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Abstract: This paper describes KADD ET, a cognitive diagnostic environment created to assess 
the conceptual and procedural learning activities of students. It is composed of a diagnostic 
engine, DETECTive, and a knowledge acquisition tool developed to fulfil its knowledge 
representation needs, KADI. Both of them share a Model of Learning Tasks (MLT) as a 
diagnostic basis. One of the main goals of this environment is to provide teachers with easy-to-
use tools that facilitate the construction of learning environments with diagnosis capabilities 
customized to their particular subject domains and adaptation styles. 

Keywords: Learning Environments, Cognitive diagnosis, Authoring Tools, Error libraries, 
Model Tracing 
Categories: K.3, K.3.1 

1 Introduction 

The latest developments in educational computer sciences have made reference to 
several approaches to educational systems, but regardless of the learning method 
used, what they all share is the student’s learning activities. These activities play a 
major role because they encourage “learning by doing” [Anzai & Simon 79], 
reinforce the knowledge acquired and can even be used from a perspective of self-
assessment. In addition, the results obtained can be used to identify conditions for 
adapting the current teaching/learning strategies. In this context, the level of user 
adaptation is seen as a crucial issue for improving the learning process. This aspect 
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has usually been tackled by including specific components devoted to diagnostic 
functions in educational systems. However, the diagnosis capability involves a 
development that is not trivial, which means that it can be more or less simple 
depending on the type of learning activity, but that it can become quite complex when 
working with procedural domains. 

On the other hand, building adaptive systems from scratch has proved to be so 
difficult that it prevents their massive use [Murray 97, 03]. This has resulted in the 
creation of authoring tools aimed at enabling teachers to build their adaptive learning 
systems tailored to the selected domains.  

In this paper we present the KADD ET environment, which focuses on generating 
adaptive systems oriented to the performance and diagnosis of learning activities. We 
have defined a hybrid and generalised diagnostic approach that combines several 
techniques integrated within a Model of Learning Tasks (MLT). KADD ET is comprised 
of two main systems: DETECTive, a diagnostic engine capable of evaluating learning 
activities related to any domain—provided it is well described according to the 
requeriments specified by the MLT; and KADI, as a complementary authoring tool 
aid oriented to teachers. In the next section we present the main objectives of the 
proposal and some related work. Then, the general characteristics and structure of the 
above mentioned systems are described. Finally, we will draw some conclusions and 
suggest future lines for research. 

2 Main Objectives and Related Works 

This work has pursued a double goal: first, to define and implement a generic 
diagnostic engine customizable and valid for a wide range of domains, and second, to 
build an appropriate authoring tool usable by the teachers. Thus, during the 
acquisition phase, the authoring tool automatically customizes the diagnostic engine 
to the specific domain according to the teacher’s requirements. Later on, the student 
uses the tailored system to perform learning activities that will be diagnosed 
according to the previously supplied domain description—diagnosis phase. This 
approach provides a supporting tool with monitoring and diagnosing capabilities for 
learning, which should be complemented by other means, i.e. by a conventional 
educational process or through an external learning system. 

Various approaches to the diagnosis of learning tasks have achieved interesting 
results. However, most of them need a hard knowledge of engineering work that the 
authoring process is supposed to help overcome. In the next sections we present the 
most promising diagnosing techniques, a study of authoring tools from a generic 
diagnosis perspective and, finally, our starting hypothesis. 

2.1 Techniques for Cognitive Diagnosis 

The cognitive diagnosis field mentions several diagnostic techniques. Among them, 
Error libraries, Model-Tracing and Constraint Based Modelling are the most widely 
used approaches; they have been applied to several types of domains and are claimed 
to be generic. Other techniques—such as Machine Learning [Kono et al. 94], 
Bayesian Belief Networks [Millán et al. 00] and Fuzzy Logic [Katz et al. 94]— have 
also yielded promising results for students’ diagnosis. However, most of them require 
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a deep knowledge representation that closely relates them to the domain and, 
therefore makes them unfeasible for a generic system. 

Error libraries [Burton 82] are based on the explicit representation of erroneous 
knowledge obtained from the recording and interpreting of wrong answers given by 
students. Although its interest is evident, the cost of building such libraries is very 
high [Baffes et al. 96], and not very realistic if the teacher is solely responsible for it.  

The Model-Tracing technique [Anderson et al. 90] is easy to implement as it does 
not require exhaustive studies or complex techniques, and has a low computational 
cost. It consists of a step-by-step monitoring of the student’s actions with regard to 
one or more problem solving models. The differences found among the correct and 
tentative solutions reflect the learner’s deviations. This technique requires a set of 
solution models whose completeness determines diagnosis reliability [Ohlsson 94].  

Constraint-based modelling [Mitrovic et al. 99] expresses the domain as a set of 
constraints on correct solution paths. It does not require a runnable expert module, a 
bug library or a sophisticated inference mechanism. Nevertheless, the estimated cost 
of representing and verifying the domain model as a set of constraints is rather high 
[Ohlsson 94] [Suraweera & Mitrovic 04]. 

Although the techniques considered are claimed as generic, taken separately, 
none of them fully meets an environment’s needs for building diagnostic systems. For 
instance, they would need a complete set of problem solving models, constraints or 
error libraries and might not be valid for different types of domain. So, our approach 
tries to alleviate problems of completeness and domain customization by adequately 
combining a group of techniques. Hybrid diagnosis approaches, mainly centered on 
plan recognition, have already been successfully used in tutoring systems [Greer & 
Koehn 95][Goldman et al. 99], showing that the combination of techniques yields 
better results than each individual technique by itself. 

2.2 Diagnosis Issues in Authoring Tools for Learning Systems 

Authoring tools for teaching/learning systems are many and diverse in both goals and 
characteristics [Murray et al. 03]. For the purposes of this study, we will only 
consider those that build practice-oriented systems, i.e. systems that provide students 
with environments enabling them to put their knowledge into practice, and give the 
advice required to “learn by doing”. SIMQUEST, RIDES, XAIDA and Demonstr8 all 
belong to this group of systems. 

SIMQUEST [Joolingen et al. 96] focuses on the conceptual characteristics of the 
domain and allows discovery learning environments using simulations to be created. 
The diagnosis is made only by comparing the learner’s final result with the result 
expected. The XAIDA system [Hsieh et al. 99] is suitable only for learning perfectly 
identified maintenance tasks, and applies the model tracing paradigm to monitor the 
students’ activity by simulating their steps. It takes into account the correct 
sequencing and other knowledge, such as the justification of the steps or the 
misconceptions. RIDES [Munro et al. 97] allows the generation of training systems 
focused on interactive graphic simulations. The author must define procedures 
comprised of a fixed sequence of actions, and the system in turn detects the student’s 
actions, preventing malfunctions by means of a model tracing process. DEMONSTR8 
[Blessing 97] describes the domain through production rules that represent the right 
knowledge, with the student’s knowledge being represented as a Bayesian belief 
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network. It monitors each of the student’s steps during task performance, and applies 
the model tracing technique, updating the network according to the diagnosis results.  

Most of the authoring tools studied include a unique diagnostic mechanism that is 
closely related to the domain, and therefore they are of little value for different types 
of subject areas. Thus, in this work we aim to define generic diagnostic models, 
independent from the learning domains, in order to obtain a greater flexibility and 
portability to different domains. 

2.3 A Starting Hypothesis  

None of the described diagnostic techniques taken separately can fulfil our first goal 
of defining a generic diagnostic engine. But we claim that a combination of some of 
them could retrieve adequate diagnosis information to improve the student’s learning 
process, and solve or reduce the problems showed by each of them. Therefore, we 
propose a hybrid and generalised diagnostic system that combines error libraries, the 
model-tracing technique, and a variant of the constraint-based modelling. In this 
approach, the teacher must define the learning domain by means of problem solving 
models, restrictions and bugs. These specifications will be used later when the student 
solves an exercise: the problem solving models will be the basis for the model tracing 
technique, while the bugs library and restrictions will show information about the 
most relevant and usual errors. Nevertheless, as the information defined by the expert 
may still be incomplete, we will also represent procedural knowledge including the 
prerequisites and postrequisites of each procedural action.  

On the other hand, our second goal is to build an authoring environment to 
provide teachers with tools that enable them to create diagnostic learning systems 
based on sophisticated techniques on their own. Thus, they will define the domain 
knowledge requisites in a flexible and guided way, using the appropriate combination 
of techniques, so as not to force a unique knowledge representation schema. 

3 KADD ET: A Diagnosis Environment for Learning Tasks 

KADD ET is a developing environment oriented to the creation of “learning by doing” 
systems that allow for authoring and diagnosing processes. It has been conceived 
according to the following strategic purposes: “Genericity” to enable its instantiating 
to diverse domains; “Suitable and sufficient diagnosis”, to be useful in the learning 
process; and “Usability” to encourage and favor its use. 

The two functionalities described have led us to design and create two closely 
related systems, DETECTive and KADI, as well as a common shared theoretical 
basis—the Model for Learning Tasks. The latter allows for the description of the 
subject domain and the learning tasks from the perspective of the diagnosis of the 
student’s knowledge. The next sections show the main components of KADD ET. 
Nevertheless, for the sake of brevity, we will focus only on the procedural domains, 
which, being more complex, are more interesting than the conceptual domains.  
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3.1 Model for Learning Tasks. A Theoretical Basis  

The Model for Learning Tasks (MLT)1 defines an ontology [Welty 03] that identifies 
the components of the domain that need to be described in order to formalize the 
diagnosis process of students accomplishing procedural tasks. In addition, the model 
proposes the component interrelations, properties and scope. Keeping these needs in 
mind, the MLT defines elements for describing: (a) the procedural domain; (b) the 
learning tasks, or exercises; and (c) the results of the diagnosis process.  

The domain is primarily defined by two items: the manipulatable objects and the 
procedures (or basic student actions). For the objects, the MLT establishes a minimal 
characterization, enabling the users to introduce new relationships and characteristics 
to define their peculiarities. Due to the application of procedures, an object takes 
different values or states during its lifetime. On the other hand, the specification of a 
procedure sets forth the states in which it can be executed (prerequisites), the 
variations produced by its performance on the objects of the scenario (simulation 
actions), and the new states of the objects involved (postrequisites). In order to define 
the procedures, the MLT provides the following elements: parameter of the 
procedure, condition, graph, node, link and simulation action (see Figure 1). 

Figure 1: MLT elements for Domain Representation: Procedure 

A learning task or Exercise [Almond et al. 02] allows variations and gaps in the 
learner’s knowledge to be inferred. It defines its assessment criteria and is associated 
with some contents of the subject area by means of a set of learning objectives. In 
particular the Practical Exercise (Figure 2) describes the scenario to which learners 
will apply their knowledge, i.e. the set of domain objects that are suitable for 
manipulation at each moment of the problem solving process. In addition, the most 
frequent solving behaviors compose several solution patterns, and a series of 
recurrent or standard Errors identifies gaps in knowledge. According to these ideas, 
an MLT Exercise is defined by its presentation, the initial and final states of the 
scenario and a set of potential solutions. Additionally, the exercise includes 
pedagogical information about its difficulty, estimated time for completion, number 
of allowed attempts, and so forth. An exercise Solution pattern includes its evaluation 
and a resolution plan (be it right or wrong) that defines the sequence of steps (basic 
actions) to be taken. Our model distinguishes two types of errors: Deviations and 
Predefined Errors. 
                                                 
1 MLT has been achieved on the basis of an empirical development and later refinements made to different 
domains. They are: Derivation in mathematics [Ferrero et al. 97], Photography- [Dorronsoro 93], Labour 
disability- Help and Monitoring in the work of mentally disabled people [Urretavizcaya et al. 99], the 
world of blocks [Ferrero et al. 99], and the industrial domain of the Machine tool [Lozano et al. 04]. 

PROCEDURE
Name : TEXT
Parameters : <parameter> *

Description : TEXT
Objectives: <objective>*

Pre-conditions : <condition> *

Post-conditions : <condition> *

Actions: GRAPH

NODE
Parent-link : <link> *

Child - link : <link>
Step : <PROCEDURE/ACTION>

GRAPH
Root: <node> LINK

Parent-node: <node>
Link -type: S/C/D
Child -nodes : <node>*

Types of link:
S-sequence

C-conjunction (and)

D-disjunction (or)

PROCEDURE
Name : TEXT
Parameters : <parameter> *

Description : TEXT
Objectives: <objective>*

Pre-conditions : <condition> *

Post-conditions : <condition> *

Actions: GRAPH

NODE
Parent-link : <link> *

Child - link : <link>
Step : <PROCEDURE/ACTION>

GRAPH
Root: <node> LINK

Parent-node: <node>
Link -type: S/C/D
Child -nodes : <node>*

Types of link:
S-sequence

C-conjunction (and)

D-disjunction (or)

Types of link:
S-sequence

C-conjunction (and)

D-disjunction (or)
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Figure 2: MLT elements for representing a learning task- practical exercise 

Finally, the diagnosis result identifies those aspects relevant to the teacher, to the 
student or even to other support systems, with a focus on the Learner’s response, 
which describes the solution given by the student as a linear sequence of resolution 
steps with information about the procedure performed, its diagnosis, the list of 
identified errors, and a numerical score.  

3.2 DETECTive. A practical implementation 

DETECTive implements the MLT ontology and bases its diagnosis on the MLT 
elements instantiated for a specific domain; it also carries out a Multiple Diagnosis 
Model based on different techniques. An example of a simple procedural domain 
inspired by the blocks’ world will help us illustrate the main working ideas (Figure 3); 
its scenario is composed of a main box B0, with some cubic blocks (Bi) to be stored 
by a robot-hand by means of a set of procedures (Pick_Up, Leave_in_Box, 
Leave_on_Table, Pick_up&Leave_in_box). 

Figure 3: Scenario objects and MLT elements for a Robot Domain 

Put -Blocks -in-Box
Is_a: PRACTICAL EXERCISE

Name : “Put Blocks in Box”
…
Scenario : <B1, B2, B3, B4, T (table), H, BO>
Initial state : (BO, contain, nil), (B1, free, yes)

(T, contain, <B1, B2, B3, B4>) (B2, free, yes)
(B3, free, yes) (B4, free, yes)

Final State : (BO, contain, <B1, B2, B3, B4>),(T, contain, nil)
Solution: <SOL -PATTERN1, SOL -PATTERN2>

Block
Is_a: OBJECT

Name : Cubic Block with square face
Description: Cubic Block with square face and  width z.
Identification : B
free: < YES/NO>   (up face free)
size: integer

B4
Instance_of: BLOCK

B3
Instance_of: BLOCK

B2
Instance_of: BLOCK

B1
Instance_of: BLOCK

BO

x
z

5x/3

B3

z

x

x

B2

z

2x/3

2x/3

B1

z
x/3B4

z
x/3

!H
Pick_up .  

Leave_in_box .

Leave_on_table .

Pick_up&leave_in_box .

Hand
Is_a: OBJECT
Name : Robot’s Hand
Description : Blocks manipulator
Identification : H
Contain: <Block> +

Box
Is_a: OBJECT
Name : Box
Description : blocks container
Identification : BO
Contain: <Block> * 

BO
Instance_of: BOX

Put -Blocks -in-Box
Is_a: PRACTICAL EXERCISE

Name : “Put Blocks in Box”
…
Scenario : <B1, B2, B3, B4, T (table), H, BO>
Initial state : (BO, contain, nil), (B1, free, yes)

(T, contain, <B1, B2, B3, B4>) (B2, free, yes)
(B3, free, yes) (B4, free, yes)

Final State : (BO, contain, <B1, B2, B3, B4>),(T, contain, nil)
Solution: <SOL -PATTERN1, SOL -PATTERN2>

Block
Is_a: OBJECT

Name : Cubic Block with square face
Description: Cubic Block with square face and  width z.
Identification : B
free: < YES/NO>   (up face free)
size: integer

B4
Instance_of: BLOCK

B3
Instance_of: BLOCK

B2
Instance_of: BLOCK

B1
Instance_of: BLOCK

BO

Put -Blocks -in-Box
Is_a: PRACTICAL EXERCISE

Name : “Put Blocks in Box”
…
Scenario : <B1, B2, B3, B4, T (table), H, BO>
Initial state : (BO, contain, nil), (B1, free, yes)

(T, contain, <B1, B2, B3, B4>) (B2, free, yes)
(B3, free, yes) (B4, free, yes)

Final State : (BO, contain, <B1, B2, B3, B4>),(T, contain, nil)
Solution: <SOL -PATTERN1, SOL -PATTERN2>

Block
Is_a: OBJECT

Name : Cubic Block with square face
Description: Cubic Block with square face and  width z.
Identification : B
free: < YES/NO>   (up face free)
size: integer

B4
Instance_of: BLOCK

B3
Instance_of: BLOCK

B2
Instance_of: BLOCK

B1
Instance_of: BLOCK

BO

x
z

5x/3

B3

z

x
z

5x/3

B3

z

x

x

B2

z

2x/3

2x/3

B1

z
x/3B4

z

x

x

B2

z

2x/3

2x/3

B1

z
x/3B4

z
x/3

!H
Pick_up .  

Leave_in_box .

Leave_on_table .

Pick_up&leave_in_box .

Hand
Is_a: OBJECT
Name : Robot’s Hand
Description : Blocks manipulator
Identification : H
Contain: <Block> +

Box
Is_a: OBJECT
Name : Box
Description : blocks container
Identification : BO
Contain: <Block> * 

BO
Instance_of: BOX

 PRACTICAL EXERCISE 
Name :  T EXT 
Description :  T EXT 
Objectives : < objective > * 
Presentation :  T EXT 
Essay - max :  N UMBER 
Score - max :  N UMBER 
Formulation  : :  TEXT 
Scenario : < domain objects > * 
Initial state : < state of dom .  objects > 
Final State :  < state of dom .  objetcts > 
Solution : < pattern > * 

PATTERN 
Message :  T EXT 
Valuation :  N UMBER 
Solution Plan : <STEP>* 

STEP 
Diagnosis:  T EXT 
Errors :  <PREDEFINED ERROR>* 
Procedure : < P ROCEDURE > 
Parameters : < P ARAMETER > 
Description :  T EXT 

DEVIATION 
Name :  T EXT 
Message :  T EXT 
L - objectives : <OBJECTIVE> 
Penalization :  N UMBER 
Previous - procedure : P ROCEDURE 
Following - procedure : P ROCEDURE 
Parameter :  P ARAMETER 

PREDEFINED - ERROR 
Name :  T EXT 
M essage :  T EXT 
Penalization :  N UMBER 
.... 

PRACTICAL EXERCISE 
Name :  T EXT 
Description :  T EXT 
Objectives : < objective > * 
Presentation :  T EXT 
Essay - max :  N UMBER 
Score - max :  N UMBER 
Formulation  : :  TEXT 
Scenario : < domain objects > * 
Initial state : < state of dom .  objects > 
Final State :  < state of dom .  objetcts > 
Solution : < pattern > * 

PATTERN 
Message :  T EXT 
Valuation :  N UMBER 
Solution Plan : <STEP>* 

STEP 
Diagnosis:  T EXT 
Errors :  <PREDEFINED ERROR>* 
Procedure : < P ROCEDURE > 
Parameters : < P ARAMETER > 
Description :  T EXT 

DEVIATION 
Name :  T EXT 
Message :  T EXT 
L - objectives : <OBJECTIVE> 
Penalization :  N UMBER 
Previous - procedure : P ROCEDURE 
Following - procedure : P ROCEDURE 
Parameter :  P ARAMETER 

PREDEFINED - ERROR 
Name :  T EXT 
M essage :  T EXT 
Penalization :  N UMBER 
.... 
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The MLT ontology elements for domain definition (Figures 1 and 2) are 
organized at the Abstract level. The Concrete level instances the Abstract Level, 
characterizing the domain ontology with its manipulatable objects, procedures and 
exercises (Figure 3). The Resolution Level includes the exercise solution patterns that 
determine how the simulation actions associated with the domain procedures are to be 
performed. Figure 4 shows a part of each of the above described levels.  

3.2.1 Diagnosis Model 

Our proposal for the Multiple Diagnosis Model (MDM) applies a multiple process to 
the student’s solution in order to detect its malfunctions and potential errors. The 
diagnosis of procedural exercises starts with a Model-Tracing treatment, which 
consists of searching for a solution plan that matches the learner’s action. Since the 
domain description may be incomplete and the lack of solution plans relevant to the 
current exercise, the process incorporates other mechanisms that increase the number 
of recognizable potential actions: Dynamic plan adaptation, using information from 
the deviations and Prerequisite verification of the procedures identified in the 
domain. These mechanisms allow for the establishment of two complementary types 
of diagnoses: Pattern-based Diagnosis, through model-tracing and dynamic 
adaptation, and Specific Diagnosis centered on the prerequisite verification. As long 
as the learner’s actions match the actions retrieved in a solution plan, DETECTive 
performs a Pattern-based Diagnosis; otherwise, it makes a Specific Diagnosis.  

Figure 4: Elements of the Knowledge Levels 
  

 

RESOLUTION LEVEL: Execution & Solution knowledge 

CONCRETE LEVEL: Domain and 
Task knowledge 

ABSTRACT LEVEL: Meta_knowledge 
(procedural domain) 

PRACTICAL EXERCISE

OBJECT SOL PATTERN PROCEDURE ERRORS 
How to 
define 

Hand 

Block 

Box 

Leave_table 

Leave_box 

Pick_up&Leave_box 

Pick_up What to 
define 

SOL. PATTERN 1 

SOL. PATTERN 2 

     Pick_up&leave (B3, BO)  
 
       Pick_up&leave (B1, BO) 
 Pick_up&leave (B2, BO) 
 

       Pick_up&leave (B4, BO) 
 

B1 B2 
B3 

B4 

BO 

insert(BO•contain, O?x) 
 
assert(H, contain, nil) 
 
assert(O?x, free, YES) 

     Pick_up&leave (B2,BO)  
 
       Pick_up&leave (B1,C) 
 Pick_up&leave (B4, BO) 
 

       Pick_up&leave (B3, BO) 
 

and 

Is_a 
Part_of 

Instance_of 

How to 
simulate 
and solve 

TASK MODEL 
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The Pattern-based Diagnosis relies on three main mechanisms: (i) monitoring of 
the Learner’s Solution, as the procedure executed at each time of the problem solving 
process needs to be known; (ii) checking the solution plans included in the exercises, 
which tells which procedures are feasible at any time in order to determine the 
correction of the student’s steps; and (iii) adapting plans through the domain 
deviations. 

Initially, it considers all plans defined for the problem, i.e. Active Plans. The 
suitability of the learner’s step is determined by comparing it with the information 
included in the follow-up item of the Active Plans, in such a way that the Active Plans 
that do not include the learner operation become Rejected Plans. When none of the 
plans reflects the student’s action, the Dynamic Plan Adaptation proceeds. This 
process takes every previously Rejected Plan, and searches for a Deviation to explain 
the difference between the learner’s step and the step described in the plan. If it 
succeeds, the Rejected Plan is restructured with the error-associated information and 
becomes a new Active Plan. Thus, a new pattern with a plan that fits the learner’s 
response is available. Patterns whose rejected plans cannot be adapted become 
Removed Patterns. If upon completion of the monitoring of the current student’s step, 
one or more plans remain active, it means that the step has been acknowledged and 
the Pattern-based Diagnosis goes on accordingly. If none of the Rejected Plans can be 
adapted, the Pattern-based Diagnosis finishes, the student’s Solution tracing is 
suspended, and the Specific Diagnosis based on the domain knowledge is triggered. 

The monitored acknowledgment of each student’s step involves its simulation and 
diagnosis. On the one hand, the execution of the simulation actions of the procedure 
associated with the step changes the Current State of the scenario. On the other hand, 
the information about the step of the active plan (not adapted or adapted through an 
error), allows the retrieval of information for the diagnosis of the student’s step.  

The Specific Diagnosis verifies the learner’s step applicability by comparing the 
current state of the scenario to the prerequisites of the procedure involved. So, if the 
prerequisites of the student’s procedure-step are true, then it is simulated and 
diagnosed, and the process continues. Otherwise, the learner’s response is wrong and 
the process stops. Thus, if the simulation of the learner responses reaches the 
exercise’s final state, we will safely say that such a solution is complete and solves 
the problem. 

3.2.2 Modular Architecture  

DETECTive has been implemented via a modular architecture that allows it to be 
easily changed, widened and integrated with other systems. It is comprised of six 
modules (Figure 5): Diagnosis/Assessment Module, Functional Domain, Control 
Module, Simulator, Reporting Module and Student’s Module. 

The Functional Domain includes the domain-specific information, stored in two 
knowledge bases and one Error Catalogue, and implements the MLT Concrete and 
Resolution levels. The Control Module supervises and controls the diagnosis process: 
(a) proposing the exercise to the learner; (b) retrieving each solving step taken by the 
student and triggering the suitable diagnosis mechanisms; and (c) updating the 
diagnostic information on each step with its assessment (right, error, non-optimum ...) 
and the errors detected by the Diagnosis/Assessment Module. All these data complete 
the Diagnosis Result that makes up the Student’s Module. 
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The Diagnosis/Assessment Module diagnoses each of the student’s steps 
following the MDM shown in section 3.2.1. For this purpose, and once the student’s 
step has been revised and acknowledged, it triggers the Simulator that carries out the 
procedure in terms of its simulation actions described in the Functional Domain. The 
Student’s Module manages the information about the diagnosis of the exercises made 
by the learner. At present, it comprises a record of the diagnostic results. The 
Reporting Module is triggered from the Control Module upon completion of the 
diagnosis of one exercise, and generates a report of the student’s resolution. 

Figure 5: DETECTive’s Architecture 

3.3 Feeding the Model of Learning Tasks by means of KADI 

KADI is the interface environment used to cover the process of knowledge 
acquisition of the DETECTive diagnostic engine. It includes two funcitonalities, 
teacher-authoring and student-diagnosis, which have been tackled generally by means 
of an interface system supported by a data management application. In this paper, we 
will address the authoring process, which allows the objects, procedures and exercises 
of the educational domain to be gathered, together with the correct and incorrect 
solving plans and their relevant errors.  

The KADI architecture (Figure 6) is directly connected to the DETECTive 
engine. During the acquisition or authoring phase, KADI records the information 
provided by the teacher to feed the DETECTive’s MLT (see section 3.1), and 
compiles it in CLIPS-syntax knowledge bases.  

The acquisition process is carried out by means of three main modules. The 
Exercises Acquisition Module (EAM) allows both conceptual and procedural exercises 
to be defined. The Object Acquisition Module (OAM) defines the objects that the 
student has to manipulate during the procedural exercises. The Procedures 
Acquisition Module (PAM) defines the procedures that can be applied to the described 
domain objects. Upon the definition of the subject domain and the learning activities, 
two kinds of files are created with the information needed by the diagnostic engine. 
When DETECTive loads these files, the Concrete and Resolution Levels are created 
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completing the Functional Domain. KADI is supported by the DETECTive’s 
diagnostic results during the definition of procedural exercises and the process is 
controlled by the Guided Definition Management System (GDMS). In this situation 
the Specific Diagnosis is used to supervise, formalize and guarantee the completeness 
of the domain (at least for the described exercises). If one of the values indicated in 
the definition of a solution plan step (section 3.1) does not match the values expected 
in the simulation, the step is considered to be non appropriate. This is either because 
its characteristics have not been well defined, or because a previous step, necessary to 
reach a state allowing the current step to be applied, is missing. Finally, if the 
simulation of the created plan reaches the exercise final state, that solution is 
validated. 

Figure 6: Architecture of KADI 

The current version of KADI uses text window interfaces, whose design 
criteria—for instance, its “usefulness” and “simplicity” for users—were based on 
usability heuristics such as Consistency and Error prevention [Nielsen 93]. We have 
developed a methodology to provide teachers with a guide to introduce data in the 
right order. As a first step, the teacher identifies and creates the domain, and then the 
authoring proceeds by defining the exercises. A detailed description with illustrative 
examples is shown in [Martín et al. 04]. 

4 Conclusion. Lessons Learned and Future Work 

In this paper, we have presented the KADD ET system, an environment for cognitive 
diagnosis created to assess the conceptual and procedural learning activities of 
students, with a teacher-oriented authoring component. It was conceived on various 
bases: Genericity to allow its instantiation for different domains; “Suitable and 
sufficient Diagnosis” to make it a useful tool for supporting the student learning 
process in conceptual and procedural domains; and ”Usability” to facilitate teachers’ 
tasks of defining the subject matter and learning activities in order to promote and 
support its use.  

KADD ET is comprised of two integrated subsystems, DETECTive and KADI, 
sharing a common ontology Model of Learning Tasks. DETECTive is a generic, 
domain-independent diagnostic engine that implements a new diagnostic hybrid 
approach based on the discriminated integration of several paradigms. In this way, it 
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can be customized to a wide variety of conceptual and procedural domains. Since the 
correct behavior of the customized system depends on the correctness and 
completeness of the information provided in the acquisition phase, KADI facilitates 
the authoring process and controls the robustness of the input data. 

DETECTive has been evaluated according to an adapted pilot test technique. The 
multiple paradigm diagnosis described in the system has proved to be sufficient to 
support learning in several domains, but some lessons have been learnt as well. 
Despite the flexibility of the tool, the creation of the domain, exercises and solutions 
is not an effortless task for teachers and, therefore, it demands some specific design 
skills. [Ferrero 04] presents a complete description of the validation tests performed in 
the context of three research projects and the results obtained. 

Although we are well aware of the difficulty of achieving our initial goals, we 
have taken an important step forward toward those ends. Comparing our diagnostic 
proposal with the ones previously described, we share the opinion [Greer&Kohen 95] 
that a multiple paradigm allows teachers to choose the best technique, depending on 
their viewpoints and on the characteristics of the domain. Also, the combination of all 
paradigms results in a synergy, which exceeds the result of each individual paradigm. 

Our current developments and future work focus on the improvement of 
DETECTive and KADI. Regarding DETECTive, we propose to validate and refine 
the multiple diagnosis process to better tackle the diagnosis complexity on procedural 
domains; in keeping with this line, new paradigms will be explored. On the other 
hand, we are redesigning and adapting its architecture to a multi-agent structure to 
facilitate both its integration in web-oriented applications and the addition of new 
diagnostic techniques. KADI is currently being updated, especially with regard to the 
description of the domain procedures and problem solving plans. Furthermore, a 
standard learning interface is under study to record and validate the student’s answers, 
as well as to provide a means to display the diagnostic results and the general 
knowledge model. Finally, a new project involving virtual reality environments for 
procedural training is currently under development [Lozano et al. 04], aimed at 
treating screen representation of complex information and directly capturing the 
acquisition of knowledge, handling operations, and solving process in the virtual 
environment. 
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