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Abstract: Computers are still much less useful than the ability of the human eye for
pattern matching. This ability can be used quite straightforwardly to identify structure
in a data set when it is two or three dimensional. With data sets with more than 3
dimensions some kind of transformation is always necessary. In this paper we review in
depth and present and extension of one of these mechanisms: Andrews’ curves. With
the Andrews’ curves we use a curve to represent each data point. A human can run
his eye along a set of curves (representing the members of the data set) and identify
particular regions of the curves which are optimal for identifying clusters in the data
set. Of interest in this context, is our extension in which a moving three-dimensional
image is created in which we can see clouds of data points moving as we move along
the curves; in a very real sense, the data which dance together are members of the
same cluster.

Key Words: grand tour methods, Andrews’ curves, exploratory data analysis, visual
clustering

Category: I.5.3 Clustering, I.5.5 Implementation, H.3.3 Information Search and Re-
trieval

1 Introduction

A strong desire of all data analysts is to have the ability to visualize data. Often
this means taking a low dimensional projection of a data set and looking in
turn at a variety of one, two or, at most, three dimensional projections of the
data. An alternative is to transform the data in some way in order to make the
data’s properties visible via the transformation. Therefore the transformation
has to maintain some inherent properties of the data if we are to be able to
identify some inherent characteristics of the data after the transformation. In
this paper we present a variation of Andrews’ curves which performs that kind
of transformation.

We start with a review in depth of Andrews’ curves, then we focus on Weg-
man’s curves, an extension of Andrews’ curves that allows us to construct a two
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dimensional grand tour. We give a new characterization of Wegman’s curves, and
by reformulating Wegman’s contribution, we are able to extend that visualiza-
tion method to three dimensions which makes the identification of structure very
much easier. Then, we analyze the properties of this new transformation and the
way we can use it for data analysis. We end with some extension suggestions
and with the conclusions.

2 Andrews’ curves

Andrews [Andrews, 1972] described his curves in 1972, early on in the computing
era; it is an interesting observation that he thought it necessary to counsel “an
output device with relatively high precision ... is required”. Current standard
PC software is quite sufficient for the purpose. The method is a way to visualize
and hence to find structure in high dimensional data. Each data point x =
{x1, x2, ..., xd} defines a finite Fourier series

fx(t) = x1/
√

2 + x2 sin(t) + x3 cos(t) + x4 sin(2t) + x5 cos(2t) + ... (1)

and this function is then plotted for −π < t < π. Thus each data point may
be viewed as a line between −π and π. This formula can be thought of as the
projection of the data point onto the vector(

1√
2
, sin(t), cos(t), sin(2t), cos(2t), . . .

)
(2)

If there is structure in the data, it may be visible in the Andrews’ curves of the
data. An example of Andrews’ curves on the well known iris data set is shown in
Figure 1. The data set is four dimensional and so only the first four terms of (1)
are used. In varying the value of t in (1), we are moving along the curve; data
points which are similar will behave similarly in that the locus of their movement
will be similar. Thus in Figure 1, we see that t = 3 gives us a value for a linear
projection of the data which differentiates one type of data from the other two
but there is some difficulty in differentiating between these two (for any value
between 2 and 3 we have a good separation of the curves corresponding to one
of the classes, and hence a good projection to differentiate one class from the
others, although there is still some overlapping between the other two).

These curves have been utilized in fields as different as biology [Murphy, 2003],
neurology [Koziol and Hacke, 1991], sociology [Spencer, 2003] and semiconductor
manufacturing [Rietman et al., 1998, Rietman and Layadi, 2000]. Some of their
uses include the quality control of products [Kulkarmi and Paranjape, 1984], the
detection of period and outliers in time series [Embrechts et al., 1986] or the visu-
alization of learning in artificial neural networks [Gallagher, 2000]. Khattree and
Naik [Khattree and Naik, 2002] have suggested their utilization in robust design
and in correspondence analysis.
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Figure 1: An Andrews’ plot of the iris data set. It is clear that one type of iris
is distinct from the other two but differentiating between the other two is less
easy.

2.1 Properties

These curves have several useful properties, some of which are:

1. Mean preservation. The function corresponding to the mean of a set of N

multidimensional observations, is the pointwise mean of the functions cor-
responding to these observations:

fx̄(t) =
1
N

N∑
i=1

fxi
(t)

2. Distance preservation. The distance between two functions defined as

||fx(t) − fy(t)||L2 =
∫ π

−π

[
fx(t) − fy(t)

]2
dt

is proportional to the Euclidean distance between the corresponding points
since

||fx(t) − fy(t)||L2 = π
d∑

i=1

(xi − yi)2 = π||x − y||2

3. One-dimensional projections. For a particular value of t = t0, the function
value fx(t0) is proportional to the length of the projection of the vector
(x1, x2, · · · , xd) on the vector

f1(t0) =
(
1/
√

2, sin(t0), cos(t0), sin(2t0), cos(2t0), · · ·
)

This means that the curves are simultaneously showing all the projections
onto that vector for the range −π < t < π.
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4. Linear relationships. If a point y lies on a line joining x and z, then for all
values of t, fy(t) is between fx(t) and fz(t).

5. Also if the components of the data are uncorrelated with common variance
σ2, the Andrews’ curves representations preserve that variance. This variance
preservation property lets us perform a test of significance using the curves,
although, as noted by Khattree and Naik [Khattree and Naik, 2002], this
“is less useful since most multivariate data are either correlated and/or have
unequal variances across the variables”.

All these properties were noted by Andrews [Andrews, 1972]. The last one
was generalized by Goodchild and Vijayan [Goodchild and Vijayan, 1974] to the
case of unequal and not necessarily orthogonal variances. Tests of significance
at particular values of t are still possible, but not so the overall tests mentioned
by Andrews.

However, the Andrews’ curves have also a drawback, in that they suffer from
strong dependence on the order of the variables, i.e. if we change the order of vari-
ables the shape of the curves is completely different. That is why Embrechts and
Herbeg [Embrechts and Herzberg, 1991] propose to try different arrangements of
the variables to find the most suitable Andrews’ curves. Also, as pointed by An-
drews [Andrews, 1972], in the plots low frequencies are more readily seen than
high frequencies. For this reason it is useful to associate the most important
variables with low frequencies.

2.2 Variations

Some variations of the Andrews’ curves have been proposed throughout the
years. Andrews himself [Andrews, 1972] proposed the use of different integers to
give the general formulation:

fx(t) = x1 sin(n1t) + x2 cos(n1t) + x3 sin(n2t) + x4 cos(n2t) + . . .

The restriction to integers is because of the distance preserving property; without
integers, this property is lost. Andrews compared the curve with values n1 =
2, n2 = 4, n3 = 8, . . . with the original formulation and concluded that the
former is more space filling but more difficult to interpret when it is used for
visual inspection.

Embrechts and Herzberg investigate in [Embrechts and Herzberg, 1991] the
effect of re-scaling and re-ordering the coefficients and the interpretation of the
plots when one or more coordinates are made equal to zero. They propose the
use of other kinds of orthogonal functions such as Legendre and Chebychev
polynomials. They give many examples of these variations using the iris data
set. In [Embrechts et al., 1995], Embrechts completes this study with a new
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variation consisting of the use of wavelet functions. All these variations have
been used later by Rietman and Layadi [Rietman and Layadi, 2000] as a help
to monitor the manufacture of silicon wafers; they also point to a previous work
[Rietman et al., 1998] which used another variation consisting of drawing the
Andrews’ curves using polar coordinates.

A bivariate version of Andrews’ plots has been proposed by Kokiol and Hacke
[Koziol and Hacke, 1991]:

Given two vectors of observations xT = (x1, · · · , xp) and yT = (y1, · · · , yp)
where the (xi, yi), i = 1, 2, · · · , p are naturally paired, form the functions

fx(t) = x1/
√

2 + x2 sin(t) + x3 cos(t) + x4 sin(2t) + x5 cos(2t) + · · ·
fy(t) = y1/

√
2 + y2 sin(t) + y3 cos(t) + y4 sin(2t) + y5 cos(2t) + · · ·

and plot (t, fx(t), fy(t)) for a set of t-values in the range −π ≤ t ≤ π.

A similar idea to the previous one, but this time to obtain a three dimensional
Andrews’ plot, has been proposed in [Wegman and Shen, 1993]. As our extension
is inspired in this variation, we postpone its detailed discussion to the next
section.

More recently, Khattree and Naik [Khattree and Naik, 2002] have suggested
the function:

gx(t) =
1√
2

{
x1 + x2

(
sin(t) + cos(t)

)
+ x3

(
sin(t) − cos(t)

)

+ x4

(
sin(2t) + cos(2t)

)
+ x5

(
sin(2t) − cos(2t)

)
+ · · ·

}
, −π ≤ t ≤ π

(3)

So, every yi is exposed to a sine function as well as a cosine function. As they
note, one of the advantages of this formulation is that the trigonometric terms
in (3) do not simultaneously vanish at any given t. They also establish an inter-
esting relation between the Andrews’ curves and the eigenvectors of a symmetric
positive definite circular covariance matrix.

3 A new perspective on Wegman’s algorithm

Wegman and Shen [Wegman and Shen, 1993] discuss the benefits of using a
slightly different projection, namely that onto

w1 =

√
2
d

(
sin(λ1t), cos(λ1t), ..., sin(λ d

2
t), cos(λ d

2
t)

)

w2 =

√
2
d

(
cos(λ1t),− sin(λ1t), ..., cos(λ d

2
t),− sin(λ d

2
t)

)
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with the λj linearly independent over the rationals1 (that is, there are not ra-

tionals ri for which
∑ d

2
i=1 riλi = 0) and the implicit requirement of an even

number of terms (if the dimension of the data is odd we made it even by adding
one additional 0).

They were concerned with the connection between Andrews’ curves and the
grand tour noted by Crawford and Fall [Crawford and Fall, 1990] (the grand
tour is a multivariate visualization method that consists of looking at the data
from all points of view by presenting a continuous sequence, an animation, of
low dimensional projections; see [Asimov, 1985], [Buja and Asimov, 1986] and
[Wegman and Solka, 2002] for a deeper treatment). They show that Andrews’
curves are not a real one-dimensional grand tour. The problem is that Andrews’
curves do not exhaust all possible orientations of a one-dimensional vector. Their
generalization of Andrews’ curves is more space filling, although it has lost
the distance preservation property, and can be used to obtain a bi-dimensional
pseudo grand tour.

Clearly (w1,w2) form a set of 2 orthonormal basis vectors. If we define

y1 = wT
1 x ∝ x1 sin(λ1t) + x2 cos(λ1t) + ... + xd cos(λ d

2
t)

y2 = wT
2 x ∝ x1 cos(λ1t) − x2 sin(λ1t) + ... − xd sin(λ d

2
t)

then we have a two dimensional display on which to project x so that we can
look for structure by eye. Visually from this projection, we can identify clusters
of points which are nearby and whose trajectories as we change t (i.e. as we move
along the Andrews’ curves) keep close together. When we use these curves in
this way we obtain a two dimensional “grand tour” of the data. Figure 2 shows
the obtained curves and a snapshot of the grand tour.

Other points may approach a particular cluster for a brief period of time but
will not remain within the cluster throughout the tour. This may be seen as

∂y1

∂t
∝ x1λ1 cos(λ1t) − x2λ1 sin(λ1t) + ... − xdλ d

2
sin(λ d

2
t)

∂y2

∂t
∝ −x1λ1 sin(λ1t) − x2λ1 cos(λ1t) − ... − xdλ d

2
cos(λ d

2
t)

with similar patterns holding at higher orders of derivatives. The points within
the cluster have a characteristic dance associated with the joint behaviour of the
rates of change which are determined by the derivatives which are sinusoids. Now
since we can identify clusters from the position and motion of individual points,
this suggests a second projection might be useful and so we now investigate a
1 Khattree and Naik [Khattree and Naik, 2002] point to Gnanadesikan

[Gnanadesikan, 1977] who attribute a special case of this formulation to Tukey.

Tukey used as lambdas 1,
√

2,
√

3,
√

5, . . ..
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Figure 2: Left : the two Wegman’s curves for the iris data set (−4π ≤ t ≤ 4π).
Right : a snapshot of the grand tour.

different set of 2 orthogonal basis vectors. We define

y1 = wT
1 x ∝ x1 sin(λ1t) + x2 cos(λ1t) + ... + xd cos(λ d

2
t)

y2 =
∂wT

1 x
∂t

∝ x1λ1 cos(λ1t) − x2λ1 sin(λ1t) + ... − xdλ d
2

sin(λ d
2
t)

where λi are now integers as they were with the Andrews original curves. We
will call this basis the derivative basis in the following. Since

∣∣∣∣∂wT
1

∂t

∣∣∣∣
2

= λ2
1 + λ2

2 + ... + λ2
d
2

(4)

we may readily re-normalize these vectors to get a set of orthonormal vectors
the second of which differs slightly from Wegman’s basis in that each term is
related by

(w2)i(derivative) =

√
d

2
λi√∑ d
2
i=1 λ2

i

(w2)i( Wegman ) (5)

where we have used (w2)i to denote the ith element of the vector w2. Therefore
Wegman’s basis is a special case of the derivative basis discussed herein. In
practice, subjectively we have seen little difference between the projections of
the data onto the two bases.

The derivative basis also gives us an insight into the characteristic dance
of points in a cluster: such points appear to move about in a group as though
joined together by a set of springs. Let x̄ = {x̄1, x̄2, ..., x̄d} be the mean vector of
a cluster of data points which have some underlying relation e.g. they all belong
to a specific class. Let x̄ be mapped to y using Andrews’ Curves so that

ȳ = x̄1 sin(λ1t) + x̄2 cos(λ1t) + ...x̄d cos(λ d
2
t) (6)
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Now consider a specific data point, x1, a member of this cluster, which is mapped
to y1. Let

x1 = x̄ + ε1 = {x̄1, x̄2, ..., x̄d} + {ε11, ε12, ..., ε1d} (7)

Then
y1 = ȳ + ε11 sin(λ1t) + ε12 cos(λ1t) + ...ε1d cos(λ d

2
t) (8)

Now the distance of y1 from ȳ is dominated by those ε1i terms which have cor-
responding trigonometric terms tending to 1 i.e. where | cos(λit)| → 1 i.e. λit →
0, π, 2π etc or | sin(λit)| → 1 i.e. λit → π/2, 3π/2 etc. But these terms are ex-
actly the terms where ∂w

∂t → 0 i.e. there is liable to be a low rate of change of
their position. Thus we tend to see groups moving in a relatively fixed position
for reasonably long spells as we change t; it is not too fanciful to describe the
resulting movement as a gentle dance.

4 Extending the derivative curves

Now the Andrews’ Curves were derived during the infancy of computational
power. We now have very much more powerful machines and, in particular,
visual representation on screen is much more sophisticated than it was in those
times. Specifically, we now have hardware accelerators which will allow real time
plotting of three dimensional projections of literally millions of points in real
time. Given that the human visual system tends to operate in a three dimensional
universe, and has no difficulty in determining the third dimension even when
only two are really available (as on a computer monitor), it seems natural to
extend the derivative curves to three dimensional representations. In fact, our
subjective findings are that this facilitates the extraction of structure from high
dimensional data sets by human observers.

Therefore this perception of the projections of data points moving in the
plane can be extended to data points moving in space so that now yi = f(t, s)
so that

y1 = wT
1 x ∝ x1 cos(λ1t) cos(µ1s) + x2 cos(λ1t) sin(µ1s) + x3 sin(λ1t) + ... (9)

y2 = wT
2 x ∝ x1 sin(λ1t) cos(µ1s) + x2 sin(λ1t) sin(µ1s) − x3 cos(λ1t)... (10)

y3 = wT
3 x ∝ x1 sin(µ1s) − x2 cos(µ1s) + x3 ∗ 0 + ... (11)

where we have the implicit requirement that the number of terms in each ex-
pansion is a multiple of 3 rather than 2 as previously (in the equation for y3

we have left x3 ∗ 0 for parallelism with equations for y1 and y2). Note that the
second curve is the derivative of the first one with respect to t, and the third is
constructed to be orthogonal to the other two and is proportional to the deriv-
ative with respect to s. We have omitted the λi, µi factors for ease of exposition
and because in practice there seems to be very little loss of comprehension when
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Figure 3: The three groups of surfaces for the Iris data set.

we view the movement of the projections without these factors compared to the
corresponding movement when we include these factors.

Note that these equations really give three different groups of surfaces in
3D space but this gives a diagrammatic representation which is very difficult to
understand (see Figure 3). Thus we prefer to change t and s independently and
view the movement of the groups of points through 3D space. We call the curves
obtained when the value of t is fixed, S-slices, each corresponding to a particular
slice of the surface with a specific t value. Similarly, we call T-slices the curves
obtained when we fix the value of s. Figure 4 illustrates this for one group of
surfaces. An alternative is to let t = s and view the equations as a curve moving
in 3D space (Figure 5). One interpretation of this is that the first component
represents the (unit) tangent vector to the curve, the second the (unit) normal
vector and the third the binormal vector so that these three vectors represent a
natural local basis for that space.

4.1 Some properties of the new transformation

As we the original Andrews’s curves, our surfaces have several useful properties:

1. The surface representation preserves means . If x̄ is the mean of a set of n

multivariate observations xi, the surface corresponding to x̄ is the pointwise
mean of the surfaces corresponding to the n observations:

fx̄(t, s) =
1
d

d∑
i=1

fxi
(t, s)

2. Distance preservation. The distance between two surfaces defined as

||fx(t, s) − fy(t, s)||L2 =
∫∫
S

[fx(t, s) − fy(t, s)]2dt ds
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Figure 4: One of the surfaces and its T and S slices.

−50510
−12

−10

−8

−6

−4

−2

0

2

4

6

8

−10

−5

0

5

10

15

−50510 −10−5051015
−12

−10

−8

−6

−4

−2

0

2

4

6

8

Figure 5: Three different perspectives (front, top and side views) of the curves
obtained from the Iris data set when t = s.

where S = [−π, π] × [−π, π], is proportional to the Euclidean distance
between the corresponding points since

||fx(t, s) − fy(t, s)||L2 = π2
d∑

i=1

(xi − yi)2 = π2||x − y||2

However, this property only holds for the first two surfaces. Besides, it is
necessary to introduce a normalization term, 1/

√
2, in all the coordinates

which are a multiple of three.

3. The representation yields a one-dimensional projection when we simultan-
eously fix the values of s and t. If we only fix s (t) we obtain the T -slices
(S-slices) in which we can simultaneously see the different projections for
the range −π < t < π (−π < s < π).

4. Linear relationships . If a point y lies on a line joining x and z, then for all
values of t and s, fy(t, s) is between fx(t, s) and fz(t, s).
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5 Data exploration with curves

Now we have two representations of the data: we have three curves which are
a simple extension of Andrews’ curves which we saw earlier; but we also have
a representation of each data point as a point in three dimensional space —
it is difficult to convey the visual clustering effect of this representation as we
move along either curve in a static diagram but the impression of clusters in the
dynamically changing environment is very strong.

This suggests the following interactive process for identifying clusters in data:
calculate the curve for each data point (in terms of parameters s and t) and
search for clusters of points which are performing similarly over at least a local
part of the curve and which are also distinct from other points’ curves over the
same part of the curve. We will initialize our curves with s = 0 and t = 0 and
then simply progress along the curves looking for small sections in which such a
group of points can be identified. Of course such a group will not remain distinct
from the other curves throughout all its length but, if it is to qualify as a group,
it must remain coherent, forming a small bundle of curves through all values of
s and t. When we identify such a group, we will remove it from the data set and
then repeat the process with the remaining data points.

Since the method is interactive, we are actually happy to work with two types
of displays of the data: the first is that described above ; the second is the view in
3 dimensions of the data moving in space. It is difficult to do justice to this second
view on a static page but the impression of clusters of objects moving together
is very strong in this display. In the web page http://pisuerga.inf.ubu.es/

cgosorio/Andrews/ there is a video demo of an application that implement
these surfaces.

One of the criticisms that Andrews himself makes of his curves is that the
curves are only useful when the number of points is not too large [Andrews, 1972].
Actually the Andrews’ curves and the variant that we propose in this paper can
be used without major problems with a greater number of points if the curves are
combined with a brushing mechanism [Becker and Cleveland, 1987] that allows
us to highlight those points/curves to see if they constitute a cluster (of course
when Andrews wrote his paper computing facilities were much less powerful
than those we have now). In our implementation, we can instantly highlight a
group by changing the colour of the curves of its members and the corresponding
points in 3D space using point and click operations (this is known as brushing
and linking, [Buja et al., 1991], and allows us to relate information in one plot to
the information in another). As noted above, when we are convinced that such a
group is moving coherently through all values of s and t, we remove them from
the display and continue our search for new clusters.

The tool that we have developed lets the user visualize interactively different
slices of our surface. A vertical line indicates the point where the current point
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representation is taken from. It is possible to change between the two types of
slices, and also it is possible to move interactively changing the s value of a
T -slice, or the t value of a S-slice (that is, changing the point where we cut the
surfaces to obtain the slices); this gives a kind of grand tour that is multidimen-
sional, since in the slices we have a simultaneous view of all the projections in the
range [−π, π]. Embrechts and Herzberg [Embrechts and Herzberg, 1991] suggest
trying different orders for the coefficients. With our tool we can also change the
order of the variables used to obtain the curves or to choose not to use some of
them.

6 Extending our extension of Andrews’ curves

Our initial motivation to extend the Wegman and Solka curves was to jump from
a 2D representation to a 3D one. We show below the obvious generalization to a
four dimensional representation: each of the basis vectors shown is of length one
and each is orthogonal to the other three i.e. we have an orthonormal basis. We
can use the first three values as coordinates and the fourth one to get the colour
of the points from a colour map, close points in the high-dimensional space will
give close points in the display with similar colours. The colour idea could be
used as well with our original extension to combine in the same display the
information from another different group of surfaces (obtained from a different
perspective of the data, for example, the principal component projection, or
from a different arrangement of the variables), one group of surfaces can give
the 3D coordinates and the other the RGB components of the colour of the
points2 (this use of our surfaces is in some way related to the image grand tour
[Wegman et al., 1998, Symanzik et al., 2002], but instead of using multi-spectral
images we use an arbitrary data set).

�
cos(λ1t)cos(µ1s)cos(ν1r), cos(λ1t)cos(µ1s)sin(ν1r), cos(λ1t)sin(µ1s), sin(λ1t), ...

�
�

sin(λ1t) cos(µ1s)cos(ν1r), sin(λ1t) cos(µ1s)sin(ν1r), sin(λ1t) sin(µ1s), − cos(λ1t), ...
�

�
sin(µ1s) cos(ν1r), sin(µ1s) sin(ν1r), − cos(µ1s), 0 , ...

�
�

sin(ν1r) , − cos(ν1r), 0 , 0 , ...
�

We have arranged these four vectors in a manner which should make it clear
that the proposal can be extended to any required dimensionality. This state-
ment, though, must come with the caveat that the limit to the assistance which
such a sequence of projections can make is liable to be determined by the dif-
ficulty which the human mind has on keeping track of several characteristics
at one time. Even for five dimensions, one must keep track of position, speed,
acceleration, colour and size simultaneously. Also we note that the final basis
2 We can think even in dividing the variables in two groups, and using one group to

obtain a set of surfaces, the other group to obtain a second set, and combining both
in the same display.
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vector in any such basis is dependent on only two out of every five fields in the
sample vector and so care must be taken in determining the order of the basis
vectors.

7 Conclusions

We have presented a new extension to an existing, indeed, rather old technique
for exploratory data analysis. The advance of computational power has made
possible extensions which Andrews could only dream about thirty years ago.

We have pictured how the derivative projections can be used in two quite
different but complementary ways:

1. The first allows us to walk along the curves using either of two parameters
and find groups of curves which remain as a group for all possible values of
the parameters.

2. The second allows us to use the human facility of identifying structure in
moving three dimensional displays, something for which our evolution in a
three dimensional visual environment has created excellent pattern matchers.

The combined use of the new display with techniques such as brushing and
linking allows us to identify visually the clusters and outliers present in high-
dimensional data.
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