
A Non-Invasive Approach to Assertive and Autonomous
Dynamic Component Composition in the Service-

Oriented Paradigm

Fei Cao
(University of Alabama at Birmingham, Birmingham, AL, USA

caof@cis.uab.edu)

Barrett R. Bryant
(University of Alabama at Birmingham, Birmingham, AL, USA

bryant@cis.uab.edu)

Rajeev R. Raje
(Indiana University Purdue University, Indianapolis, IN, USA

 rraje@cs.iupui.edu)

Andrew M. Olson
(Indiana University Purdue University, Indianapolis, IN, USA

aolson@cs.iupui.edu)

Mikhail Auguston
(Naval Postgraduate School, Monterey, CA, USA

auguston@cs.nps.navy.mil)

Wei Zhao
(University of Alabama at Birmingham, Birmingham, AL, USA

zhaow@cis.uab.edu)

Carol C. Burt
(University of Alabama at Birmingham, Birmingham, AL, USA

cburt@cis.uab.edu)

Abstract: Component-based software composition offers a development approach with
reduced time-to-market and cost while achieving enhanced productivity, quality and
maintainability. Existent work on the composition paradigm focuses on static composition,
which is not sufficient in a distributed environment, in which both constituent components and
the assembled distributed system are subject to dynamic adaptation. This paper presents two
types of dynamic composition for distributed components: assertive and autonomous over a
.NET based Web Services environment. Three case studies are provided to illustrate the use of
assertive and autonomous composition.

Keywords: dynamic component composition, Service Oriented Architecture, Web Services,
assertive composition, autonomous composition, intermediate code manipulation, aspect-
oriented programming, aspect weaving, .NET, Common Language Runtime
Categories: D.2.3, D.2.12, D.2.13, D.2.7, D.3.3, H.3.5, I.2.8

Journal of Universal Computer Science, vol. 11, no. 10 (2005), 1645-1675
submitted: 10/5/05, accepted: 23/9/05, appeared: 28/10/05 © J.UCS

1 Introduction

With the increasing demand for scalability, reasonability and correctness of software
systems, software development has evolved into a process of composing existing
software components, as opposed to constructing a new software system completely
from scratch [Heineman, 01]. Economically, by reducing time-to-market, this
approach has improved the economic and productivity factors of software production
[Devanbu, 96]; Technically, by separating overall functionality into small units,
component-based software development also offers a means for better manageability
[Brown, 00] and predictability [Hissam, 03] of the constructed software system.

Features of Distributed Components

With the advancement of Internet technology, component-based software
development has unleashed its impact onto the distributed environment, while
exhibiting the following new features:

a. The scope of component selection and reuse is extended. Consequently,
component composition requires a prerequisite discovery process for
identifying a matching component.

b. Distributed components are usually heterogeneous with respect to
implementation languages, and host platforms. With different type systems
or component models, interoperation between components will not be
possible without leveraging proper bridging technology.

c. Because of the unpredictability of network transport and constraints posed
by application domains, such as real-time systems, not only functional
properties, but also non-functional properties (e.g., Quality of Service [Raje,
02] and economical properties such as pricing of service) are of critical
concern to guarantee the proper delivery of services offered by the
assembled distributed software systems. QoS includes availability,
throughput, and access control, to name a few.

d. The coupling between components is loose. A deployed component in a
distributed system is subject to frequent adaptation1 or replacement with a
new version to accommodate ever-changing business requirements
externally as well as the computing resource status internally. Those
requirements can be either functional or non-functional.

Web Services as a New Paradigm for Distributed Component Composition

The above new features pose new problems for developing software systems
based on distributed components. Recent years have seen the emergence of Web
Services (WS)2 technology as a new component-based software development
paradigm in a network-centric environment based on the Service Oriented
Architecture (SOA) [Colan, 04], the open standard description language XML3 and

[1] Here adaptation is defined as component composition and decomposition;
component composition and decomposition are the means to realize adaptation.
[2] http://www.w3.org/2002/ws
[3] XML – Extensible Markup Language - http://www.w3.org/XML

1646 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

transportation protocol HTTP4. Consequently, distributed component composition can
be achieved by wrapping heterogeneous components with a WS layer for
interoperation. Using WS as a common communication vehicle, component
interoperation is greatly simplified compared with such bridging technology as
CORBA5, where different interoperation implementations are needed for each pair of
components contingent on their underlying implementation technologies. In the
remaining part of this paper, the term component in a distributed environment is
equivalent to a WS: we use it to correlate the canonical concept of a software
component [Szyperski, 02].

The Need for a Dynamic Component Composition Paradigm in WS

In addition to offering an interoperability infrastructure for distributed
components, WS also incorporates a service discovery infrastructure in accordance
with SOA. With problem (a) and (b) being embraced, current WS technology is yet to
address the concerns as set forth in (c) and (d). Specifically,

1. Service Provisioning: In critical domains such as finance or military, there is
a need for a guarantee of service availability continuously, rather than
shutting down the system for services adaptation;

2. Service Consumption: In distributed environments, service consumption
experiences are subject to change because of the vagary user requirements,
and seamless consumption experiences are necessary to ensure the quality
service consumption. As such, the customizability of service dynamically is
of vital importance in a service-oriented environment.

As such, static component composition is not adequate in developing distributed
software systems, and both functional and non-functional property adaptations need to
be applied in a dynamic fashion. This paper describes a dynamic component
composition paradigm for WS based on the .NET6 Common Language Runtime
(CLR) [Gough, 02]. The .NET framework is a platform for software integration, using
CLR for integrating software at the single operating system process scale, and XML
WS for integration at the internet scale. The CLR is the .NET equivalent to the Java
virtual machine, but offers more features such as using the Common Intermediate
Language (CIL) based on the Common Type System (CTS) to translate .NET
languages before execution, thereby offering cross-language interoperability for .NET
languages based on CIL. The code to be translated into CIL and then to be executed
by the CLR is called managed code. The code to be directly excuted as native code
outside CLR is called unmanaged code. Also, the CIL includes rich metadata
information for describing software module contracts to achieve managed execution,
with the benefits of security and scalability. We chose .NET because it is a
fundamental re-architecting of the distributed computing platform based on WS,
while other application server support for WS tend to be designed more as another
client, or presentation tier for the back-end systems, with the communication tier

[4] HTTP – Hypertext Transfer Protocol - http://www.w3.org/Protocols
[5] CORBA® - Common Object Request Broker Architecture: http://www.omg.org/
corba
[6] http://www.microsoft.com/net

1647Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

based on Java RMI7 or Java RMI over IIOP8 rather than a strictly XML protocol
based such as .NET [Newcomer, 02].

The contribution of this paper is to introduce the dynamic component
composition paradigm in the distributed software system development, with proof-of-
concept experiments in service-oriented computing domain to showcase how this
paradigm can reconcile the need of continuous availability of functional properties
and the guarantee of non-functional properties in a distributed environment.

This paper is organized as follows: Section 2 provides an overview of the
approach and its salient features. Section 3 describes design and implementation of a
prototype based on of the proposed approach. Section 4 provides three case studies.
Section 5 provides the benchmarking for the approach. Section 6 describes related
work. We conclude in Section 7 together with the description of future work.

2 Overview of the Approach

2.1 Runtime Code Manipulation Through Assertive and Autonomous
Composition Rules

Figure 1 provides an overview of the proposed dynamic composition approach. In the
left pane of the execution unit, the .NET XML WS, which is specified with Web
Service Description Language (WSDL)9, is a layer built on top of .NET applications
(1), which in turn runs over CLR (2). Consequently, .NET based XML WS can
leverage the benefits of managed execution, where the .NET application is captured in
the form of CIL (2), which is to be Just-In-Time (JIT) compiled into native code and
executed (3). Therefore, by manipulating CIL derived from the XML WS
implementation language, WS components can be composed at runtime. The
manipulation of CIL is illustrated in the right pane of the configuration unit, which is
comprised of a stack of composition rules with a meta-level hierarchy. Composition
rules are specifications for component composition (d). Meta-rules are specifications
of triggering conditions for applying the composition rules, and the firing of the
composition rules is enabled through a rule execution engine automatically (c). The
use of the rule engine for applying composition rules is useful for implementing
autonomous compositions based on the runtime status quo. The actor icon represents
a configuration console in a manual manner for both meta-rules (a) and composition
rules (b). While the composition enabled through path (a->c->d) represents
autonomous composition, the composition path of (b->d) represents the assertive
composition. The configuration decision is based on WSDL exposed by WS (i1); WS
itself can in turn assume the configuration role for specifying component composition
reactively (i2).

[7] RMI - Remote Method Invocation - http://java.sun.com/products/jdk/rmi
[8] IIOP - Internet Inter-ORB Protocol - http://java.sun.com/products/rmi-iiop
[9] WSDL - Web Services Description Language - http://www.w3.org/TR/wsdl

1648 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

WS/WSDL

.NET Application

CLR/CIL

Native Code

Meta-Rule

Composition Rule

A
bs

tr
ac

tio
n

le
ve

l

a

b

1

2

c

3
d

R
ule

M
eta-Level

Configuration UnitExecution Unit

i1

i2

Figure 1: Overview of the dynamic composition approach

The major difference between autonomous composition and assertive
composition is that the former represents a composition behavior that is decided at
runtime, while the latter represents a predictable, arranged composition behavior.

2.2 Salient Features

The salient features of this dynamic component composition approach are:
1. Non-invasive nature

• Non-invasive to application code for separation of composition concerns.
The WS composition is realized through in-memory IL manipulation as
opposed to off-line invasive source code changes. A non-invasive change is
often desirable as a WS vendor may deliver the software package in binary
form. Also, even though it is possible to derive CIL from a .NET executable
using some de-compilation tools, invasively changing either original source
code or derived CIL code will require unloading, recompiling and
redeployment of the original WS application, which compromises the
availability of WS. Moreover, the invasive change of WS code will pollute
the original application such that recovering it will become difficult, which
introduces the common version control problems for software systems.

1649Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

• Non-invasive to platform for portability. The composition through
manipulation of CIL at runtime (Figure 1-d) requires the interception of the
managed execution. Instead of re-implementing the CLR such as rewriting
open source CLR Rotor [Stutz, 03] to invasively add a listener for execution
interception at the compromise of portability of CLR, we use a pluggable,
configurable CLR profiling interface to achieve this goal, which can be
enabled and disabled based on composition needs with ease to reduce
unnecessary overhead.

2. Language neutral technique for cross-language component composition
By specifying composition rules based on WSDL, which in turn is based on
a language neutral XML schema10, and code manipulation at the
intermediate code (CIL) level, based on language neutral CTS, WS
components implemented in different .NET languages can be composed
across language boundaries.

3. Adaptable composition mechanism
As the configuration unit is a separate entity, applied at the runtime as shown
in Figure 1, not only is the composition concern separated, but also it can be
updated to realize adaptable composition at runtime retroactively and
proactively, which is detailed in the next section.

3 The Design and Implementation of Dynamic Component
Composition in a Peer-to-Peer Environment

3.1 Peer-to-Peer (P2P) Component Composition

Figure 2 illustrates the architecture for the dynamic component composition in a P2P
environment based on the .NET WS environment. In our work, each component is
hosted in an infrastructure DynaCom, which is a profiler-enabled CLR (discussed in
Section 3.2). DynaCom is used as a proxy for components to interoperate with peer
components through WS. DynaCom can intercept the execution of the hosting
components and change the behaviour of the executing components dynamically.
DynaCom is based on our prior work on using a profiling approach for dynamic
service provisioning [Cao-a, 05], but here it is tailored to component composition.
These approaches are essentially based on the same infrastructure, but WS
provisioning focuses on only one side—the server side, while composition involves
both server and client sides. Earlier work on server side dynamic provisioning has not
considered the use of a rule inference engine for autonomous adaptation.

The topology shown in Figure 2 represents a P2P component composition
paradigm, which is the primary composition model to be addressed in this paper. This
choice is based on the observations that P2P and dynamic composition are tightly
associated:

[10] http://www.w3c.org/2001/XMLSchema

1650 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

i n t e r n e t

D y n a C o m

D y n a C o m

D y n a C o m

c o m p o n e n t

D y n a C o m

p r o f i l e r - e n a b le d C L R

Figure 2: The P2P component compositions in .NET WS environment

1. P2P as an agile mode to accommodate dynamic features. While WS
orchestration by executing BPEL4WS11 in the execution engine represents a
centralized composition model, it has been observed that such a composition
model compromises scalability, availability, and security for the server
[Chen, 01]. With the highly dynamic features in a distributed environment,
P2P component composition paradigm will be more widely used.

2. Dynamic composition is the necessary means for realizing P2P computation
in a distributed environment. While component composition usually requires
the generation of glue/wrapper code [Cao, 02], the physical location for
hosting the generated glue/wrapper code is a hard problem in P2P mode
without central management and storage units. Dynamic composition, with
glue/wrapper code generated in memory and JIT compiled and executed at
runtime, provides a solution for P2P component composition without the
physical code placement issues.

3.2 DynaCom Exposed

Figure 3 shows the architecture of DynaCom. The part enclosed by the big square
represents the enabling mechanism for dynamic composition, which is transparent to
the components to be composed above the big square. Our work is built upon the
ASP.NET12 is a WS implementation package based on the .NET framework. In
ASP.NET, the Internet Information Service (IIS)13 is used to accept the incoming WS

[11] BPEL4WS - Business Process Execution Language for Web Services -
http://www-128.ibm.com/developerworks /library /specification/ws-bpel
[12] ASP – Active Server Pages - http://asp.net
[13] http://www.microsoft.com/WindowsServer2003/iis

1651Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

Common Language Runtime

Internet Information Server (IIS):
aspnet_wp.exe

Profiler

Native Code Execution

HookJust-In-Time Compilation

check
install

install

2

3

5

6

4

Advice Library

Advice Usage
Specification

apply

 9.1

11

Component 1

Component 2

Inference Engine
Adaptation Advice
Repository (AAR)

10.2

10.1

8

Fact Base

Rule Base

7
9.2

1.1

1.2

Figure 3: The Architecture of DynaCom: Dynamic Component composition enabling
unit, which includes the part enclosed by a bold-border rectangular, the IIS and facts.
The parts of IIS and facts are accessible to the remote components, while the enclosed
parts of DynaCom are only accessible locally. The dashed lines of 1 and 10 represent
remote access, while all the remaining solid lines represent local access. The laptop
icon represents the local configuration unit to DynaCom.

SOAP (Simple Object Access Protocol) [Newcomer, 02] message transported over
HTTP (1). Upon the acceptance of the WS request, encoded as a SOAP message, an
IIS filter will launch a work process (aspnet_wp.exe), which in turn will launch CLR
(2) to run the WS application in the mode of managed execution. At this point, the
WS application is rendered into CIL, which is subject to be JIT compiled into native
code and executed (6). In order to adapt WS, there is a need to intercept the WS call
at the CIL level before it is compiled. While it is reasonable to implement the
expected functionalities in the CLR open source of millions of lines of code such as
Rotor [Stutz, 03], we feel it to be too expensive an effort. Instead, we use the CLR
profiling API to implement a Profiler as event handlers, and register them as listeners
for the events generated from the CLR (3). In contrast to the conventional
publisher/listener model, which is often of a client-server relationship, the profiler
here will be mapped into the same address space for the profiled application as an in-
process server.

The events generated from the CLR are the result of managed execution,
including but not limited to garbage collection, class loading/unloading, CLR start-

1652 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

up/shutdown and JIT compilation. The event of our interest is JIT compilation, for
which we implement in-memory CIL manipulation for the event handler. The adapted
CIL will then be JIT compiled and executed resulting in changed WS behavior. A
one-shot change to CIL will reduce the traceability of adaptation, impede the removal
of the imposed adaptation (thus incapable of dynamic decomposition), and restrict the
flexibility of further adaptation. Therefore, we interpose Hook code (4, 5) in the WS
application to be adapted, which will check the Adaptation Advice Repository (AAR)
for applicable adaptation advice. The term “advice” is further explained in the next
section. In each DynaCom installed at a peer component site as shown in Figure 2,
AAR is located in a shared memory for fast access during in-memory CIL
manipulation. The AAR includes an Advice Library storing predefined reusable
advice in the compiled managed code form, as well as an Aspect Usage Specification
(AUS) component to indicate applicable advice for WS. The Profiler and the AAR are
subject to external configuration (7-11): for 7, the configuration is used to narrow
down the scope of profiling; for 8-11, the configuration is used to dynamically specify
adaptation rules, among which 8 corresponds to a direct manipulation of adaptation
rules, while 9-11 corresponds to indirect manipulation of adaptation rules through a
rule inference engine. The inference engine can dynamically inject AUS into AAR
based on the rule specification, which is to be detailed in Section 4.2. The laptop icon
in the upper-right corner represents the local configuration unit. The configuration
unit for DynaCom can adopt a GUI interface or an API interface. In our work, we use
a simple console for the local configuration unit handling configurations 7-9, while
configurations 10-11 are realized through an API interface.

3.3 Dynamic Component Composition Through Dynamic Aspect Weaving

3.3.1 Modularized Component Composition

Although, there is no restriction on the number of components each DynaCom can
host, for the sake of simplicity, in Figure 2, each DynaCom is shown to host only two
components. Consequently, a component handling a crosscutting concern may be
expected to be composed with multiple other components. Thereafter, it is not
possible to specify adaptation for every individual component upon changing of
requirements. Instead, there needs to be a means to abstract the adaptation in a
modularized way. Aspect-Oriented Programming (AOP) [Kiczales, 97] offers a
means to abstract cross-cutting concerns in a modularized way called an aspect, and
the concerns can be weaved using weaver technology into the base program based on
the join point model, which specifies the destination to weave concerns. In the same
vein, we specify the adaptation advice in the AAR in a modularized way following
the AOP style14. To weave and unweave a specified advice, we instrument the hooks
at both the entry (pre-hook) and exit point (post-hook) of the WS method to be
adapted. The hooks are used to check into the AAR to see if corresponding before

[14] AOP also offers a means for separating composition specification from
components to be composed, with the underlying weaver to realize the composition.
As such, in case the components to be composed do not involve crosscutting
concerns, the component composition is still specified in the same way as an aspect
weaving specification with AUS.

1653Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

advice and after advice is applicable: the former performing some pre-processing
before the actual WS method execution, while the latter performs some post-
processing immediately before the WS method execution returns. Such pre- and post-
processing capacity can be used to instrument code for addressing non-functional
concerns, such as access control, into the WS method, or applying state persistency
service for the executed WS application upon the end of the WS call. Also included in
the pre-hook are the instructions to check if an around advice is specified or not, and
a jump instruction to redirect the execution to the exit point of the WS application.
The jump instruction is to be activated if an around advice is found valid in the AAR.
With around advice, the original WS will be replaced with new behaviour specified in
that around advice. Consequently, not only the original WS can be decorated, it can
also be overridden completely, which is necessary when a buggy WS is identified and
needs to be removed, or an old service module needs to be updated. The around
advice offers a delegation and wrapping approach for component composition, which
is exemplified in Section 4. By using a hook for weaving, an advice can be applied
dynamically and proactively. Meanwhile, unweaving an advice can be realized by
deactivation of the corresponding AUS in AAR. Figure 4 is the CIL manipulation
template for adapting a WS method. IL_0000 and IL_0005 check and apply before-
advice (if applicable). IL_000a to IL_0015 check if any around-advice is applicable.
If so, control flow will skip the original method to check and execute the after-advice
in IL_0200 to IL_020b; otherwise the original method will be executed before after-
advice is further examined.

IL_0000: ldstr "classname/method_name/parameter_name_list/returntype/before"
IL_0005: call void dynaweave.hook::advising(string) //to check & apply before-advice
IL_000a: pop //to maintain the original stack
IL_000b: ldstr "classname/method_name/parameter_name_list/returntype/around"
IL_0010: call void dynaweave.hook::advising(string) //to check & apply around-advice
IL_0015: brtrue IL_020b
IL_001a: <Original Method body in IL>
............
IL_0200: ldstr "classname/method_name/parameter_name_list/returntype/after"
IL_0205: call bool dynaweave.hooker::advising(string) //to check & apply after-advice
IL_020a: pop //to recover the original stack after original method is executed
IL_020b: ret

Figure 4: Instrumentation of IL code of a WS method

3.3.2 Specifying Component Composition via Aspect Usage Specification

The AOP weaving specification in AspectJ [Kiczales, 01] can be adapted for
component composition specification in terms of aspect weaving as illustrated in
Table 1.

1654 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

Component Composition Aspect Weaving Specification

a precedes b
after (a)

 {b;
}

Sequential

a follows b
before (a)

 {b;
}

Wrapping
a is wrapped by b at the

beginning and c at the end

around (a)
{b;

 proceed();
 c;

}

Overriding a is overriden by b
around (a)

 {b;
 }

Table 1: Composition specification in the form of aspect weaving

The aspect weaving specification is represented in AUS. The type system used in the
AUS in the Adaptation Advice Repository can be based on the object-oriented
Common Type System of CIL, for which each CLR hosted language is translated to
before being JIT compiled. Therefore, such specification is applicable to all WS
applications running in CLR, which provides a language-neutral way for AUS.
However, writing adaptation AUS based on low level CTS is error-prone and not
necessary for high-level AUS. As a result, AUS is written in XML rather than in CTS,
which is based on the following observations:

1. Necessity
• Components delivered may be in binary form with source code being

unavailable, thus AUS at the application code level is not feasible. On the
other hand, components in the .NET WS environment are exposed through
the WSDL interface, which offers a reference point for specifying WS
component adaptation.

• AUS, as the specification reflecting the business requirement adjustment (by
composing and decomposing related components), should have an
abstraction level close to business requirements, rather than being tied to
underlying implementation details.

• XML-based specification for AUS can be directly serialized and queried by
hooks using XML manipulation APIs such as DOM or SAX or XQuery15.

2. Sufficiency
• Web Service Description Language (WSDL) is based on the XML Schema,

which is another language neutral type system that can be mapped to the
language-neutral CTS. The XML Schema based specification is parsed and
translated to CTS to be matched against the string provided by the hook such
as described in IL_0000, IL_000b, IL_0200 in Figure 4. The AUS in AAR
accords with XML schema as illustrated in Figure 5.

[15] http://www.w3c.org

1655Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

<wsdl:operation name="apply_advice">
 <wsdl:input message="tns:advicetype"/>
 <wsdl:input message="tns:return_type"/>
 <wsdl:input message="tns:classname"/>
 <wsdl:input message="tns:methodname"/>
 <wsdl:input message="tns:parameter_list"/>
 <wsdl:input message="tns:advicename"/>
</wsdl:operation>

Figure 5: The AUS schema

Associated with each advicename is the path information for actual advice in the
form of managed code stored in the AAR. All the advice code is defined as a template
with the tuple <Classname, Methodname, Parameter_List> as parameters, which
offers reusability of advice. Such advice can be pre-built in any .NET language and
compiled into managed code. If a matching advice is found, then the advice code will
be loaded from the corresponding path and called. In our work, the wild-card
characters are also supported for AUS.

3.3.3 Autonomous Component Composition Using Rule Inference Engine

3.3.3.1 The Need for a Rule Inference Engine

Functionality for the composed distributed software systems can be predicted based
on the constituent components [Hissam, 03], thus a component composition based on
functional requirements can be specified assertively. In contrast, non-functional
properties such as pricing based on end-to-end delay (service consumption duration)
for composed distributed software systems can only be reasoned about at runtime
because of their dynamic characteristics. As such, a distributed software system needs
to self-adapt itself by composing and decomposing components autonomously to
achieve the expected QoS. While programmatically incorporating all adaptation
decisions is theoretically sound, it is not practically feasible. Consequently, rewriting
and recompiling the code upon changed adaptation decisions are necessary, which is
not appropriate for dynamic composition. When an inference engine is used, the rules
can be specified declaratively in a logic programming style, which can further be
executed directly in an interpretive fashion, as opposed to being specified in an
imperative fashion and needing to be further compiled before execution. Therefore,
with the capacity of maintaining the execution of runtime, inference engine-based
composition rule specification aligns with the dynamic composition paradigm.

Moreover, the declarative rule specification is at an abstraction level closer to
user requirements than the programming language is; as a result, the specification can
be more easily derived from user requirements. Also, with pattern matching and first-
order logic, the declarative rule specification can be used to specify sufficiently the
WS selection, which is incorporated as part of the WS composition rule specification
to be executed by the rule inference engine seamlessly. This is to be exemplified
further in Section 4.3.

1656 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

3.3.3.2 Jess as the Rule Engine

In our work, we use Jess [Friedman-Hill, 05] as the underlying inference engine,
which is a forward and backward chaining rule engine for the Java platform.
Associated with the inference engine are the fact bases and the rule base as shown in
Figure 3. The rule base is only accessible to the local hosting site, and represents local
autonomous composition policies; comparatively, the fact base is exposed to both the
local and remote site, which can be manipulated by the local configuration unit, local
components, or remote components. The fact bases of different DynaCom are
federated, and a local rule engine can query the remote fact base for triggering an
action. This is useful when a local composition rule is dependent on remote
component status (which is reflected in the remote fact base). For example, the
unavailability of a remote component during a certain period of time will trigger the
local component to connect to an alternative component, which offers a means of
fault tolerance.

Jess offers a hybrid programming paradigm between the Java language and
declarative rule specification: the Java code can invoke the Jess rule engine while the
Jess rules invoke Java code. In order for the Jess fact base to interoperate with remote
components, as well as to enable the Java-based inference engine to be interoperable
with the .NET environment, we wrap the Java-based Jess API with a WS layer using
Java WSDP16.

3.3.3.3 Rule Specification for Autonomous Composition

The self-adaptation decisions can be collectively built into a knowledge base pro-
actively and retroactively. Therefore, the complete dynamic component specification
in terms of the dynamic, autonomous aspect weaving rule takes the following form:

 apply [aspect_name] when [logical_condition]

The corresponding Jess rule specification is

 (defrule aspect-weaving
 ([logical_condition in])
 =>(apply [aspect_name]))

The when clause represents the condition under which the action apply [as-
pect_name] is to be performed, which in turn will add an AUS corresponding to
apply [aspect_name] into the AAR through the Jess-.NET bridge (to be
detailed in Section 4.2).

4 Case Studies

In the following subsections we present three case studies. The first one is an assertive
dynamic composition example which is also intended as a shortcut to illustrate how

[16] Java WSDP – Java Web Services Developer Pack – http://java.sun.com/
webservices/jwsdp/index.jsp

1657Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

all pieces shown in Figure 3 work together. The second one showcases the high-level
programming model of dynamic WS composition, particularly the use of the Jess
language and its interoperation with .NET for autonomous WS composition. The third
one further demonstrates the power of logic programming for the autonomous
dynamic composition specification.

4.1 Composing Crosscutting Credit Authorization Components — Putting
Pieces Together

Figure 6 provides an example of a college student credit authorization WS to
demonstrate the assertive dynamic component composition for a non-functional
concern: access control. Figure 6-A shows a simple WS application written in C#,
which provides a WS method for authorizing a credit card application based on the
Social Security Number (SSN17) and the expected credit line. The corresponding
WSDL in Figure 6-B can be automatically generated from the source code in Figure
6-A based in ASP.NET, which in turn is to be exported and used as the basis for AUS
as well. Figure 6-C is an AUS with an around advice to apply credit history checking
before any credit card application request is processed. The AUS represents a
sequential composition specification for a component encapsulating crosscutting
concerns (here HistoryChecking). The wild card specification in credit_* represents
all credit applications with the request name preceded with “credit_”. Figure 6-D is
the source code for the pre-built credit history checking advice, which can be written
in any .NET language (here C#) and is compiled and persisted in the managed code
form. The type systems in Figures 6-A, 6-C, and 6-D are translated into CIL and
matched up in CLR. Once a match is found, the advice in Figure 6-D will be called by
the hook instrumented at runtime. The WS application source code level detail is
transparent to AUS in Figure 6-C, as well as to the HistoryChecking component in
Figure 6-D. By instrumentation of intermediate code, component composition can be
realized across language boundaries without invasively changing application source
code.

4.2 Composing Travel Planning Components—Dynamic Composition
Programming Model Illustrated

This section will further explore the dynamic composition for multiple components
for travel planning, which not only includes assertive dynamic composition, but also
autonomous dynamic composition using the Jess rule inference engine.
Complementing the previous case, this case focuses on the user level component
composition specification as opposed to dwelling on the low level intermediate code
manipulation.

In Figure 7, the boxed part contains the WS components for travel planning, with
those above the box representing the types used in the WS components. Each
customer plans the travel through a travel agent Travel_Agent (TA). The travel agent
will handle both the booking of flight, FlightBooking (FB) and hotel,
HotelBooking(HB). Every traveler can credit his mileage into his own frequent flyer
number through the Membership_Management (MM). He can book the travel package

[17] An identification number used to identify income earners in the United States.

1658 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

class MainApp: WebService
{
 public void processrequest(string SSN, int

creditline)
 { ….. }

 [WebMethod]
 public bool credit_collegestudent (
 string SSN, int creditline)
 { processrequest(SSN, creditline);
 return true;
 }}

...
<s:element name="credit_collegestudent">
<s:complexType><s:sequence>
<s:element ... name="SSN" type="s:string" />
<s:element ... name="creditline" type="s:int" />

</s:sequence></s:complexType>
</s:element>
<s:element name="credit_collegestudentResponse">
<s:complexType><s:sequence>
<s:element ...

 name="credit_collegestudentResult" type="s:boolean"/>
</s:sequence></s:complexType>

</s:element>
...
<wsdl:message name="credit_collegestudentSoapIn">

<wsdl:part name="parameters"
element="tns:credit_collegestudent" />

</wsdl:message>
<wsdl:message name="credit_collegestudentSoapOuf">

<wsdl:part name="parameters"
element="tns:credit_collegestudentResponse"/>

</wsdl:message>
<wsdl:portType name="MainAppSoap">
 <wsdl:operation name="credit_collegestudent">

<wsdl:input message="tns:credit_collegestudentSoapIn" />
<wsdl:output message="tns:credit_collegestudentSoapOut" />

</wsdl:operation>
</wsdl:portType>
...

IL/CLR

B

A

D

(C and D to be expanded in the next page)

C

Figure 6(1): Composing credit authorization component assertively (A and B)

1659Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

<wsdl:operation name="apply_advice">
 <wsdl:input m essage="around"/>
 <wsdl:input m essage="bool"/>
 <wsdl:input m essage="M ainApp"/>
 <wsdl:input m essage="credit_*"/>
 <wsdl:input m essage="string, int"/>
 <wsdl:input m essage="historychecking"/>
</wsdl:operation>

public class historychecking
 { public static void applying
 (string ssn, int amount)
 { bool ok=

docredithistorychecking
 (ssn, amount);
 if(ok) proceed();
 else return false;
 } }

C D
Figure 6(2): Composing credit authorization component assertively(C and D)

including both the hotel and flight, or just book one of them. He can also book for a
group of travelers. The result of the travel booking process is the itinerary information
(Itinerary), which includes the total cost of the trip. All those WS components in the
box are loosely coupled and dynamically bound based on their partnership, service
charge, and QoS.

Figure 8 illustrates the travelling components composition process with a
sequence diagram. The italicized part represents the dynamically composed
components; the TA and its associated methods represent the static front end travel
agent components to the customers with back end components dynamically composed
on demand.

4.2.1 Static Front End

During travel planning, the customer starts from TA WS method BookPackage, with
the backend components dynamically composed to fulfill the travel planning purpose.
The TA serves as front end components to the customers to be dynamically bound to
backend WS components, and the BookPackage method is implemented as shown
below:

Itinerary BookPackage (Itinerary it)
 {

 FlightInfo fi;
 HotelInfo hi;
 fi=BookFlight (it);
 hi=BookHotel (it);
 return combine (it1, it2);
 }

1660 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

+starting_date:int
+returning_date:int
+origin:string
+destination:string

TripInfo

+totalprice:float
+totalmiles:int
+stop_over:string

Itinerary

+name:string
+seatclass:string
+price:float

FlightInfo

+name:string
+star:int
+location:string
+roomsrequested:int
+price:float

HotelInfo

+companionnum:int

TravelerInfo

+creditpoints(Itinerary):bool
+getpoints(membernum:int, frequent_airline:string):int
+validate(membernum:int, frequent_airline:string):bool

Membership_Management (MM)

+BookPackage (Itinerary): Itinerary
+BookFlight(Itinerary):FlightInfo
+BookHotel(Itinerary): HotelInfo

Travel_Agent (TA)

+getHotel (TravelerInfo, HotelInfo): Hotelinfo

HotelBooking (HB)

+getFlight (TravelerInfo, FlightInfo): FlightInfo

FlightBooking (FB)

Travel planning WS components

0..* 0..*

0..* 0..*

1

0..*

+membernumber: int
+frequent_airline:string
+memberstatus:int
+memberclub:string

MemberAccount

hotel

flight

traveler

members

Figure 7: Class diagram for travel planning WS components

4.2.2 Dynamic Backend

While the front end code as shown above is static to the customer side, there are some
dynamic component composition concerns in the backend that are transparent to the
customers:
• Dynamic partnership

The front end TA component may have dynamic partnership with back end FB
and HB (we assume membership management is centralized and statically bound in
this case in accordance to the real world examples, where membership such as Social
Security Account is centrally administrated by the appropriate government agency)
based on their mutual contract, service charge (if the service charge is exceeding the
budget, the partnership will be cancelled and a new partner will be identified), or QoS
(if the service of the current partner is down, an alternative partner needs to be
identified). As such, the partnership should be established dynamically, which is also
subject to dynamic change consequently. Figure 8 illustrates the dynamic partnership
establishment by using two <<create>> messages before the call of BookPackage,
which can be translated into the following dynamic composition specification using

1661Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

:TravelAgent

:FlightBooking

:HotelBooking
BookPackage

getFlight

B
ookF

light

:MembershipManagement

getHotel

B
ookH

otel

<<create>>

<<create>>

validate

creditpoints

Figure 8: Dynamic composing travel planning WS components

before advice18.

before (Itinerary *.BookPackage (Itinerary it))
{
 this.fb= new FB(…); //the “…” part provides the

//information referencing the actual FB component that
//the instantiated object is bound to

 this.hb= new HB(…);
}

Furthermore, the front end BookFlight and BookHotel code is dynamically overridden
to delegate to the actual methods of FB and HB respectively. This is achieved using
around advice as shown below:

[18] For illustrative purpose, we use the syntax resembling AspectJ to specify the
component composition, which in turn will be translated into XML representation as
described in Section 3.3.2.

1662 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

 around (FlightInfo *.BookFlight (Itinerary it))
 {
 return fb.getFlight (it.traveler, it.flight);
 }

 around (HotelInfo *.BookHotel (Itinerary it))
 {
 return fb.getHotel (it.traveler, it.hotel);
 }
• Dynamic membership management

With the tightening security measures, the customer’s background is subject to be
checked by the central member management (MM) unit within a designated period of
time. As such, a rule is added in Jess that for a given duration, the membership will be
validated (e.g., background checking, passport verification, etc.) for each
BookPackage call. Assume during the period July 1, 2005, to September 20, 2005, all
travellers’ memberships will be validated by MM. To enable the Jess rule engine to
trigger the dynamic composition of validation behavior, we need to:

1. capture the execution of BookPackage and relay the values into Jess fact
bases;

2. have a bridge from Jess to .NET for rules to directly manipulate AAR in
Figure 3.

As is mentioned in Section 3.3.3, we use WS to wrap a Java class, which in turn
can interoperate with Jess. Thus, a .NET based WS component can interoperate with
Jess rules. Specifically, to achieve 1), we add into the “before advice” for
BookPackage the following code:

before (Itinerary *.BookPackage (Itinerary it))
 {
 ……
 …… //above are other advice code which are ignored
 //here for clarity

 WS_Jess.assert (“membernumber”,
 it.traveler.membernumber);

 WS_Jess.assert (“airline”,
 it.traveler.frequent_airline);

 Date date=getdate ();
 WS_Jess.assert (“date”,date);
//the above three lines add three
//facts to the Jess fact base through WS-Jess bridge
 }

To achieve 2), we define a Java class which is used as a relay between Jess and

the .NET platform, so that whenever the rule fires, AAR in .NET can be manipulated
from Jess. The Java class is defined as follows:

1663Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

class Jess_WS{
 public static void
 apply (String advicetype, String returntype,
 String classname, String methodname,
 String parameterlist, String advicename)
 {
 … //code to interoperate with .NET to update AAR;
 }
}

The parameter list is consistent with the XML elements as shown in Figure 5. The
Jess rule is specified as follows, which calls into the Java class Jess_WS:

(bind ?aus (new Jess_WS)) ;;aus_wrapper is the Java
;;wrapper for writing AUS

 ;;into the AAR through Java-WS bridge using
;;Java WSDP as described in Section 3.3.3

(defrule security_control
(date ?d &:(>= ?d 20050701)&:(< ?d 20050920))
 =>(?aus apply “before”, “”, “TA”, “BookFlight”, “”,
“MM.validate”))

The last line defines a Jess rule specifying once the booking date is between July 1,
2005 and September 20, 2005, the membership validation advice will be applied
through Jess-Java-WS interoperation before the call of *.BookFlight in the .NET
environment. Once the condition is satisfied during runtime, the corresponding rule
will be applied autonomously for dynamic composition. Furthermore, as the Jess rule
exists as a separate entity for configuration from the execution logic, the composition
rule can be adapted as needed at runtime as well.

Likewise, dynamic composition can be applied to credit travel points after the
travel reservation, using after advice:

after (Itinerary *.BookPackage (Itinerary it))
{ MM.creditpoints(it);
}

Furthermore, dynamic composition can be applied either assertively or

autonomously as shown above for other non-functional property guarantees including
but not limited to budgeting (if the cost of the requested service exceeds the budget,
either to choose a cheaper service or to remove subcomponents for reducing cost),
and load balancing (if current load is over capacity, the service requests are to be
delegated to alternative components). As those composition specifications overlap the
aforementioned dynamic composition specifications in principle, details are omitted
here.

1664 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

4.3 A Financial WS Portal: Composition Specification through Logic
Programming

This section demonstrates the power of logic programming for specifying WS
composition. In particular, this section will show how the gap between composition
requirements and the execution of the composition can be bridged using the
declarative logic programming paradigm.

In a distributed environment, components implementing identical functionalities
may be provisioned in variations in terms of non-functional properties to
accommodate different non-functional requirements. Figure 9 is an example of a
Financial WS Portal (FWP), which provides the three types of quote services: stock,
fund, and Exchange-Traded Funds (ETF). These quote services are leased from third-
party service providers. Every type of service has multiple service providers from
which to choose, each with different non-functional properties in terms of QoS (here
end-to-end delay) and economical (here service lease charge) properties.

The goal of the FWP is to dynamically compose existing third-party services
within a certain budget but with the shortest end-to-end delay. Figure 9 uses the
feature model representation [Czarnecki, 00] for illustrating the containment relation-
ship of WS. Specifically, the FWP is composed of a Stock quote WS, a Fund quote
WS, and an ETF quote WS. Thus, each possible FWP corresponds to a composition
tuple of (Stock, Fund, ETF), with each item referring to a constituent WS. Each WS
has a number of service providers with different end-to-end delays and service
charges. The overall non-functional properties for the FWP are calculated as follows:

E2EDoverall = E2EDstock+ E2EDfund + E2EDetf
SCoverall = SCstock + SCfund + SCetf

E2ED stands for End-to-End Delay, and SC stands for Service Charge.

FWP

Stock Fund ETF

S1 S2 S3 F1 F2 E1 E2 E3 E4F3 F4 F5

Figure 9: Financial Web Services portal

Table 2 provides a list of service provides with different end-to-end delays and

service charges. Only one of each category can be used as a candidate for composing
the financial WS portal.

1665Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

Furthermore, there are some constraints associated with the choices of the service
providers:

• Bundle sale
Some services provided from the same company have to be purchased in a
bundle. Here the following groups of services have to be purchased in a
bundle:
(S1, E2), (F4, E1)

WS Type End-to-End Delay Service Charge

S1 10 200
S2 20 250

Stock

S3 40 100
F1 30 170
F2 50 230
F3 33 320
F4 28 145

Fund

F5 17 400
E1 15 400
E2 35 300
E3 25 350

ETF

E4 10 500

Table 2: The non-functional properties for a third-party financial Web Services
provider

• Exclusion sale
Exclusion constraints can be further applied to the service providers such
that there are mutually exclusive service providers that cannot be purchased
together. Here the groups of mutual exclusion constraints are:
(S3, F3, E3), (S1, F5)

To achieve the goal of composing existing third-party services within a certain
budget but with the shortest end-to-end delay, an intuitive solution is to traverse all
possible composition tuples of (Stock, Fund, ETF) and to filter those not qualified
tuples based on the constraints, then to select the tuple of the shortest end-to-end
delay within the upper limit of the service charge. However, once the constraints are
changed (e.g., with mutual inclusion or exclusion relationship changed), the solution
space exploration algorithm needs to be rewritten to accommodate the change, which
is not fit for dynamic composition. Here Jess is used to resolve this problem.

The Jess specification includes the fact specification and rule specification. The
facts for the financial WS portal application include the non-functional properties of
each service provider and the constraints regarding the qualification of valid
composition tuples. The non-functional properties of each WS are represented with an
ordered fact in Jess. For example, for the stock quote provider S1, the corresponding
fact definition will be:
 (Stock S1 10 200)
which corresponds to the tuple of (service type, service name, end-to-end delay,
service charge). All facts are illustrated in Figure 10.

1666 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

Figure 11 is the Jess query expression to query all qualified composition tuples
together with the corresponding overall end-to-end delay and total service charge.
Note that those prefixed with "?" represent a regular variable, while those prefixed
with "$?" represent a list variable.

(Stock S1 10 200)
(Stock S2 20 250)
(Stock S3 40 100)
(Fund F1 30 170)
(Fund F2 50 230)
(Fund F3 33 320)
(Fund F4 28 145)
(Fund F5 17 400)
(ETF E1 15 400)
(ETF E2 35 300)
(ETF E3 25 350)
(ETF E4 10 500)

(inclusion S1 E2)
(inclusion F4 E1)
(exclusion S3 F3 E3)
(exclusion S1 F5)

non-functional properties

constraints

Figure 10: Fact specification in Jess

1. (defquery search
2. “Find the shortest end-to-end delay of a composition tuple”
3. (declare (variables ?budget))
4. (Stock ?stock ?delay1 ?charge1)
5. (Fund ?fund ?delay2 ?charge2)
6. (ETF ?etf ?delay3 ?charge3)
7. (<= (+ ?charge1 ?charge2 ?charge3)?budget)
8. $?para <- (create$?stock ?fund ?etf)
9. (and (inclusion $?inclusionlist)
10. (or (=0 (length$ (intersection$ $?inclusionlist $?para)))
11. (subsetp $?inclusionlist $?para)))
12. (and (exclusion $?exclusionlist)
13 (< (length$ (intersection$ $?inclusionlist $?para)) 2))
14. ?delay <- (+ ?delay1 ?delay2 ?delay3)

Figure 11: Query into fact base in Jess

In Figure 11:
• Line 3 declares the query parameter, which is the budget allocated for

service charges. The query is expected to return all possible composition
tuples within the budget.

1667Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

• Lines 4 and 5 bind to the fact base for all possible composition tuples
without constraints being applied.

• Line 7 ensures that the query returns those under budget only.
• Line 8 creates a list made of the tuple of bounded value of (stock, fund,

ETF).
• Lines 9-13 apply the constraints. Specifically, Lines 9-11 ensure the returned

tuple satisfies the inclusion constraints (Bundle Sale), which specify that
either the currently bound value list of (stock, fund, ETF) has no intersection
with any inclusion facts or the inclusion list is subsumed in the list of (stock,
fund, ETF). Lines 12 and 13 ensure the returned tuple satisfies the exclusion
constraints (Exclusion Sale) by specifying that there are no two elements in
the list of (stock, fund, ETF) that appear in any exclusion list.

The query shown in Figure 11 returns a collection of qualified composition
tuples, together with the non-functional property values such as total end-to-end delay
for the corresponding composition tuple. Further rule specification is needed such
that, whenever the above query returns non-empty results, the composition tuple with
the shortest end-to-end delay needs to be returned, which is illustrated in Figure 12.

1. (defrule FWP
2. ?result <- (run-query* search 750)
3. =>
4. (bind ?minimum-delay -1)
5. (while (?result next)
6. (bind ?delay (?result getString delay))
7. (if (< ?minimum-delay ?delay)
8. then
9. (bind ?minimum-delay ?delay)
10. (bind ?stock (?result getString stock))
11. (bind ?fund (?result getString fund))
12. (bind ?etf (?result getString etf))
13.)
14.)
15. (if (> ?minumum-delay 0)
16 (bind ?aus (new Jess_WS))
17. (?aus apply "after", "", ?stock, "quote", "..",
18. (str-cat ?fund ".quote"))
19. (?aus apply "after", "", ?fund, "quote", "..",
20. (str-cat ?etf ".quote"))
21.))

Figure 12: Jess rule for seamlessly integrating Web Services searching and dynamic
Web Services composition

1668 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

In Figure 12, a Jess rule is specified: Line 2 represents the condition, while those
below Line 3 represent the actions to fire upon the satisfaction of the condition
specified in Line 2.

• In Line 2, the budget of 800 ($) is fed into the query of "search", which
returns all matching results. Note that, to ensure those specifications before
"=>" are condition specifications, we use pattern binding "<-" to assign the
search result to the ?result variable rather than using the bind function, which
is an action and not a condition.

• Lines 4-13 iterate through the result sets to get the composition tuple of
minimum end-to-end delay.

• Lines 15-21 specify the Jess actions dealing with WS composition through
the Jess-WS bridge, which is described in the second case study in Section
4.2.2.

Here sequential aspect weaving (see Table 1) is used to compose the three WS
providers (stock, fund, ETF).

Based on Figure 9, there are 60 (3*5*4) total possible composition tuples, out of
which there are 15 qualified composition tuples after mutual inclusion and exclusion
constraints are applied. With 800 as the budget, there are 6 composition tuples left,
among which the composition tuple with shortest end-to-end delay is (S2, F4, E1); the
corresponding end-to-end delay is 63. As it can be seen from Figure 12, the WS
selection specification and the WS composition specification are unified under the
single logic rule specification, and the seamless integration of those two is further
enabled under a rule inference engine.

5 Performance Evaluation

Using the profiler to handle the events generated from all managed execution in CLR
is expensive and will degrade system performance significantly. Therefore, we apply
optimization at three levels through configuring the profiler as indicated in (7) in
Figure 3:

1. As the CLR can be launched from a shell, Internet Explorer, ASP.NET, and
other customizable CLR hosts for managed execution, we configure the
profiler to skip profiling for all non-ASP.NET modules hosted in CLR,
which can be filtered easily based on the name of the module that launches
the CLR.

2. We could further trim the unnecessary profiling based on class name, or CIL
method. This is possible because all managed code is translated to CIL, and
the CIL level information can be derived from the corresponding WSDL for
the WS; this is also necessary to avoid profiling system classes and methods.

3. We mask all unnecessary events except JIT compilation events, which is
needed for handling CIL manipulation.

To evaluate the influence of CLR profiling-based WS adaptation on performance,
we implemented a simple WS server application with 100 loops for calling a method,
which contains only an addition operation in its body. We hosted this WS application
on a Dell Workstation with Intel XEON CPU 2.2GHx, 1.00GB RAM, which is
installed with Win XP professional version 2002 with IIS 5.1, .NET framework

1669Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

version 1.1.4322. We configured the profiler so that the method is to be profiled and
adapted with a log advice to write to a file a line of strings. A WS stub is generated
by compiling the corresponding WSDL for this simple WS application. The WS stub
is instrumented together with a simple client application for the client application to
call the server-side WS. The client side is hosted on a Dell PC with Intel Pentium 4
CPU 1.80 GHz, 512 MB RAM which resides on the same LAN environment as the
server so as to minimize the network influence during the server side performance
benchmarking.

Note that the CLR profiling-based approach only applies to the managed code to
be loaded and JIT compiled. Therefore, we run ASP.NET in the managed mode for
profiling WS to realize dynamic adaptation. ASP.NET can load one worker process to
handle a pool of WS requests. Once the worker process is launched to serve the first
WS request from the pool, it continues to serve other WS requests in the same pool
until the end of its lifecycle without itself being reloaded into CLR, thus it fails to
profile the other WS applications in the same pool. Therefore, we adjust the setting
for ASP.NET so that a new worker process will be created for each WS request so
that each WS call can be captured by the Profiler and thus is adaptable. The goal of
our tests is to evaluate how the adjustment of worker process lifetimes (Figure 13-a),
and the enactment of profiling-based dynamic adaptation (Figure 13-b) affect the
performance of WS provisioning in the peer-to-peer composition model.

W ithout Adaptation Adv ice

0
1000
2000
3000
4000

1 2 3 4 5

number of tests
(a)

tim
e

(m
ill

is
ec

o
n

d)

Inf inite Life
Pro filer On

Inf inite Life
Pro filer O ff

Zero Life P ro filer
On

Zero Life P ro filer
Off

With Ad ap tatio n Advice

0

5000

10000

1 2 3 4 5

n um be r o f te s ts
(b)

ti
m

e
 (m

ill
is

ec
o

n
d)

0 match in 1
adv ic e

1 match in 1
adv ic e

0 match in 5
adv ic e

1 match in 5
adv ic e

Figure 13: Benchmarking dynamic Web Services adaptation

1670 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

For the case in Figure 13-a, we did not provide any adaptation advice when
adjusting the worker process life between zero life (a new worker process is created
for each WS request) and infinite life (the same worker class is used for multiple WS
requests). The absence of advice execution will help clarify the influence of the
changing life of a worker process on the system performance.

There are significant differences between the first call and the remaining calls
for an infinite life case as the first call involves the creation of a new worker class,
thus incurring more overhead than the remaining WS calls which reuse the original
worker process. Also the presence of profiling does not affect performance much in
the case of infinite life, as the worker process is no longer to be reloaded for new WS
requests, thus the new WS will not be adapted, and the event handler in the profiling
API is ignored. In comparison, the worker process with zero life will incur a
performance degradation by being 1.7 times slower with profiling on than with
profiling off. With the absence of the profiler, the overhead incurred by adjusting
from infinite life to zero life will be 3.0 times. With the absence of advice, the overall
performance degradation (with profiling on, zero life for worker class) against the
conventional WS provisioning scenario (with profiling off, infinite life for worker
class) for this WS provisioning is 3.0*1.7=5.1. Figure 14 illustrates the performance
degradation.

in
fin

ite
 li

fe

ze
ro

 li
fe

profiler off0
1
2
3
4
5

Performance Degradation
(without adaptation advice)

profiler off

profiler on

Figure 14: Performance degradation with no adaptation advice

In Figure 13-b, we focus on evaluating the influence of active advice on the
overall performance. Therefore, the worker process is set with zero life. We found the
amount of active advice will not affect the performance linearly, as the AUS are
stored in the paging file to be shared by hooks, which constitutes a minor overhead in
comparison to that incurred by hook instrumentation and calling of advice. The
weaving of a matching advice in the case of zero life in Figure 13-b incurs a
performance degrade of 2.2 times. Therefore, the overall performance degradation
(with profiling on, zero life for worker class) against the conventional WS
provisioning scenario (with profiling off, infinite life for worker class), by
synthesizing the result described in the preceding paragraph, will be 2.2*5.1=11.2.

1671Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

In the real world deployment, we can reduce the overhead by setting the worker
class to zero life at the adaptation time, then resetting it to infinite time after
adaptation is done. Of course this assumes a predicable adaptation process.

6 Related Work

Component composition can be enacted at the design level (e.g., [Clarke, 02], [Keller,
98]), and the application code level (e.g., [Hölzle, 93], [Mezini, 98], [Seiter, 99]). In
contrast, our work on component composition is enacted at the intermediate code
level without introducing new language constructs. With a lower-level of abstraction,
our work enables cross-language component composition, while the above work
restricts the component composition to a specific language. Also, none of the
aforementioned work on component composition is applied at runtime, which is
however necessary in distributed computing environment.

The Composition pattern has been proposed in [Clarke, 01], which uses a UML
template for specifying composition of crosscutting concerns at a high level and maps
sequence diagrams into AspectJ code. Our composition pattern is represented with a
comprehensive framework rather than just a design-level pattern. Also a sequence
diagram is used here for illustrating the dynamic partnership, with each object in the
sequence diagram corresponding to a partner when mapped to dynamic composition
specification. In contrast, each object in a sequence diagram is synthesized to an
aspect construct in AspectJ in [Clarke, 01]. While AOP has been applied in
middleware ([Pulvermuller, 99], [Zhang, 03]) and Service-Oriented Computing
([Charfi, 04], [Verheecke, 04]) for resolving crosscutting concerns emerging in
configuration, deployment, or orchestration, none of them applies AOP to peer-to-
peer composition. Here, we dedicate AOP to the composition purpose: for composing
components handling cross-cutting concerns in a modularized way, and for separating
composition from components. Moreover, we use the Jess inference engine to
autonomously apply aspect weaving for component composition. While the work
described in [Yang, 02] applies an aspect-oriented approach to dynamic adaptation,
they only offer a means for making the AOP-based adaptation ready, without
presenting any solution on how to use rule engines to trigger the adaptation.
Additionally, [Duzan, 04] presents a prototype implementation in the QuO toolkit for
an aspect-based approach to programming QoS-adaptive applications. In contrast, our
work is targeted on loosely coupled service oriented computing as opposed to tightly
coupled distributed object computing in QuO, where adaptation rules are triggered by
exceptions thrown from runtime.

Our work also incorporates non-functional concerns into WS component
composition. Prior work such as IBM's Web Services Level Agreement (WSLA)
[Dan, 02] and HP's Web Service Management Language (WSML) [Sahai, 02]
incorporate the notion at higher-level presentation, rather than address it at a lower-
level platform layer. We believe a treatment at a platform layer is necessary toward
thoroughly addressing non-functional concerns for WS.

The UniFrame project ([Raje, 02], [Olson, 05]) is the root of this research and
hence bears similar ideas presented in this paper. UniFrame aims at creating a
framework for seamless integration of distributed heterogeneous components. In
UniFrame, component composition is also following the peer-to-peer paradigm,

1672 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

which is enabled through a discovery service in search of a matching component.
Once a searched component does not match the requirement functionally or non-
functionally, the search process will be launched again, which exhibits the
autonomous features similar to that described in the work presented here. While the
work presented here is scoped at the service-oriented computing paradigm for
component composition, the principles can be integrated into UniFrame as well.

7 Conclusion and Future Work

This paper presents a dynamic component composition approach under the service-
oriented paradigm in the .NET environment. By using intermediate code
manipulation, component composition is 1) possible to cross language boundaries so
long as they are CLR-compliant; 2) achieved in a non-invasive manner; 3)
implemented not only in an assertive manner, but also in autonomous manner using a
rule inference engine; and 4) specified using the AOP paradigm for separating
composition specification from components to be composed, and for modularized
composition of components handling cross-cutting concerns, with hooks used to
weave and unweave advice at runtime proactively and retroactively. Moreover, as the
WS components can be exposed with XML-based WSDL, the component
composition can be specified with language neutral XML, which is further mapped to
language-neutral type system CTS, with low-level CTS transparent to upper level
composition decision makers. The experimental results show the profiling-based
dynamic composition approach is encouraging with the appropriate control over the
profiling scope in the WS scenario. Even though the approach presented in this paper
is .NET based, the principle also applies to other platforms with adequate software
vendor support.

With the different abstraction levels involved as shown in Figure 1, one future
direction is to investigate the model-driven approach ([Cao-b, 05], [Frankel, 03],
[Lédeczi, 01]) for modelling component composition concerns, so that component
composition can be represented in high-level models which reduces the gaps between
business requirements and underlying implementation, with AAR and rules as shown
in Figure 3 automatically synthesized from models. We would also like to explore the
use of mobile agents in the peer-to-peer component composition scenario where
composition decisions can be federated and communicated seamlessly, for which
security is also of vital concern in the future research.

Acknowledgements

This research is supported in part by the U. S. Office of Naval Research under the
award number N00014-01-1-0746.

References

[Brown, 00] A. W. Brown, Large-Scale Component-Based Development, Prentice Hall, 2000.

[Cao, 02] F. Cao, B. Bryant, R. Raje, M. Auguston, A. Olson, C. Burt, Component
Specification and Wrapper/Glue Code Generation with Two-Level Grammar Using Domain

1673Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

Specific Knowledge, In Proc. Int. Conf. on Formal Engineering Methods, October 2002, 103-
107.

[Cao-a, 05] F. Cao, B. R. Bryant, S.-H. Liu, W. Zhao, A Non-Invasive Approach to Dynamic
Web Service Provisioning, In Proc. IEEE Int. Conf. on Web Services, July 2005, 229-236.

[Cao-b, 05] F. Cao, B. R. Bryant, W. Zhao, C. C. Burt, R. R. Raje, A. M. Olson, M. Auguston.
Model-Driven Reengineering Legacy Software Systems to Web Services, 2005 (submitted) .

[Charfi, 04] A. Charfi,, M. Mezini, Aspect-Oriented Web Service Composition with
AO4BPEL, In Proc. of the European Conference on Web Services 2004, September 2004, 168-
182.

[Chen, 01] Q. Chen, M. Hsu, Inter-Enterprise Collaborative Business Process Management, In
Proc. Int. Conf. on Data Engineering, April 2001, 253-260.

[Clarke, 01] S. Clarke, R. J. Walker, Composition Patterns: An Approach to Designing
Reusable Aspects, In Proc. Int. Conf. on Software Engineering, May 2001, 5-14.

[Clarke, 02] S. Clarke, Extending Standard UML with Model Composition Semantics, Sci.
Comput. Program, 44(1), 2002, 71-100.

[Colan, 04] M. Colan, Service-oriented architecture expands the vision of Web Services, 2004,
http://www-106.ibm.com/developerworks/webservices/library/ws-soaintro.html.

[Czarnecki, 00] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools,
and Applications, ACM/Addison-Wesley, New York, 2000.

[Dan, 02] A. Dan, A. R. Franck, A. Keller, R. King, H. Ludwig, Web Service Level Agreement
(WSLA) Language Specification, 2002, http://dwdemos.alphaworks.ibm.com/wstk/common
/wstkdoc/services/utilities/wslaauthoring/WebServiceLevelAgreementLanguage.html.

[Devanbu, 96] P. Devanbu, S. Karstu, W. Melo, W. Thomas, Analytical and Empirical
Evaluation of Software Reuse Metrics, In Proc. Int. Conf. on Software Engineering, March
1996, 189-199.

[Duzan, 04] G. Duzan, J. P. Loyall, R. E. Schantz, R. Shapiro, J. A. Zinky, Building Adaptive
Distributed Applications with Middleware and Aspects, In Proc. Int. Conf. on Aspect-Oriented
Software Development, March 2004, 66-73.

[Frankel, 03] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing, Wiley, 2003.

[Friedman-Hill, 05] E. J. Friedman-Hill, Jess 7.0, The Rule Engine for the Java Platform,
Sandia National Laboratories, 2005.

[Gough, 02] J. Gough, Compiling for the .NET Common Language Runtime (CLR), Prentice
Hall PTR, 2002.

[Heineman, 01] G. T. Heineman, W. T. Councill, Component Based Software Engineering:
Putting the Pieces Together, Addison-Wesley, 2001.

[Hissam, 03] S. A. Hissam, G. A. Moreno, J. A. Stafford, K. C. Wallnau, Enabling predictable
assembly, Journal of Systems and Software, 65(3), 2003, 185-198.

[Hölzle, 93] U. Hölzle, Integrating Independently-Developed Components in Object-Oriented
Languages, In Proc. European Conference on Object-Oriented Programming, July 1993, 36-56

[Keller, 98] R. K. Keller, R. Schauer, Design Components: Towards Software Composition at
the Design Level, In Proc. Int. Conf. on Software Engineering, April 1998, 302-311.

1674 Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

[Kiczales, 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-Oriented Programming, In Proc. European Conference on Object-Oriented
Programming, June 1997, 220-242.

[Kiczales, 01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An
Overview of AspectJ, In Proc. European Conference on Object-Oriented Programming, June
2001, 327-353.

[Lédeczi, 01] Á. Lédeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle, G.
Karsai, Composing Domain-Specific Design Environments, IEEE Computer, 34(11), 2001, 44-
51.

[Mezini, 98] M. Mezini, K. J. Lieberherr, Adaptive Plug-and-Play Components for
Evolutionary Software Development. In Proc. Conf. on Object-Oriented Programming
Systems, Languages, and Applications, October 1998, 97-116.

[Newcomer, 02] E. Newcomer, Understanding Web Services, Addison Wesley, 2002.

[Olson, 05] A. M. Olson, R. R. Raje, B. R. Bryant, C. C. Burt, M. Auguston, UniFrame-a
Unified Framework for Developing Service-Oriented, Component-Based, Distributed Software
Systems, Service-Oriented Software System Engineering: Challenges and Practices, eds. Z.
Stojanovic, A. Dahanayake, Idea Group, 2005, 68-87.

[Pulvermuller, 99] E. Pulvermuller, H. Klaeren, A. Speck, Aspects in Distributed
Environments, In Proc. Generative Component-based Software Engineering, September 1999,
37-48.

[Raje, 02] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C. C. Burt, A Quality of
Service-based Framework for Creating Distributed Heterogeneous Software Components,
Concurrency and Computation: Practice and Experience, 14(12), 2002, 1009-1034.

[Sahai, 02] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, F. Casati, Automated SLA Monitoring
for Web Services, 2002, http://www.hpl.hp.com/techreports/2002/HPL-2002-191.pdf

[Seiter, 99] L. M. Seiter, M. Mezini, K. J. Lieberherr, Dynamic Component Gluing, In Proc.
Int. Symposium on Generative Programming and Component-Based Software Engineering,
September 1999, 134-164

[Stutz, 03] D. Stutz, T. Neward, G. Shilling, Shared Source CLI - Essentials, O'Reilly Press,
2003.

[Szyperski, 02] C. Szyperski, D. Gruntz, S. Murer, Component Software: Beyond Object-
Oriented Programming, 2nd ed., Addison-Wesley/ACM, 2002.

[Verheecke, 04] B. Verheecke, M. A. Cibrán, W. Vanderperren, D. Suvée, V. Jonckers, AOP
for Dynamic Configuration and Management of Web services, Int. Journal on Web Services
Research, 1(3), 2004, 25-41.

[Yang, 02] Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, P. K.
McKinley, An Aspect-Oriented Approach to Dynamic Adaptation, In Proc. The First
Workshop on Self-healing Systems, November, 2002, 85-92.

[Zhang, 03] C. Zhang, H.-A. Jacobsen, Refactoring Middleware with Aspects, IEEE Trans.
Parallel Distrib. Syst. 14(11), 2003, 1058-1073.

1675Cao F., Bryant B.R., Raje R.R., Olson A.M., Auguston M., Zhao W., Burt C.C. ...

