, and generates a report of the student’s resolution.

Figure 5: DETECTive’s Architecture

3.3 Feeding the Model of Learning Tasks by means of KADI

KADI is the interface environment used to cover the process of knowledge
acquisition of the DETECTive diagnostic engine. It includes two funcitonalities,
teacher-authoring and student-diagnosis, which have been tackled generally by means
of an interface system supported by a data management application. In this paper, we
will address the authoring process, which allows the objects, procedures and exercises
of the educational domain to be gathered, together with the correct and incorrect
solving plans and their relevant errors.

The KADI architecture (Figure 6) is directly connected to the DETECTive
engine. During the acquisition or authoring phase, KADI records the information
provided by the teacher to feed the DETECTive’s MLT (see section 3.1), and
compiles it in CLIPS-syntax knowledge bases.

The acquisition process is carried out by means of three main modules. The
Exercises Acquisition Module (EAM) allows both conceptual and procedural exercises
to be defined. The Object Acquisition Module (OAM) defines the objects that the
student has to manipulate during the procedural exercises. The Procedures
Acquisition Module (PAM) defines the procedures that can be applied to the described
domain objects. Upon the definition of the subject domain and the learning activities,
two kinds of files are created with the information needed by the diagnostic engine.
When DETECTive loads these files, the Concrete and Resolution Levels are created

Student’s
Actions

Domain Expert/
Knowledge Engineer

Functional Domain

Exercises &
Solutions

Error
Catalogue

Objects,
Proceds

, ...

Dataflow

Control flowSimulator

Control Module

Abstract Level

Concrete and Resolution Level

Student’s Module

Diagnosis
Results

Reports Diagnosis/Assessment
Module

Prerequisite Verification

Specific

Plan Adaptator

Plan monitoring

PatternBasedReporting
Module

Student’s
Actions

Domain Expert/
Knowledge Engineer

Functional Domain

Exercises &
Solutions

Error
Catalogue

Objects,
Proceds

, ...

Dataflow

Control flow

Dataflow

Control flowSimulator

Control Module

Abstract Level

Concrete and Resolution Level

Student’s Module

Diagnosis
Results

Reports Diagnosis/Assessment
Module

Prerequisite Verification

Specific

Plan Adaptator

Plan monitoring

PatternBased

Plan monitoring

PatternBasedReporting
Module

1538 Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

completing the Functional Domain. KADI is supported by the DETECTive’s
diagnostic results during the definition of procedural exercises and the process is
controlled by the Guided Definition Management System (GDMS). In this situation
the Specific Diagnosis is used to supervise, formalize and guarantee the completeness
of the domain (at least for the described exercises). If one of the values indicated in
the definition of a solution plan step (section 3.1) does not match the values expected
in the simulation, the step is considered to be non appropriate. This is either because
its characteristics have not been well defined, or because a previous step, necessary to
reach a state allowing the current step to be applied, is missing. Finally, if the
simulation of the created plan reaches the exercise final state, that solution is
validated.

Figure 6: Architecture of KADI

The current version of KADI uses text window interfaces, whose design
criteria—for instance, its “usefulness” and “simplicity” for users—were based on
usability heuristics such as Consistency and Error prevention [Nielsen 93]. We have
developed a methodology to provide teachers with a guide to introduce data in the
right order. As a first step, the teacher identifies and creates the domain, and then the
authoring proceeds by defining the exercises. A detailed description with illustrative
examples is shown in [Martín et al. 04].

4 Conclusion. Lessons Learned and Future Work

In this paper, we have presented the KADD ET system, an environment for cognitive
diagnosis created to assess the conceptual and procedural learning activities of
students, with a teacher-oriented authoring component. It was conceived on various
bases: Genericity to allow its instantiation for different domains; “Suitable and
sufficient Diagnosis” to make it a useful tool for supporting the student learning
process in conceptual and procedural domains; and ”Usability” to facilitate teachers’
tasks of defining the subject matter and learning activities in order to promote and
support its use.

KADD ET is comprised of two integrated subsystems, DETECTive and KADI,
sharing a common ontology Model of Learning Tasks. DETECTive is a generic,
domain-independent diagnostic engine that implements a new diagnostic hybrid
approach based on the discriminated integration of several paradigms. In this way, it

 TEACHER INTERFACE

EAM EMS

Exercise base

PAM PMS

Procedure base

Teacher area

Validation
area

GDMS
File Generator

DETECTive

OAM Object instances

Exercise& Procedure
Instances

Diagnostic Result

1539Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

can be customized to a wide variety of conceptual and procedural domains. Since the
correct behavior of the customized system depends on the correctness and
completeness of the information provided in the acquisition phase, KADI facilitates
the authoring process and controls the robustness of the input data.

DETECTive has been evaluated according to an adapted pilot test technique. The
multiple paradigm diagnosis described in the system has proved to be sufficient to
support learning in several domains, but some lessons have been learnt as well.
Despite the flexibility of the tool, the creation of the domain, exercises and solutions
is not an effortless task for teachers and, therefore, it demands some specific design
skills. [Ferrero 04] presents a complete description of the validation tests performed in
the context of three research projects and the results obtained.

Although we are well aware of the difficulty of achieving our initial goals, we
have taken an important step forward toward those ends. Comparing our diagnostic
proposal with the ones previously described, we share the opinion [Greer&Kohen 95]
that a multiple paradigm allows teachers to choose the best technique, depending on
their viewpoints and on the characteristics of the domain. Also, the combination of all
paradigms results in a synergy, which exceeds the result of each individual paradigm.

Our current developments and future work focus on the improvement of
DETECTive and KADI. Regarding DETECTive, we propose to validate and refine
the multiple diagnosis process to better tackle the diagnosis complexity on procedural
domains; in keeping with this line, new paradigms will be explored. On the other
hand, we are redesigning and adapting its architecture to a multi-agent structure to
facilitate both its integration in web-oriented applications and the addition of new
diagnostic techniques. KADI is currently being updated, especially with regard to the
description of the domain procedures and problem solving plans. Furthermore, a
standard learning interface is under study to record and validate the student’s answers,
as well as to provide a means to display the diagnostic results and the general
knowledge model. Finally, a new project involving virtual reality environments for
procedural training is currently under development [Lozano et al. 04], aimed at
treating screen representation of complex information and directly capturing the
acquisition of knowledge, handling operations, and solving process in the virtual
environment.

Acknowledgements

This research has been supported by the Spanish Ministry of Science and Technology MCYT
(TIC-2002-03141) and the Univ. of the Basque Country (1/UPV 00141.226-T-13995/2001).

References

[Almond et al. 02] Almond, R.G., Steinberg, L.S., Mislevy, R.J.: "Enhancing the design and
delivery of assessment systems: A four-process architecture". J.TLA (Journal of Technology,
Learning, and Assessment) 1 (2002), 5, 2-63.

[Anderson et al. 90] Anderson, J.R., Boyle, C.F., Corbett, A.T. & Lewis, M.W.: "Cognitive
Modelling and Intelligent Tutoring". J.AI (Journal of Artificial Intelligence), 42 (1990), 7-49.

[Anzai & Simon 79] Anzai, Y., Simon, H.A., "The theory of learning by doing". Psychological
Review, (1979), 86, 124-140

1540 Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

[Burton 82] Burton, R.B. “Diagnosing bugs in a simple procedural skill”. Intelligent Tutoring
Systems, Sleeman, D. & Brown, J.S. (Eds.), New York: Academic Press, (1982).157-183

[Baffes et al. 96] Baffes, P., Mooney, R.:" Refinement-Based Student Modeling and Automated
Bug Library Construction".J.AIED (J. of Artificial Intelligence in Education), (1996),7, 75-117.

[Blessing 97] Blessing, S.B.: "A Programming by Demonstration Authoring Tool for Model-
Tracing Tutors". J.AIEd (J. Artificial Intelligence in Education), 8 (1997), 233-261.

[Dorronsoro 93] Dorronsoro, I.: "Sistema Tutor Inteligente para la enseñanza de la fotografía".
MSc dissertation. University of the Basque Country UPV/EHU, Donostia (1993).

[Ferrero 04] Ferrero, B.: DETECTive: un entorno genérico e integrable para diagnóstico de
actividades de aprendizaje. Fundamento, diseño y evaluación [Tesis Doctoral]: Univ. of the
Basque Country UPV/EHU (2004).

[Ferrero et al. 97] Ferrero, B., Fernández-Castro, I. & Urretavizcaya, M.: "DETECTive: A
Generic Diagnostic Tool to Support Learning. Some experiences in the symbolic differentiation
domain". Proc.CAEE'97, Krakow, Poland (1997), 54-61.

[Ferrero 99] Ferrero, B., Fernández-Castro, I. & Urretavizcaya, M.: "Using DETECTive, a
generic Diagnostic System for procedural domains". Proc. AI-ED’99.(1999), 667-669.

[Goldman et al. 99] Goldman, P., Geib, C.W. & Miller, C.A. “A New Model of Plan
Recognition”. Conf. on Uncertainty in Artificial Intelligence (1999).
http://www2.sis.pitt.edu/~dsl/UAI/UAI99/main.pdf

[Greer & Koehn 95] Greer, J.E. & Koehn, G.M. “The Peculiarities of Plan Recognition for
Intelligent Tutoring Systems”. WS The Next Generation of Plan Recognition System.
(IJCAI’95), (1995) http://www.dfki.de/~bauer/workshop.html#schedule

[Hsieh et al. 99] Hsieh P., Half, H. & Redfield, C.: "Four easy pieces: Developing systems for
knowledge-based generative instruction". J.AIEd (J. Artificial Intelligence in Education), 10
(1999), 1-45.

[Joolinge et al. 96] Joolingen, W.R. & de Jong, T.: "Supporting the authoring process for
simulation-based discovery learning". Proc. ECAI'96, Budapest, Hungary (1996), 66-73.

[Katz et al.94] Katz, S., Lesgold, A., Eggan, G. & Gordin, M.: ”Modeling the Student in
Sherlock II”. Proc. NATO Advanced Research, Springer-Verlag, Berlin (1994), 99-125.

[Kono et al. 94] Kono, Y., Ikeda, M. & Mizoguchi, R.: “THEMIS: A nonmonotonic inductive
student modelling system”.J.AIEd (J. Artificial Intelligence in Education),5, 3 (1994),371-413.

[Lozano et al. 04] Lozano, A., Urretavizcaya, M., Ferrero, B., Fernández-Castro, I., Ustarroz,
A., Matey, L.: "Integration of a Generic Diagnostic Tool in Virtual Environments for
Procedural Training". LNAI 3040 (2004), 666-675.

[Martin et al. 04] Martín, M., Fernández-Castro, I., Urretavizcaya, M., Ferrero, B.: "KADI: A
Knowledge Acquisition Tool for Learning Activities". Proc. Ed-MEDIA'04. Lugano,
Switzerland (2004), 889-894.

[Millán et al. 00] Millán, E., Pérez-de-la-Cruz, J.L., Suárez, E.: "Adaptive Bayesian Networks
for Multilevel Student Modelling". Proc. ITS'00, Montréal, Canada (2000), 534-543.

[Mitrovic et al. 99] Mitrovic, A., Ohlsson, S.: "Evaluation of a Constraint-Based Tutor for a
Database Language". J.AIEd (J. Artificial Intelligence in Education), 10, (1999), 238-256.

1541Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

[Munro et al. 97] Munro, A., Johnson, M.C., Pizzini, Q.A., Surmon, D.S., Towne, D.M.,
Wogulis, J.L.: "Authoring Simulation-Centered Tutors with RIDES". Int. J. of Artificial
Intelligence in Education, Vol 8 (1997), 284-316.

[Murray 97] Murray, T., "Expanding the Knowledge Acquisition Bottleneck for Intelligent
Tutoring Systems". J.AIEd (J. Artificial Intelligence in Education), (1997), 8, 3-4, 222-232

[Murray 03] Murray, T., "An overview of Intelligent Tutoring Systems Authoring Tools". In
Murray, T., Blessing, S., Ainsworth, S.(Eds.): Authoring Tools for Advanced Technology
Learning Environments, 491-544. Kluwer Academic Publishers (2003).

[Murray et al. 03] Murray, T., Blessing, S., Ainsworth, S.: "Authoring Tools for Advanced
Technnology Learning Environments"; Kluwer Academic Publishers (2003).

[Ohlsson 94] Ohlsson, S. “Constraint-Based Student Modelling”. Greer, J.E. & McCalla G.I.
(Eds.) Student Modelling: The Key to Individualized Knowledge-Based Instruction, Berlin:
Springer-Verlag, (1994), 167-189.

[Nielsen 93] Nielsen, J.. "Usability Engineering"; Academic Press, Inc. (1993)

[Suraweera & Mitrovic 04] Suraweera, P., Mitrovic, A., “An Intelligent Tutoring System for
Entity Relationship Modelling”. J.AIEd (J. Artificial Intelligence in Education), (2004), 14, 3-
4, 375-417.

[Urretavizcaya et al. 99] Urretavizcaya, M., Ferrero, B. & Fernández-Castro, I.: “Visión
general de TUTOR. Las personas con deficiencias cognitivas se integran en el entorno laboral”.
J. Boletín Digital Factors Humans, 21. http://boletin-fh.tid.es/bole21/art002.htm.

[Welty 03] Welty, C.: “Ontology Research”. J. AI Magazine, 24,3 (2003), 11-12.

1542 Ferrero B., Martin M., Alvarez A., Urretavizcaya M., Fernandez-Castro I.

