
Visualization and Manipulation of Incomplete and

Uncertain Dependencies by Decision Diagrams

Denis V Popel
(Department of Computer Science, Baker University, KS 66006, USA

Also with Neotropy LLC, Overland Park, KS 66223
popel@ieee.org)

Abstract: The data mining community is focused on a variety of methods
and algorithms to manipulate incompletely specified or uncertain data and their
dependencies. The major obstacle in the representation and visualization of
incompletely specified data is the size explosion problem through defining undefined
or uncertain values, which commonly raises questions about suggested heuristics and
their practical applicability. Recently, there is a renewed interest in resolving the size
explosion problem for incompletely specified and uncertain data based on symbolic
techniques. One of such techniques, decision diagram, has been successfully applied to
many knowledge visualization and data manipulation problems.

Key Words: data mining, decision diagrams, incompletely specified functions,
minimization

Category: I.6.8, F.4.3

1 Introduction

Incompletely specified functions are common representations of problems with
uncertain or incomplete specifications, where unspecified values are called don’t
cares. In incompletely specified functions, unlike completely specified ones, values
are assigned to a function for only a subset of combinations of values of variables,
called states. Two types of uncertain conditions are distinguished:

– Some input states may never occur and the output states are irrelevant;

– For some input states, the corresponding output states need not to be
specified.

Different aspects of decision diagram representation for incompletely specified
data have been extensively studied in the following areas: (i) decomposion of
functions using decision diagrams [10]; (ii) minimization of logic networks [7];
and (iii) synthesis of Finite State Machines (FSM) [11]. Some problems can
be classified as weakly specified considering initial specification of functions on
a restricted number of combinations. Thus, many practical problems in data
mining require up to 200 input variables with an enormous number of don’t
cares [13].

Though the decision diagrams have proved to be a practical tool for symbolic
verification and logic function manipulation, they are not always efficient to deal

Journal of Universal Computer Science, vol. 11, no. 11 (2005), 1849-1862
submitted: 1/9/05, accepted: 1/10/05, appeared: 28/11/05 © J.UCS

with incompletely specified functions, especially weakly specified. Moreover, the
problem of designing an optimal decision diagram for incompletely specified
data is NP-complete and only heuristic approaches are of practical use [16].
As an alternative, new graph structures and novel principles, such as “don’t
care about don’t cares”, might be exploited and validated for the visualization
and manipulation of incompletely specified functions. This paper compares two
decision diagram techniques for visualization and manipulation of incompletely
specified functions, i.e. the technique based on redefinition of values and
the “don’t care about don’t cares” technique, considering different types of
applicable graph structures.

The paper is structured as follows. A brief overview of incompletely specified
functions and their representations is given in Section 2. Section 3 describes
the basic types of decision diagrams for incompletely specified functions. Some
optimization problems associated with decision diagrams are introduced in
Section 4. Section 5 concludes the paper and outlines different application of
decision diagrams for incompletely specified functions.

2 Representation of incompletely specified functions

An incompletely specified function f , also known as a function with don’t cares,
is the relation where certain combinations of its variables cannot occur. Thus, the
truth table of the function f does not generate output values for every possible
combination of input values. In the following, we consider the incompletely
specified m-valued function f : An → B over the variable set X = {x1, · · · , xn},
where A={0,. . . ,r − 1} and B={0,. . . ,m − 1}, and n is the number of r-valued
variables. More formally, the function f can be represented by the sets:

Ci = {ε ∈ An|f(ε) = i, i = 0, . . . , m − 1}; DC = {ε ∈ An|f(ε) = d},

where d is an undefined value, and ε is a cube. k =
∑m−1

i=0 |Ci| is the number
of cubes ε of the function f . A cube ε is labeled with a decimal value j =
0, . . . , rn − 1. Given a completely specified function f , the set DC = �.

Example 1 An incompletely specified function f(x1, x2, x3, x4) is given by
the following sets: C0 = {0, 1, 6, 7, 12, 13, 14}, C1 = {2, 4, 5, 8, 9}, and DC =
{3, 10, 11, 15}. Figure 1(a) shows the corresponding Karnaugh map.

There are two basic principles of dealing with don’t cares of an incompletely
specified function. The first one is based on redefining unspecified values of the
function, that is assigning concrete values to the don’t care values in order to
optimize the representation form. This principle has been extensively exploited
for several years [4, 16]. Another principle utilizes the idea “don’t care about
don’t cares” [19] which stands for excluding unspecified values from further
analysis. Although the latter principle is more attractive, there are no diagram

1850 Popel D.V.: Visualization and Manipulation ...

related techniques to manipulate incompletely specified functions that follow the
idea “don’t care about don’t cares.”

For incompletely specified functions, different representation forms can be
used to describe the function; each associated with a different assignment of
binary values to don’t cares. Finding the assignment that leads to the smallest
diagram is known to be NP-complete [16] and exact techniques are typically too
computationally expensive. Therefore, heuristic algorithms have been developed
to address this minimization problem [18].

Example 2 (Continuation of Example 1) Consider three different assignments
of values to the don’t cares: (i) assigning the value 0 to all don’t cares gives
f = x′

1x2x
′
3 + x1x

′
2x

′
3 + x′

1x
′
2x3x

′
4; (ii) assigning 1 to all don’t cares results in

f = x′
1x2x

′
3 + x1x3x4 + x1x

′
2 + x′

2x3; and (iii) assigning 1 to don’t cares DC =
{3, 10, 11}, and 0 to DC = {15} gives f = x′

1x2x
′
3 + x1x

′
2 + x′

2x3. The last choice
of values leads to the simplest solution (see the Karnaugh map in Figure 1(b)).

x1x2

00 01 11 10

00

01

11

10

x3x4

0 1 0 1
0 1 0 1
d 0 d d
1 0 0 d

x1x2

00 01 11 10

00

01

11

10

x3x4

0 1 0 1
0 1 0 1
1 0 0 1
1 0 0 1

(a) (b)

Figure 1: Karnaugh maps for Examples 1 and 2

Following the idea “don’t care about don’t cares,” only the sets C are
considered to specify the function f and manipulate with cubes. This approach
is more computationally attractive than the redefinition of don’t cares. Note
that the approach is not limited to single-output functions, it can be applied
to functions with several outputs. Different methods are suggested to take
advantage of specified values only, some examples include finding optimal Reed-
Muller representations [19] and minimal decision diagram structures [12].

Example 3 (Continuation of Example 1) The “don’t care about don’t cares”
approach leaves the following sets for future analysis: C0 = {0, 1, 6, 7, 12, 13, 14}
and C1 = {2, 4, 5, 8, 9}. Further manipulation techniques depend on the problem
and the final representation of the function.

3 Types of decision diagrams

While there are other visualization forms such as cubes, lattices, relations, etc.,
graph-based structures have become the advanced tools for representing and

1851Popel D.V.: Visualization and Manipulation ...

manipulating discrete data because of their simplicity, canonical nature, and
effective algorithms [15].

A Boolean function f : {0, 1}n → {0, 1} can be represented by a Binary
Decision Diagram (BDD) [2], i.e. a directed acyclic graph with node (vertex) set
V where: (i) each non-terminal node u is labeled by a variable x and assigned
as a decision variable with two successors (children) u.left and u.right; (ii) a
terminal node is labeled with the leaf value and has no successors.

A decision diagram is called ordered if the variables X appear in the same
order xj1 ≺ xj2 ≺ . . . ≺ xjn in each path from the root to a terminal node.
Otherwise, it is called free. In the following, only ordered decision diagrams are
considered. It is known that the order of variables can be changed to reduce
the diagram size as the number of nodes. This fact and the integrated dynamic
variable ordering techniques are used in diagram minimization algorithms for
incompletely specified multiple-valued functions. A decision diagram can be
compacted by applying multiple rules to eliminate redundant nodes.

The basic problem of a decision diagram representation for an incompletely
specified function explored by many researchers [4, 18] is how to assign the set
DC so that the size of the diagram representing the corresponding completely
specified function is minimized. This problem, known to be NP-complete [16],
has been addressed through a variety of methods both heuristic and exact.
In addition, the variable reordering technique utilizing don’t cares has been
presented in [17].

3.1 Binary and multiple-valued decision diagrams

Among many types of BDDs, reduced ordered BDDs (ROBDDs) are most widely
used ones in practice. For a given variable ordering, the ROBDD representation
of a completely specified function is unique. For an incompletely specified
function, however, many ROBDDs can be used to represent the function,
each associated with a different assignment of don’t cares to binary values.
The problem of redefinition is reformulated to finding an assignment of don’t
cares that yields a small ROBDD representation. Those heuristic methods try
to maximize the instances of node sharing or sibling-substitution during the
minimization process. BDD nodes become shared if the reassignment of don’t
cares makes their associated functions identical. Sibling-substitution is a special
case of node sharing where a child of a BDD node is replaced by the other child.
Sibling-substitution leads to fewer nodes because a parent and its two children
are replaced by the child when the two children are made identical.

There are multiple heuristics suggested to minimize BDDs/ROBDDs. Thus,
a framework of sibling-substitution-based heuristics was proposed in [18]. These
heuristics, specifically restrict and constrain, outperform others in terms of
both run-time and resulting BDD size. Another method of assigning binary

1852 Popel D.V.: Visualization and Manipulation ...

values to don’t cares by traversing the BDD structure from top to bottom was
outlined in [3]. Being computationally complex, it makes the sub-BDDs shared
which results in overall diagram reduction. More recently, restrict and constrain
heuristics were adjusted to minimize BDDs safely [5]. The idea of the safe BDD
minimization is to perform sibling-substitution only on nodes that will not cause
increase in BDD size.

3.2 Ternary decision diagrams

Ternary Decision Diagrams (TDDs) are similar to BDDs, except that each
non-terminal node has three successors [14]. Having three outgoing edges, is
is possible to represent Boolean functions with unspecified (third) values. This
ternary structures implement Kleene functions. A Kleene function K is Tn → T
over the variable set X = {x1, · · · , xn}, where T={0,1,d}, and n is the number
of variables. d denotes unknown input or output values. The Kleene function
represents the behavior of logic function in the presence of unknown values. For
a given two-valued logic function, the Kleene function is unique.

The Kleenean strong logic introduced in [8] is used to represent incompletely
specified functions in the form of TDDs. Many TDDs manipulation techniques
were adopted from BDDs. Generally, a TDD needs less space than a pair of
BDDs. Moreover, BDD pairs cannot handle the unknown input or don’t care
output directly while a TDD can. Comparing to BDD, TDD has one more
terminal node, and one more edge for non-terminal nodes. TDDs can be reduced
the same way as BDDs, and a TDD usually refers to the reduced one. To obtain
a TDD from a BDD, the following transformations are needed

Expansion Expand the BDD into decision tree.

Alignment Apply alignment operation recursively:

alignment(x, y) =
{

x if x = y

d if x �= y.

Reduction Reduce the ternary decision tree to a directed acyclic graph.

TDD is canonical as well, so all the properties for canonical form still apply [9].
However, with the size explosion problem, TDDs are often too large to build.

Example 4 The identity function for a variable x in Kleenean logic is given in
Figure 2(a). Figure 2(b) depicts an example of the full TDD for an incompletely
specified function f(x1, x2, x3). Correspondingly, the abbreviated TDD is given
in Figure 2(c). The resulting expression is f = x1x2 + x3.

1853Popel D.V.: Visualization and Manipulation ...

1 0

0

d

1

d

x

1 0

0

d

1

d

0

1

d
 0

1

d

0

d

1
 0

1

d

 x1

 x2 x2

 x3 x3

1

1 0

0

1

0 0 1

x1

x2 x3

(a) (b) (c)

Figure 2: TDD minimization: (a) identity function; (b) full diagram; and
(c) abbreviated diagram

3.3 Incompletely specified decision diagrams

The deficiencies of existing heuristic algorithms, which redefine don’t cares and
manipulate variable order, can be avoided using different principles and an
extension of the traditional graph structure. We start by defining an incompletely
specified DD using the idea “don’t care about don’t cares.”

An Incompletely Specified DD Ξ is a directed acyclic graph with a node set
in which each non-terminal node u has at least one successor.

A chain ξ is a linear incompletely specified decision diagram composed of (i)
non-terminal nodes associated with each variable x of the function f , and (ii)
terminal nodes with the value f(ε). It represents a cube ε as a conjunction of a set
of variable values: ε ⇒ ξ. Note that don’t cares are excluded from consideration.

Example 5 An example of an incompletely specified DD is shown in
Figure 3(a). Thus, the corresponding function is specified on three combinations:
{x1

1x
0
2x

2
3}, {x2

1x
0
2x

0
3} and {x2

1x
0
2x

1
3}. The order of variables in the diagram is

≺ x2 x1 x3 �. A chain for the cube {x0
2x

2
1x

1
3} from the set C0 is depicted in

Figure 3(b).

The properties of incompletely specified DDs are defined similarly to those for
traditional DDs. The compactness of incompletely specified DDs is guaranteed
by two rules: (i) merging that shares equal functions, and (ii) deletion that
deletes a node where all r children are equal. These rules are formulated as for
completely specified functions except the case of nodes with fewer successors
than the radix of variables.

The variable ordering in the chain ξ is adjusted to the variable ordering in
the existing diagram according to the output of dynamic variable reordering.
To add the chain ξ into the current incompletely specified DD, we merge graph
structures through a fusion operation defined below.

1854 Popel D.V.: Visualization and Manipulation ...

1 0

0

1

2

2

d
 0

1

 x2

 x1

 x3 x3

0

0

2

1

 x2

 x1

 x3

(a) (b)

Figure 3: Incompletely specified decision diagram (a) and its chain (b)

A Fusion Operation
∐

unites two incompletely specified DDs Ξ1 and Ξ2 with
an identical variable ordering: Ξ = Ξ1

∐
Ξ2. In the following, we consider the

design of the incompletely specified DD Ξ for the given incompletely specified
multiple-valued function f as a sequence of fusion operations on k chains ξ:
Ξ =

∐
k

ξk. This process can be described iteratively as a sequence of snapshots:

Ξt+1 = Ξt

∐
ξt+1, where t = 1, . . . , k and Ξ1 = ξ1.

Example 6 Let us apply the fusion operation
∐

to the incompletely specified
decision diagrams Ξ1 and Ξ2 shown in Figure 4(a) and (b) respectively. The
top-down iterative strategy results in a diagram Ξ depicted in Figure 4(c).

4 Optimization problems

Each type of decision diagrams has a set of specific optimization techniques for
obtaining feasible (applicable in heuristic algorithms) or optimal (applicable in
exact algorithms) solutions. These techniques are outlined for three types: BDDs
and MDDs, TTDs, and Incompletely Specified DDs.

4.1 Safe BDD minimization

Let us consider the safe BDD minimization in details. An incompletely specified
function is given by a pair of completely specified functions [f, c], where f is
a cover of the incompletely specified function and c denotes the care-function.
A set of cubes f is a cover of the original function g if C0(g) ⊆ C0(f) and
C1(g) ⊆ C1(f). Two BDDs [F, C] are built for the functions [f, c]. The safe
minimization algorithm consists of two phases:

– The mark-edge phase handles the preprocessing of the original BDDs [F, C]
identifying nodes for which applying sibling-substitution does not increase
overall BDD size.

1855Popel D.V.: Visualization and Manipulation ...

0

x1

x2

f

0

x3

0

1

1

x1

x2

f

1

x3

0

0

1

x1

x2

f

1

x3

0

0

0

x2

x3

0

1

0

(a) (b) (c)

Figure 4: Fusion operation: (a) the first diagram, (b) the second diagram, and
(c) the result of fusion

– In the second phase, called build-result, sibling-substitution is selectively
applied to the nodes identified in the first phase.

Example 7 Let an incompletely specified function g = g(x1, x2, x3) represented
by the sets: C0 = {2}, C1 = {5, 7},DC = {0, 1, 3, 4, 6}, be given by two decision
diagrams F and C (Figure 5(a) and (b) respectively). By traversing the diagrams,
the sets of care values are: C0(F) = {0, 1, 2, 4, 6}, C1(F) = {3, 5, 7}, C0(C) =
{2, 3}, C1(C) = {0, 1, 4, 5, 6, 7}. The result of the first edge-marking phase is
shown in Figure 5(c). The second phase, build-result, produces the diagram in
Figure 5(d).

Two basic phases of the safe BDD minimization are outlined below.
Mark-edges recursive algorithm:

Step 1. Compare nodes from F and C for being a leaf and with 0
respectively. If it is not a leaf-0, continue with Steps 2-4.

Step 2. Get the top variable x from F and C which will be used as a
substitution.

Step 3. For non-terminal nodes and the left sub-BDD, mark the edge and
call the recursive function passing Fx′ and Cx′.

Step 4. For non-terminal nodes and the right sub-BDD, mark the edge and
call the recursive function passing Fx and Cx.

Build-result recursive algorithm:

Step 1. Compare nodes from F for being a leaf. If it is not a leaf,
continue with Steps 2-4.

Step 2. Get the top variable x from F.
Step 3. If the left sub-BDD is marked and the right sub-BDD is not, call

the recursive function passing Fx.

1856 Popel D.V.: Visualization and Manipulation ...

1

1 0

0

1

1

0

0

x2

x1

x3

0 1

1

1

0

0

x1

x2

1

1 0

1

1

0

0

0

x2

x1

x3

1 0

1

1

0

0

x1

x3

(a) (b) (c) (d)

Figure 5: Safe BDD minimization: (a) F diagram; (b) C diagram; (c) edge-
marked F ; and (d) minimized diagram

Step 4. If the left sub-BDD is not marked and the right sub-BDD is, call
the recursive function passing Fx′.

Recalling that a BDD minimization using don’t cares is safe if the minimized
BDD is guaranteed to be larger than the original BDD. The two-phase
compaction algorithm is considered to be safe [5]. The result of minimization
is produced by replacing some nodes with one of their descendents. It is safe
because it ensures that no node will be split. This property can be deducted
from the structure of build-result. It creates one node for each node it visits and
visits each node at most once. Specifically, nodes that are not reachable from the
root by a path of marked edges are not visited by build-result and, therefore,
not included in the minimized BDD.

4.2 Some operations on TDDs

The following changes are made to the original BDD algorithms to enable
manipulations with unspecified values:
Reduce The algorithm reduce is used to generate reduced TDDs from TDDs
according to the reducing rules. All the nodes in a TDD are labelled with integers,
then the nodes with the same label are combined. We use a bottom-up method
to label the nodes one by one. A non-terminal node can not be labelled until
all its branches have been completely labelled. id(n) denotes the label of the
node n, 0(n) and 1(n) represent the corresponding successor of the node n. The
labelling method has the following sequence of steps:

Step 1. If id(0(n)) = id(1(n)), then id(n) = id(0(n)).
Step 2. If there exists a node m with id(0(m)) = id(0(n)) and

id(1(m)) = id(0(n)), then id(n) = id(m). Otherwise we assign the next
unused label to id(n).

1857Popel D.V.: Visualization and Manipulation ...

Restrict The restrict operation computes a new TDD with the same variable
ordering, but restrict certain variable to a given value. We use f(x = t) to denote
a formula obtained by replacing all the occurrences of x in f by t. The TDD for
f(x = t) is constructed by forcing all the edges pointed to the node associated
with x to point the root of its proper edge instead. The reduce operation has to
be executed afterwards.

Example 8 An incompletely specified function is given by its TDD as shown in
Figure 6(a). The second step of the reduce operation eliminates one node with
common successors from the second level of the diagram minimizing the number
of nodes and their interconnections (Figure 6(b)). Using the obtained diagram
and assuming that x2 = d, the restrict operation forces all outgoing edges from
the first level to point to terminal nodes as shown in Figure 6(c).

x1=d

x1=1

x2=d

1 0 d

x1

x2 x2 x2

f

x1=0

x2=0,d
 x2=1

x2=0,1
 x2=0,d

x2=1

x1=d

x2=d

1 0 d

x1

x2 x2

f

x1=0,1

x2=0,d
 x2=1

x2=0,1

x1=d

d 0

x1

f

x1=0,1

(a) (b) (c)

Figure 6: Ternary decision diagram operations: (a) original TDD, (b) result of
reduce, and (c) result of restrict for x2 = d

4.3 Incompletely specified decision diagrams

There are two basic operations on incompletely specified DDs: variable
reordering and minimization. These operations support the dynamic essence of
incompletely specified DDs: if the specification of incompletely specified function
is updated, the structure of the diagram will be modified instantaneously.
Variable reordering Many heuristics have been proposed for finding a good
variable ordering, it is evident that none of them guarantees that the solution is
optimal. In this approach, we have chosen to use sifting, because of its dynamic
nature. The basic idea of the sifting algorithm is to select the best position for
one variable assuming that the relative order of all others remains the same.

1858 Popel D.V.: Visualization and Manipulation ...

This process is repeated for all variables, starting with variables situated in the
level with the largest number of nodes. Dynamic variable ordering is integrated
into the algorithm outlined below.

The method consists of the following steps:
Step 1. The levels are sorted according to their size. The largest level

is considered first.
Step 2. For each variable:

2.1 The variable is exchanged with its successor variable until it is
the last variable in the ordering.

2.2 The variable is exchanged with its predecessor until it is the
topmost variable.

2.3 The variable is moved back to the closest position which has led
to the minimal size of the BDD or MDD, respectively.

Example 9 Let us consider the incompletely specified decision diagram given
in Figure 7(a) with lexicographical order of variables. The dynamic reordering
exchanges variables at the first and second levels assigning x2 to the first level and
x1 to the second level. The reordering results in a diagram shown in Figure 7(b).
This diagram has fewer nodes and their interconnections, and will be more
preferable as the result of optimization.

1

x1

x2

f

1

x3

0

0

0

x2

x3

0

1

0

1

x2

x1

f

x3

1

0

0

x3

0

1

0

(a) (b)

Figure 7: Incompletely specified decision diagrams: (a) before the dynamic
reordering, (b) after the reordering is completed

Don’t care minimization A sketch of the minimization algorithm for the
function f given on the sets C is shown below:
Step 1. Initialize the variable ordering lexicographically: x1 ≺ x2 ≺

. . . ≺ xn (x1 is the topmost variable), and the incompletely specified
DD Ξ = �.

Step 2. Consider a cube ε from the given set C: ε ∈ C. Build a
corresponding chain ξ applying current variable ordering: ε ⇒ ξ.

Step 3. Merge the chain ξ with the existing incompletely specified DD Ξ
applying the fusion operation: Ξ = Ξ

∐
ξ.

1859Popel D.V.: Visualization and Manipulation ...

Step 4. Reorder the obtained incompletely specified DD Ξ applying
sifting.

Step 5. Perform the compaction of the incompletely specified DD Ξ to
eliminate nodes which shares equal functions, and parent nodes with
equal children.

Step 6. If there are other cubes C �= �, go to Step 2. Otherwise,
terminate the algorithm and do the minimization of the incompletely
specified DD Ξ.

Step 7. (Postprocessing) Perform the minimization of the incompletely
specified DD Ξ to eliminate nodes with don’t cares.

Example 10 Let us consider the following incompletely specified 3-valued
function f = f(x1, x2, x3) given on three combinations of variable values
C0 = {x2

1x
0
2x

1
3}, and C1 = {x1

1x
0
2x

2
3, x

2
1x

0
2x

0
3}. The iterative process of constructing

an incompletely specified MDD and its minimization is illustrated in Figure 8.
The first step combines two chains x1

1x
0
2x

2
3 and x2

1x
0
2x

0
3 by applying the fusion

operation. The post-processing reordering (sifting) swaps variables assigned to
the first and second levels. The resulting diagram is combined next with the
remaining chain x2

1x
0
2x

1
3. The final reordering operation does not change the order

of variables in the diagram.

5 Concluding remarks

Recent progress in soft computing is accelerated by advances in artificial neural
networks, fuzzy logic, genetic algorithms, genetic and evolutionary programming,
and data mining. In different ways, these approaches try to solve complex and
poorly defined problems that previously developed analytic models could not
efficiently tackle. All of these approaches offer a method of automatic learning.
Machine learning has become a general paradigm for software system design,
unifying all these previously disconnected areas. Data, which is most commonly
incompletely specified, should be visualized by efficient structures ready for
knowledge interpretation. This paper gives an outline of decision diagrams for
representing incomplete and uncertain dependencies.

Numerous applications can take advantage of decision diagram
representations for incompletely specified functions.
Planning As planning agents grow more sophisticated, plan representation
issues arise. Planners work over increasingly large and difficult problems and
output is often complex. Further, where planners must interact with human
users either for plan verification and analysis, or in mixed-initiative settings plans
must be represented so that the intended course of action is readily available.
Some techniques are proposed for simplification of, and conversion between, plan
representations [1].
Embedded software Embedded systems have extremely tight realtime and
code/data size constraints, that make expensive optimizations desirable. Some
BDD minimization techniques are proposed in [6] in the presence of a don’t care
set to synthesize code for extended Finite State Machines from a BDD-based

1860 Popel D.V.: Visualization and Manipulation ...

x1

x2

f

x1=1

x3

x2=0

x3=2

U

x1

x2

f

x1=2

x3

x2=0

x3=0

=

x2

f

x1=1

x3

x2=0

x3=2

x1

x2

x1=2

x3

x2=0

x3=0

sift

f

x1=1

x3

x3=2

x1

x2

x1=2

x3

x2=0

x3=0

1 1 1 1 1 1

STEP 1

U

x2

x1

f

x2=0

x3

x1=2

x3=1

=

sift

f

x1=1

x3

x3=2

x1

x2

x1=2

x3

x2=0

x3=1

f

x1=1

x3

x3=2

x1

x2

x1=2

x3

x2=0

x3=0

f

x1=1

x3

x3=2

x1

x2

x1=2

x3

x2=0

x3=0

0 1 0 1 1 1 1 0

x3=1

x3=0

STEP 2

U

=

sift

Figure 8: Multiple-valued decision diagram minimization for the function f
(Example 10): Step 1 is forming the diagram from two chains x1

1x
0
2x

2
3 and x2

1x
0
2x

0
3,

and Step 2 is adding the chain x2
1x

0
2x

1
3.

representation of the FSM transition function. The don’t care set can be derived
from local analysis (such as unused state codes or don’t care inputs) as well as
from external information (such as impossible input patterns).
Compiler optimization Note that some compiler optimizations, such as
variable lifetime analysis, constant value propagation can be considered a form
of don’t care exploitation. For example, avoiding assigning a variable that is not
read before being assigned again, is exploiting a form of “observability don’t
cares”, just as the elimination of an “if” statement with a constant condition

1861Popel D.V.: Visualization and Manipulation ...

is exploiting a form of “controllability don’t cares”. The software synthesis
technique is based on the use of BDDs to optimally synthesize software (in
particular C code) from a specification in the form of FSMs extended with
integer arithmetic capabilities [6]. That technique uses a direct mapping between
BDD nodes and low-level C statements in order to derive a highly optimized
implementation of the FSM transition relation.

References

1. M. Allen and S. Zilberstein. Automated conversion and simplification of plan
representations. In Proc. Int. Conf. on Autonomous Agents and Multiagent
Systems, pages 1272–1273, 2004.

2. R. Bryant. Graph - based algorithm for Boolean function manipulation. IEEE
Trans. on Computers, C-35(8):667–691, 1986.

3. S. Chang, M. Marek-Sadowska, and T. Hwang. Technology mapping for TLU
FPGA’s based on decomposition of binary decision diagrams. IEEE Trans. on
CAD of Integrated Circuits and Systems, 15(10):1226–1248, 1996.

4. Y. Hong, P. Beerel, J. Burch, and K. McMillan. Safe BDD minimization using
don’t cares. In Proc. IEEE/ACM Int. Design Automation Conference, pages 208–
213, 1997.

5. Y. Hong, P. Beerel, J. Burch, and K. McMillan. Sibling-substitution-based BDD
minimization using don’t cares. In IEEE Trans. on CAD of Integrated Circuits
and Systems, 19(1):44–55, 2000.

6. Y. Hong, P. Beerel, L. Lavagno, and E. Sentovich. Don’t care-based BDD
minimization for embedded software. In Proc. Design Automation Conference,
pages 506–509, 1998.

7. Y. Jiang and R. Brayton. Don’t cares and multi-valued logic network
minimization. In Proc. IEEE/ACM Int. Conference on CAD, pages 520–525, 2000.

8. S. Kleene. Introduction to Metamathematics. Van Nostrand, Princeton, NJ,
U.S.A., 1964.

9. P. Lindgren. Improved computational methods and lazy evaluation of the ordered
ternary decision diagrams. In Proc. Asia and South Pacific Design Automation
Conference, pages 379–384, 1995.

10. A. Mishchenko, C. Files, M. Perkowski, B. Steinbach, and C. Dorotska. Implicit
algorithms for multi-valued input support minimization. In Proc. Int. Workshop
on Boolean Problems, pages 9–20, 2000.

11. A. Oliveira and S. Edwards. Limits of exact algorithms for inference of minimum
size finite state machines. In Algorithmic Learning Theory Workshop, volume 1160,
pages 59–66, 1996.

12. D. Popel and R. Drechsler. Efficient minimization of multiple-valued decision
diagrams for incompletely specified functions. In Proc. IEEE International
Symposium on Multiple-Valued Logic, pages 241–246, 2003.

13. D. Popel and N. Hakeem. Multiple-valued logic in decision making and knowledge
discovery. Technical report, Baker University, KS, U.S.A., 2002.

14. T. Sasao. Ternary decision diagrams: Survey. In Proc. Int. Symposium on
Multiple-valued Logic, pages 241–250, 1997.

15. T. Sasao. Switching Theory for Logic Synthesis. Kluwer Academic Publishers,
Norwell, MA, U.S.A., 1999.

16. M. Sauerhoff and I. Wegener. On the complexity of minimizing the OBDD size for
incompletely specified functions. In IEEE Trans. on CAD of Integrated Circuits
and Systems, 15(11):1435–1437, 1996.

17. C. Scholl, D. Möller, P. Molitor, and R. Drechsler. BDD minimization using
symmetries. In IEEE Trans. on CAD of Integrated Circuits and Systems, 18(2):81–
100, 1999.

18. T. Shiple, R. Hojati, A. Sangiovanni-Vincentelli, and R. Brayton. Heuristic
minimization of BDDs using don’t cares. In Proc. IEEE/ACM Int. Design
Automation Conference, pages 225–231, 1994.

19. A. Zakrevskij. Optimizing polynomial implementation of incompletely specified
Boolean functions. In Proc. Workshop on Application of the Reed-Muller
Expansions in Circuit Design, pages 250–256, 1995.

1862 Popel D.V.: Visualization and Manipulation ...

