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Abstract: We develop the elementary theory of iterated rational functions over the
Riemann sphere C∞ in a constructive setting. We use Bishop-style constructive proof
methods throughout. Starting from the development of constructive complex analysis
presented in [Bishop and Bridges 1985], we give constructive proofs of Montel’s The-
orem along with necessary generalisations, and use them to prove elementary facts
concerning the Julia set of a general continuous rational function with complex coeffi-
cients. We finish with a construction of repelling cycles for these maps, thereby showing
that Julia sets are always inhabited.

Key Words: Constructive analysis, iteration of rational functions

Category: G.1.0, F.2.1

1 Preliminaries

We are interested in the behaviour of analytic functions on C∞, the Riemann
sphere. Following [Bishop and Bridges 1985] p. 190, we shall define this domain
to be the unit sphere

{
x ∈ R

3 : ‖x‖ = 1
}

along with the embedding of the
complex plane i0 : C → C∞ given by

i0(z) =
(

2 Re z
|z|2 + 1

,
2 Im z

|z|2 + 1
,
|z|2 − 1
|z|2 + 1

)
(1)

We shall let j0 denote the inverse map j0 : C∞∼{∞} → C such that j0◦i0 = idC.
The complex plane then inherits the chordal metric σ defined for points in C∞
by

σ(z1, z2) =
1
2
‖z1 − z2‖ (z1, z2 ∈ C∞).

For points z1, z2 in C we have

σ(i0(z1), i0(z2)) = (1 + |z1|2)− 1
2 (1 + |z2|2)− 1

2 |z1 − z2|

We shall extend the notation σ(z1, z2) in two useful ways: for a finite sequence
of points we shall write

σ(z1, . . . , zn) = min{σ(zi, zj) : 1 ≤ i < j ≤ n}
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and for compact sets K1, . . . ,Kn we shall write

σ(K1, . . . ,Kn) = inf{σ(z1, . . . , zn) : z1 ∈ K1, . . . zn ∈ Kn}

Let (X, d) be a metric space. We write

BX(z0, r) = {z ∈ X : d(z, r) < r}
BX(z0, r) = {z ∈ X : d(z, r) ≤ r}
SX(z0, r) = {z ∈ X : d(z, r) = r}

We shall omit the subscript when the metric space is C, and use the subscript
σ when the metric space is (C∞, σ)

Suppose that z1, z2 ∈ C∞ and σ(z1, z2) < 1. Then there exists a unique
line segment [z1, z2] connecting z1 and z2, namely the geodesic of arc length
< π/2. Also note that if z0 ∈ C∞, 0 < r < 2−1/2 and z1, z2 ∈ Bσ(z0, r) then
[z1, z2] ⊂ Bσ(z0, r) (i.e. spheres in C∞ are convex if they are sufficiently small).

We shall use the definition inherited from constructive complex analysis on
C of the relation K � U , which holds when K is compact and U is open and
there exists ε > 0 such that Kε ⊂ U , where

Kε = {z ∈ C∞ : σ(z,K) ≤ ε} .

For any set S in a metric space we will also write S<ε for the open set

S<ε =
⋃

{B(z, ε) : z ∈ S} .

We shall say that a set in a metric space is compact-or-empty if it is either
compact (in Bishop’s sense - which implies that it is nonempty) or empty. Let
K be compact in C∞ and let f : K → C∞ be a function. Suppose that f is (uni-
formly) continuous on K. Then by Theorem 4.4.9 of [Bishop and Bridges 1985]
we can find reals 0 < R0, R∞ < 1 with R0 +R∞ > 1 such that the sets

Kαβ =
{
z ∈ K : z ∈ Bσ(α,Rα) ∧ f(z) ∈ Bσ(β,Rβ)

}

are compact-or-empty for all α, β ∈ {0,∞}. Let fαβ be the function f restricted
to Kαβ. Let ρ0 be the identity function on C∞ and let ρ∞ be the reciprocal
function z �→ 1/z completed to the set C∞ (which preserves the metric σ). Then
whenever Kαβ is nonempty we can translate the function fαβ to C as follows:

f̃αβ = j0 ◦ ρ−1
β ◦ fαβ ◦ ρα ◦ i0.

Then f̃αβ will be a function from a compact subset of C to C. We shall say that
f is differentiable if, for all choices of R0, R∞ making the sets Kαβ compact-
or-empty, and for any α, β ∈ {0,∞} such that Kαβ is nonempty, the function
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f̃αβ is differentiable on its compact domain in C. If f is a function on some open
set U ⊂ C∞ and f is differentiable on every K � U . Then we shall say that f is
analytic.

We state without proof a version of the open mapping theorem (theorem
5.5.17, [Bishop and Bridges 1985]) for functions on C∞ which we will often need
to use in what follows:

Theorem 1. Let f be analytic on an open set U ⊂ C∞. Let K � U be a compact
set. Then f(K) is compact and f(K) � f(U).

The spherical derivative

Given an analytic function f : U ⊂ C∞ → C∞ we can define the spherical
derivative on f , which measures in absolute value the rate of change of the
function f according to σ, taken in any direction away from a given point z:

f �(z) = lim
w→z

σ(f(w), f(z))
σ(w, z)

One can then show that when z, f(z) �= ∞ and f̂ := i0 ◦ f ◦ j0 (locally to
x = j0(z)), we have

f �(z) = |f̂ ′(x)|1 + |f̂(x)|2
1 + |x|2 (2)

We state the following for future reference. The proof is left to the reader.

Proposition2 (Cauchy’s inequality on C∞). If f is analytic on Bσ(z0, r)
then

f �(z0) ≤ r−1 sup{Θ(σ(f(z0), f(z))) : σ(z0, z) = r} (3)

where Θ is the increasing function on [0, 1) given by Θ(t) = t(1 − t2)−
1
2 .

A note on changing metrics

Often we will need to move between the metrics on C and C∞ in proofs and
this can cause awkwardness, so we state the inequalities which prove that these
metrics are equivalent, for later reference:

σ(i0(z1), i0(z2)) ≤ |z1 − z2| (z1, z2 ∈ C)

σ(i0(z1), i0(z2)) ≤ Δ(z1, ε) ⇒ |z1 − z2| ≤ ε (z1, z2 ∈ C, ε > 0)

where Δ is the function defined by

Δ(z, ε) := ε(1 + |z|2)− 1
2 ((1 + |z|2) 1

2 + ε)−1 (z ∈ C, ε > 0) (4)
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Möbius functions

Consider the analytic function

f(z) =
az + b

cz + d
(a, b, c, d ∈ C, ad− bc �= 0).

defined on the open set {z ∈ C : cz+ d �= 0}. This function extends uniquely to
an analytic function from C∞ onto C∞, which is called a Möbius function. In
the case where b = −c, d = a and |a|2 + |c|2 = 1 then the function f preserves
the metric σ. We shall call such a metric a Möbius isometry.

The following will be useful later.

Lemma3. Let g : C∞ → C∞ be a Möbius transformation. Let m > 0. Suppose
that σ(g(0), g(1), g(∞)) ≥ m. Then g satisfies the uniform Lipschitz conditions

σ(g(w), g(z)) ≤ (π/m3)σ(w, z) (5)

σ(w, z) ≤ (π/m3)σ(g(w), g(z)) (6)

for all w, z ∈ C∞,

Proof. The inequality (5) is proved exactly as in the classical case: see Theorem
2.3.3 of [Beardon 1991]. For the inequality (6), observe that ‖g−1‖ = ‖g‖ (with
notation taken from [Beardon 1991], p. 33), so that the proof of Theorem 2.3.3
in [Beardon 1991] also yields ‖g−1‖ ≤ 2/m3, whence (via 2.1.3 and 2.3.2 of
[Beardon 1991]),

σ(g−1(w), g−1(z)) ≤ (π/m3)σ(w, z)

from which we easily get (6) by substituting w → g(w) and z → g(z).

Lemma4. Let m be a positive number, let a1, a2, a3 be points in C∞ such that
σ(a1, a2, a3) ≥ m, and let g be the unique Möbius function taking (0, 1,∞) to
(a1, a2, a3). Then the following inequalities hold for all z ∈ C∞

m3/π ≤ g�(z) ≤ π/m3

m3/π ≤ (g−1)�(z) ≤ π/m3

Proof. Apply Lemma 3 to g and take limits.

Lemma5. Let m be a positive number and let a1, a2, a3 and b1, b2, b3 be points
in C∞ such that σ(a1, a2, a3) ≥ m and σ(b1, b2, b3) ≥ m. Let g be the unique
Möbius transformation of C∞ which takes ai to bi (1 ≤ i ≤ 3). Then

m6/π2 ≤ g�(z) ≤ π2/m6 (7)

Proof. Let g = g−1
2 ◦ g1 where g1 maps (ai) to (0, 1,∞) and g2 maps (bi) to

(0, 1,∞). Then apply Lemma 3 to g1, g2 to get the result.
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Rational functions

We say that a polynomial of the form p(z) = a0 + . . . + anz
n is of degree at

most n. If an �= 0 then we say that p is of degree n. We wish to define a rational
function R to be a quotient of polynomials P/Q with coefficients in C, extended
to a continuous function from C∞ to C∞. So we need conditions on P and Q

which tell us precisely when such a continuous extension exists.

Lemma6. Let p be a nonzero polynomial of degree at most d with coefficients
in C. Then p can be expressed as

p(z) = k(z − z1) · · · (z − za)(1 − w1z) · · · (1 − wd−az) (k �= 0, zi, wi ∈ C)
(8)

Moreover if we set

Z(p) := cl {i(z1), . . . , i(za), i(w1)−1, . . . , i(wd−a)−1} ⊂ C∞,

then for all δ ∈ (0, 1) and z ∈ C, if σ(i(z), Z) ≥ δ then |p(z)| ≥ k(δ/2)d.

Proof. We omit the proof, which is fairly straightforward: apply Theorem 5.5.13
of [Bishop and Bridges 1985], to get z1, . . . , za and then apply it again with ∞
relocated to 0 to get w1, . . . , wd−a.

Suppose that P and Q are two nonzero polynomials of degree at most d with the
additional property that the zero sets Z(P ) and Z(Q) are a positive distance
from one another. Then either σ(∞, Z(P )) > 0 or σ(∞, Z(Q)) > 0 and so
either degP = d or degQ = d, and conversely. In this case the function R : z �→
P (z)/Q(z) can be extended to a continuous function on C∞ which can be shown
to be analytic. In fact one can prove that any analytic function from C∞ to C∞
can be expressed in this form. We shall call such a function a rational map,
and we shall call the unique integer d the degree of R. We shall also sometimes
write Rd for the set of rational maps of degree d and R for the set ∪d∈Z+Rd.

Since we never have any reason to take the pointwise product of rational
maps, we can safely write RS for the concatenation of two rational maps: RS :
z �→ R(S(z)). The iteration Rn is defined similarly. Given a rational map R =
P/Q one can show that there is a finite set of points C ⊂ C∞ (in fact the critical
values, which we shall return to later) such that if σ(z0, C) > 0 then the equation
R(z) = z0 has d distinct roots. From this one can deduce that

deg(RS) = deg(R) deg(S)

and

deg(Rn) = deg(R)n

for all R,S ∈ R.
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Fixed points

Let R be a rational function. We say that z is a fixed point of R if R(z) = z.
Let fp(R) denote the set of such points. Suppose now that R is non-identity,
meaning that there is some z ∈ C∞ such that R(z) �= z. By conjugating with a
Möbius isometry μ we can assume that z = ∞. Then the fixed points of R will
lie in C and can be obtained by solving P (z) − zQ(z) = 0 where R = P/Q. If
we obtain a complete multiset of zeros {z1, . . . , zn} for this polynomial then we
shall clearly have fp(R) = {z1, . . . , zn}. In such a case we shall say that there
are n fixed points of R counting multiplicities, although this statement cannot
be taken as literally as in the classical case. More generally we shall talk about
the n roots of an equation involving rational functions and points in C∞ when
such an equation can be reduced by whatever means to a polynomial of degree
n over C.

Theorem 7. Let R be a non-identity rational function of degree d. Then R has
d+ 1 fixed points counting multiplicities.

Proof. As above, assume that R(∞) �= ∞ and express R as P/Q in lowest terms.
We are looking for roots of P (z) − zQ(z) = 0. The number of such roots will
of course be the degree of this polynomial, so we need to show that degQ = d.
But we know that either degP = d or degQ = d, and since R(∞) �= ∞ we must
have degQ = d.

2 Normal and abnormal classes of functions

Let F be a family of analytic functions on some compact set K. We say that F
is normal on K if there is a bound B such that f �(z) ≤ B for all f ∈ F and
all z ∈ K. We say that F is abnormal on K if for any C > 0 there is f ∈ F
and z ∈ K such that f �(z) > C. Now suppose that F is a family of analytic
functions on an open set U . Then we say that F is normal on U if F is normal
on K for every K � U , and that F is abnormal on U if there exists K � U such
that F is abnormal on K. Given z ∈ U we shall say that F is normal at z if
there is an open neighbourhood W of z such that F is normal on W , and that
F is abnormal at z if for every open neighbourhood W of z, F is abnormal on
W . Let diamσ(K) denote the σ-diameter of any compact K ⊂ C∞.

Theorem 8. Let F be a class of functions on an open set U ⊂ C∞ which con-
tains a point z0. Then F is normal at z0 if and only if

∀ ε > 0 ∃ r > 0 ∀ f ∈ F diamσ f(Bσ(z0, r)) ≤ ε. (9)

and F is abnormal at z0 if and only if

∃ ε > 0 ∀ r > 0 ∃ f ∈ F diamσ f(Bσ(z0, r)) ≥ ε. (10)
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Proof. First suppose that F is normal at z0. Choose R > 0 and B > 0 such that
f � is bounded by B on Bσ(z0, R) for all f ∈ F . Then for any r ∈ (0, R] and
z1, z2 ∈ Bσ(z0, r) a simple path-integral argument gives

σ(f(z1), f(z2)) ≤ B · σ(z1, z2) ≤ B · 2r.

Thus diam f(Bσ(z0, r)) ≤ 2Br. So for given ε > 0, r = min {R, ε/2B} satisfies
(9).

Conversely, suppose that (9) is satisfied for F at z0. We want to give a bound
for f � on some Bσ(z0, R). Apply equation (9) with ε = 1/2 to obtain r > 0. Let
R = r/2. Suppose that f ∈ F and z ∈ Bσ(z0, R). Then diam f(Bσ(z,R)) ≤ 1/2
and so by Proposition 2, f �(z) ≤ R−1Θ(1/2). Thus we have the desired bound.

Now for the second part of the theorem. Suppose first that F is abnormal
at z0. We prove that (10) is satisfied with ε = 1/2. Let r > 0. The set F is
abnormal on Bσ(z0, r/2) and so there is z ∈ Bσ(z0, r/2) and f ∈ F such that

f �(z) ≥ 4r−1Θ(1/2)

(where Θ is the function defined in Proposition 2). By Proposition 2, we also
have

f �(z) ≤ (r/2)−1 sup{Θ(σ(f(z), f(w))) : σ(w, z) = r/2}

And so we can find w such that σ(w, z) = r/2 and

Θ(σ(f(z), f(w)) ≥ (r/4)f �(z) ≥ Θ(1/2)

so that (since Θ is increasing) σ(f(z), f(w)) ≥ 1/2. Since z, w ∈ Bσ(z0, r) we
have established that diam f(Bσ(z, r)) ≥ 1/2 = ε, as required.

Conversely suppose that condition (10) holds for some ε > 0. Fix r > 0. We
aim to show that F is abnormal on B(z0, r). We may suppose that r < 2−1/2.
There is an f ∈ F such that diam f(B(z0, r)) ≥ ε. So there exist z1, z2 ∈ B(z0, r)
such that σ(f(z1), f(z2)) ≥ ε/2. Since σ(z1, z2) ≤ 2r, there exists a point w
on the line segment [z1, z2] such that f �(w) ≥ 1/2(ε/2)(2r)−1 = ε/8r. Since
w ∈ B(z0, r) and r was arbitrarily small, we can find arbitrarily high values of
f �(z) arbitrarily close to z0. So F is abnormal at z0.

3 Montel’s theorem

We shall say that a class F of functions on S ⊂ C∞ omits a value z ∈ C∞ if
for all w ∈ S and all f ∈ F , f(w) �= z. We shall also say that F attains a value
z ∈ C∞ if there exists f ∈ F and w ∈ S such that f(w) = z.

Theorem 9 Montel’s theorem. A family F of analytic fuctions on an open
set U ⊂ C∞ which omits three distinct values is normal.
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Proof. Let K � U . We construct a bound on the spherical derivative f �(z), for
f ∈ F and z ∈ K. Suppose that each f ∈ F omits distinct a, b, c. Let h be
the unique Möbius transformation which maps a, b, c to 0, 1,∞. If we prove the
theorem for the class {f ◦h : f ∈ F} then since (f ◦h)�(z) = f �(z)h�(f(z)), and
since the spherical derivative of h is bounded away from 0 on C∞ by Lemma 5,
we will have proved the theorem for F as well. So we can assume that a, b, c =
0, 1,∞. We will find a uniform bound on f � over K which works for any function
f which omits the values 0, 1,∞, as this includes all the functions in F . So let f
be such a function. Choose ε > 0 such that Kε ⊂ U . Fix z0 ∈ K. Without loss of
generality we can assume that z0 = 0 (by applying a suitable Möbius isometry
to the domain of f). Let i0 be the injection of C into C∞ given by equation
(1). Since f omits the value ∞, we can consider the map j0 ◦ (f | Bσ(0, ε)) ◦ i0.
Let f̂ be this map restricted to B(0, ε). (Note that i0(B(0, ε)) ⊂ Bσ(0, ε).) From
equation (2), we see that

f �(0) = |f̂ ′(0)|
(
1 + |f̂(0)|2

)
.

We can assume that |f̂(0)| < 2, because if necessary we can replace f with 1/f
which also omits 0, 1. So our problem is reduced to that of finding an upper bound
for |f̂ ′(0)| which works for all z0 and f ∈ F . Consider now the map g : B(0, 1) →
C given by g(z) = f̂(εz). Then g′(0) = εf̂ ′(0). So we just need to find an upper
bound for |g′(0)|. Now g is an analytic function on B(0, 1) which omits the values
0 and 1 – otherwise known as a Picard function – so by the constructive version
of Schottky’s theorem (Theorem 5.6.19, [Bishop and Bridges 1985]), g satisfies

|g(z)| ≤ Φ(α, |z|) (z ∈ B(0, 1))

so long as |g(0)| < α, where

Φ(α, r) = 1 + exp(218e18(α+ 3)8(1 + r2)4(1 − r)−8). (11)

But |g(0)| = |f̂(0)| < 2, so by combining the above with Cauchy’s inequalities
on C (5.4.13.1, [Bishop and Bridges 1985]), we obtain

g′(0) ≤ 2 ‖g‖S(0,1/2) ≤ 2 Φ(2, 1/2).

This bound on g′(0) in turn gives us a bound of 10ε−1Φ(2, 1/2) on f �(z0). Since
z0 is a general point in K, and f a general function on U omitting 0, 1 and ∞, we
have proven normality of F on K. Since K was a general compact set well-inside
U , we have shown that F is normal on U .

Theorem 10. Let F be an abnormal family of functions on an open set U ⊂
C∞, and let a1, a2, a3 be three distinct points in C∞. Then there is f ∈ F , and
z ∈ U such that f(z) ∈ {a1, a2, a3}.
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Proof. Let K � U be such that F is abnormal on K and choose r > 0 such
that Kr ⊂ U . Then for any f ∈ F and any ai, either there is z ∈ Kr such that
f(z) = ai or σ(f(Kr/2), ai) > 0. (This can be derived from Theorem 1, which
implies that there is a δ > 0 such that f(K)δ ⊂ f(Kr/2).) If the latter case
holds for each of a1, a2, a3, then f belongs to the class of functions which omit
these three values on the open set K<r/2. This class is normal by Theorem 9,
so there is a uniform bound k on f �(z) for all z ∈ K. But since F is abnormal
on K, we can choose f ∈ F which exceeds this bound. For this f we obtain a
contradiction if the above case σ(f(Kr/2), ai) > 0 is satisfied for i = 1, 2, 3, so
for some i we must have z ∈ Kr ⊂ U such that f(z) = ai, as desired.

Theorem 11. There exists a function k0 : R+ × (0, 1) → R+ such that for
any m > 0 and r ∈ (0, 1), for any three points a1, a2, a3 ∈ C∞ satisfying
σ(a1, a2, a3) ≥ m, and for any analytic f on Bσ(0, r) satisfying f �(0) ≥ k0(r,m),
f takes one of the values a1, a2, a3 on Bσ(0, r).

Proof. First we prove that there is a limit k1 so that any f defined on Bσ(0, 1/2)
with f �(0) > k1 will attain one of the values 0, 1,∞ on Bσ(0, 1/2). This is not
difficult: for any z ∈ C∞ either f attains z on Bσ(0, 1/2) or σ(f(Bσ(0, 1/4)), z) >
0 (by Theorem 1 – see proof of Theorem 10 above), but if the latter holds for
each value of z from {0, 1,∞} then f belongs to a normal class of functions on
B(0, r/2) by Theorem 9 and so there is a bound k1 on f �(0) for all f in this
class. If f exceeds this bound then the only remaining option is that f attains
one of 0, 1,∞.

Now fix m > 0 and r ∈ (0, 1). Let us define the scaling factor

θ(r) = r(1 − r2)−
1
2 .

This function is chosen so that j0 maps Bσ(0, r) to B(0, θ(r)). Then we can
define a scaling function g : Bσ(0, 1/2) → Bσ(0, r) by

g(z) = i0(θ(r) θ(1/2)−1 j0(z)).

Define the function k0 by

k0(r,m) = πm−3 θ(1/2) θ(r)−1k1.

Suppose that f is an analytic function on Bσ(0, r) such that f �(0) > k0(r,m).
Let a1, a2, a3 ∈ C∞ be such that σ(a1, a2, a3) > m. Let h be the unique Möbius
function taking (a1, a2, a3) to (0, 1,∞). Consider the function F = h◦f ◦g. Then
F is analytic on B(0, 1/2) and F �(0) > k1 by Lemma 4 so F attains one of the
values 0, 1,∞, whence f attains one of the values a1, a2, a3, as desired.
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4 Generalising Montel’s Theorem

Theorem 12. Let U be an open set in C∞ and let ϕ1, ϕ2, ϕ3 be analytic func-
tions on U such that

ϕi(z) �= ϕj(z) (z ∈ K, 1 ≤ i < j ≤ 3). (12)

Let F be a family of analytic functions on U , such that for every z ∈ U , every
f ∈ F and every i ∈ {1, 2, 3}, we have f(z) �= ϕi(z). Then F is normal in U .

Theorem 13. Let U be open and let ϕ1, ϕ2, ϕ3 be analytic functions on U sat-
isfying equation (12) above. Let F be an abnormal family of analytic functions
on U . Then there is f ∈ F , i ∈ {1, 2, 3} and z ∈ U such that f(z) = ϕi(z).

In proving these theorems we shall make use of the following:

Proposition14. Let ϕ be an analytic function on an open set U ⊂ C∞, and
suppose ϕ(z) �= 0 for all z ∈ U . Let K � U . Then m(ϕ,K) > 0.

Proof. Use Theorem 1. Since K � U we have ϕ(K) � ϕ(U) and 0 �∈ ϕ(U), from
which the result follows.

We state the following without proof.

Lemma15. Let r > 0. Then for all ε > 0 there is δ ∈ (0, r/2) such that
for any a1, a2, a3 ∈ C∞ with σ(a1, a2, a3) ≥ r and any b1, b2, b3 ∈ C∞ with
σ(ai, bi) ≤ δ (1 ≤ i ≤ 3), if H is the unique Möbius transformation taking ai to
bi then σ(H(z), z) ≤ ε for all z ∈ C∞.

Lemma16. Let K be a compact set in C∞, and let ϕ1, ϕ2, ϕ3 be differentiable
functions on K. Let r > 0 be such that

σ(ϕ1(z), ϕ2(z), ϕ3(z)) ≥ r (z ∈ K). (13)

For w,w′ ∈ K, let Hw,w′ be the unique Möbius transform which maps ϕi(w) to
ϕi(w′). Then the limit

L(z, w) = lim
w′→w

σ(Hw,w′(z), z)
σ(w,w′)

(w ∈ K, z ∈ C∞)

exists everywhere and there is a bound B such that L(z, w) < B for all z ∈ C∞
and w ∈ K.

Proof. We shall compute L(z, w). To do this we need to reduce to cases where
z, Hw,w′(z) and ϕi(w) are bounded away from ∞, so that we can map back
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to C. Let μ be a Möbius isometry of C∞. Then μ ◦ Hw,w′ ◦ μ−1 is the Möbius
transformation taking μ ◦ ϕi(w) to μ ◦ ϕi(w′), and

σ(μ ◦Hw,w′ ◦ μ−1(μ(z)), μ(z)) = σ(Hw,w′(z), z).

We can break down K into finitely many smaller compact sets Ki such that
ϕk(Ki) is in each case of σ-diameter less than some small constant h > 0. We can
also break down C∞ into compact Lj each of diameter less than h. If h is small
enough then for each i, j there will be a point ζij ∈ C∞ such that σ(ζij , Lj) ≥ h

and σ(ζij , ϕk(Ki)) ≥ h for all i, j, k. Then for each i, j we can apply a Möbius
isometry to take ζij to ∞. So we shall only need to prove our result for w ∈ K and
z ∈ L where we can assume that σ(∞, L) > 0 and σ(∞, ϕi(K)) > 0. Similarly,
we can also assume that σ(∞,K) > 0. Finally, we can assume that there is some
R > 0 such that σ(∞, Hw,w′(L)) ≥ R for all w,w′ ∈ K, by applying Lemma
15 (and breaking down K,L into smaller compact sets if necessary). With all of
these assumptions in place, we are now ready to compute the limit L(z, w). Let
ϕ̂i = i0 ◦ ϕi ◦ j0. and define Ĥw,w′ similarly (for w′, w ∈ K). Since z = Hw,w(z),
we can see that L(z, w) is the spherical derivative - should this be shown to exist
- of the function Gz,w : w′ �→ Hw,w′(z). Since all of our values are safely bounded
away from ∞, it is sufficient to find a uniform bound on

L2(ζ, w) = lim
w′→w

|Ĥw,w′(ζ) − ζ|
|j0(w) − j0(w′)| (w ∈ K, ζ ∈ j0(L)) (14)

We can now compute Ĥw,w′. It is of the form

Ĥw,w′(ζ) =
Aζ +B

Cζ +D

where A,B,C,D are constant polynomials in the six values ϕ̂i(w), ϕ̂i(w′) (1 ≤
i ≤ 3). Let h = j0(w) − j0(w′). Then we need to calculate the limit of

h−1((Aζ +B/Cζ +D) − ζ) = h−1(Cζ +D)−1(−Cζ2 + (A−D)ζ +B)

as h→ 0. As the reader can verify, these polynomials are of forms A = A0 +A1

(and similar for B,C,D) such that A0 etc. are polynomials in ϕ̂i(w) and A1 etc.
are of a symmetrical form so that

lim
w′→w

h−1A1 = A2

where A2 is a polynomial in ϕ̂i(w), ϕ̂′
i(w) (and similar for B,C,D). The poly-

nomials A2 etc. are quite complicated but the values A0 etc. come out to

A0 = D0 = (ϕ̂1(w) − ϕ̂2(w))(ϕ̂2(w) − ϕ̂3(w))(ϕ̂3(w) − ϕ̂1(w))
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and B0 = C0 = 0. When we substitute these identities into equation (14), we
find that the limit L2 exists (since it is the absolute value of a limit we can
calculate), and that

L2(ζ, w) = |D−1
0 (−C2ζ

2 + (A2 −D2)ζ +B2)|.

We can now very easily obtain a bound for this value for all ζ, w from the fact
that there are bounds on ϕ̂i(w), ϕ̂′

i(w) (as these are analytic functions on a
compact domain in C) and |ζ|, and the fact that |D0| is bounded away from 0
because we are assuming that σ(ϕi(w), ϕj(w)) ≥ r for all 1 ≤ i < j ≤ 3 and
w ∈ K.

Proof of Theorem 12. For each w ∈ U , define a Möbius transformation gw by
the conditions

gw(0) = ϕ1(w) gw(1) = ϕ2(w) gw(∞) = ϕ3(w) (15)

For each f ∈ F , define a new function Gf by

Gf (w) = g−1
w (f(w)) (16)

The reader can verify that Gf is analytic and that Gf omits the values 0, 1,∞ on
U . Therefore by Theorem 9, {Gf : f ∈ F} is normal. Now suppose that K � U .
By Proposition 14 there exists r > 0 such that

σ(ϕi(z), ϕj(z)) ≥ r (z ∈ K, 1 ≤ i < j ≤ 3)

If we take the spherical derivative of Gf we find

Gf
�(w) = f �(w)(g−1

w )�(f(w)) + S(f, w) (17)

where

S(f, w) = lim
w′→w

σ(g−1
w (f(w)), g−1

w′ (f(w)))
σ(w,w′)

By Lemma 4,

r3/π ≤ (g−1
w )�(z) ≤ π/r3 (z ∈ K). (18)

We wish to show that there is a bound B on S(f, w) which does not depend on
f ∈ F or w ∈ K. In fact we will find a bound on

T (z, w) = lim
w′→w

σ(g−1
w (z), g−1

w′ (z))
σ(w,w′)

(w ∈ K, z ∈ C∞)
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Applying Lemm 3 to gw, we find that it is sufficient to find a bound on

U(z, w) = lim
w′→w

σ((gw′ ◦ g−1
w )(z), z)

σ(w,w′)
(w ∈ K, z ∈ C∞)

Let Hw,w′ = gw′ ◦ g−1
w . Then Hw,w′ is a Möbius transformation mapping each

ϕi(w) to ϕi(w′). Thus Lemma 16 gives a bound on U . If we look again at
equation (17) we see that L is bounded and (g−1

w )�(f(w)) is bounded away from
0. Therefore since G�

f is bounded on K by normality, f � must also be bounded
on K. So F is normal.

Proof of Theorem 13. The proof follows that of Theorem 12. This time we know
that F is abnormal so that

{
f � : f ∈ F}

is unbounded on some compactK � U .
By the same argument as in the proof of Theorem 12, {G�

f : f ∈ F} must also
be unbounded on K. (Here we use boundedness of S(f, w) from the proof of
Theorem 12 and the fact that (g−1

w )�(f(w)) is bounded above by equation (18).)
Therefore {Gf : f ∈ F} is abnormal and so by Theorem 10 there is f ∈ F and
z ∈ U such that Gf (z) ∈ {0, 1,∞}. But then f(z) ∈ {ϕ1(z), ϕ2(z), ϕ3(z)}, as
required.

Theorem 17. Let F be a class of functions which is abnormal on an open set
U . Let m > 0, and suppose that for each f ∈ F and i ∈ {1, 2, 3} there is ai,f such
that σ(a1,f , a2,f , a3,f) ≥ m for all f ∈ F . Then there is an f ∈ F , i ∈ {1, 2, 3}
and z ∈ U such that f(z) = ai,f .

Proof. For each f ∈ F let hf be the unique Möbius transformation taking
(a1,f , a2,f , a3,f) to (0, 1,∞), and letGf = hf◦f . Then by Lemma 5, {Gf : f ∈ F}
is also abnormal on U and so by Theorem 10 there is z ∈ U and f ∈ F such
that Gf (z) ∈ {0, 1,∞}, whence f(z) ∈ {ai,f}.

Theorem 18. Suppose that F is a class of functions on an open set U ⊂ C∞,
and that F is abnormal at z0 ∈ U . Suppose also that K1,K2,K3 are compact
sets in C∞ such that σ(K1,K2,K3) > 0. Then there exist i ∈ {1, 2, 3} and f ∈ F
such that Ki ⊂ f(U).

Proof. By countable choice we can assume that F is countable: just choose
fm,n ∈ F such that f �

m,n exceeds m on Bσ(z0, 2−n), and then replace F by
{fm,n : m,n ∈ Z+}. Choose r > 0 such that Bσ(z0, r) ⊂ U . Each f ∈ F maps
the compact Bσ(z0, r/2) to a compact set Jf and the open Bσ(z0, r) to an open
Uf such that Jf � Uf , by Theorem 1. So we can choose r(f) > 0 such that
(Jf )r(f) ⊂ Uf . For each i ∈ {1, 2, 3}, consider

μi(f) = sup {σ(z, Jf ) : z ∈ Ki} .

1916 Clark J.: Constructive Analysis of Iterated Rational Functions



Either μi(f) > 0 or μi(f) < r(f). In the former case choose ai,f ∈ Ki so
that σ(ai,f , Jf ) > 0. Otherwise choose ai,f ∈ Ki such that σ(ai,f , Jf ) < r(f).
(This requires countable choice, which is why we made sure F is countable.)
By Theorem 17 above, since F is abnormal on B(z0, r/2), there are f ∈ F , i ∈
{1, 2, 3} and w ∈ Bσ(z0, r/2) such that f(w) = ai,f . Then σ(ai,f , Jf )�>0, so we
must have μi(f) < r(f). Therefore Ki ⊂ (Jf )r(f) ⊂ Uf = f(Bσ(z0, r)) ⊂ f(U).

5 Julia sets and Fatou sets

Let R be a rational map on C∞. Consider the family of iterations of this function:
F = {Rn : n ∈ Z+}. The Julia set of R is defined to be the set of points z ∈ C∞
at which F is abnormal. Similarly the Fatou set of R is defined to be the set of
points z ∈ C∞ at which F is normal. These sets are denoted by J(R) and F (R)
respectively. It follows immediately from the definitions of local normality and
abnormality that J(R) is closed and F (R) is open and that J(R) ∩ F (R) = ∅.

Given a map R we say that a set X is forward invariant under R if R(X) ⊂
X and backward invariant under R if R−1(X) ⊂ X . We also say that X is
completely invariant under R if it is both forward and backward invariant
(that is, if z ∈ X ⇔ R(z) ∈ X).

Theorem 19. Let R be a rational map on C∞. Then J(R) and F (R) are com-
pletely invariant under R.

Proof. The proof is left as an exercise for the reader: apply Theorem 8 several
times.

Theorem 20. Let R be a rational map on C∞ of degree ≥ 2, and let p ∈ Z+.
Then J(R) = J(Rp) and F (R) = F (Rp).

Proof. Omitted. Apply Theorem 8 in each case.

Lemma21. Let R be a rational map on C∞ of degree d ≥ 2. Let λ > 0. Then
there are λ1, λ2 ∈ (0, λ) such that for all z0 ∈ C∞ one of the following conditions
holds:

1. given any enumeration z1, . . . , zd of the predecessors of z0 under R, there is
k ∈ {1, 2, . . . , d} such that σ(z0, zi) ≥ λ1 for all i ∈ {1, 2, . . . , d} s.t. i �= k

2. R(Bσ(z0, λ2)) ⊂ Bσ(z0, λ2).

Proof. Let δ be a modulus of continuity for R on C∞. Let r = δ(1/2)/4. Let
K = 3−

1
2 . Suppose that λ > 0 is given and define

s := min
{
λ, r, 1

4 (K
−1 r2)

}

1917Clark J.: Constructive Analysis of Iterated Rational Functions



Let Δ be the function defined in equation (4). Let λ1 = 1
2Δ(0, s). Let λ2 =

Δ(0, s). Note that λ1, λ2 < s ≤ λ.
Now fix z0 ∈ C∞. Without loss of generality we can assume that z0 = 0,

because we can conjugate R by a Möbius isometry which takes z0 to 0. Let
z1, . . . , zd be the R-predecessors of z0 = 0. For each 1 ≤ i ≤ d, either σ(0, zi) ≥
λ1 or σ(0, zi) ≤ Δ(0, s). If the former holds for all but one i then we are done, so
we may assume that the latter holds for two values of i, which we can take to be
1 and 2. It follows that |z1| ≤ s and |z2| ≤ s. Now let R̂ = j0 ◦R ◦ i0, defined on
B(0, s). We prove for all z ∈ B(0, s) that R(z) ∈ B(0, s). Then when we change
back to the C∞-metric, we will immediately get R(Bσ(z0, λ2)) ⊂ Bσ(z0, λ2), as
desired.

Given any w ∈ B(0, 3r) we have σ(0, w) ≤ |w| ≤ 3r so σ(w, z1) ≤ 4r = δ(1
2 )

so σ(R̂(w), 0) ≤ 1
2 , which in turn means that |R̂(w)| ≤ 3−

1
2 = K. So in particular,

R̂ is an analytic function on B(0, 3r), where it can be represented as

R̂(z) = g(z)(z − z1)(z − z2) (z ∈ B(0, 3r))

for some g analytic on B(0, 3r). Also, ‖R̂‖B(0,3r) ≤ K. Now suppose that w ∈
S(0, 2r). we have |zi| ≤ s ≤ r (i = 1, 2), so |w − zi| ≥ r, so |g(w)| ≤ Kr−d. By
the maximum principle (Theorem 5.5.2, [Bishop and Bridges 1985]), it follows
that

‖g‖B(0,2r) ≤ Kr−2.

Now, suppose that z is any point in B(0, s). Then z ∈ B(0, 2r) and so

|R̂(z)| = |g(z)| · |z − z1| · |z − z2|
< K r−2 (2s)2

≤ s.

Which completes the proof.

Given a rational map R, define an R-chain to be a sequence (z1, . . . , zn) of
points such that R(zi) = zi+1 (1 ≤ i ≤ n− 1).

Lemma22. Let R be a rational map of degree d ≥ 2. Let λ > 0 and n ∈ Z+.
Then there exist λ1 ∈ (0, λ) such that for every z0 ∈ C∞ one of the following
conditions holds:

1. There is an R-chain (z−n, . . . , z−1, z0) such that σ(zi, zj) ≥ λ1 for all i, j
such that −n ≤ i < j ≤ 0.

2. There is k ∈ Z+ such that k ≤ n and a neighbourhood U of z0 such that
U ⊂ Bσ(z0, λ) and Rk(U) ⊂ U .
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Proof. We proceed by induction on n. The n = 1 case follows immediately from
Lemma 21. Suppose that our result holds for some n ∈ Z+. Let R be a rational
map of degree ≥ 2 and let λ > 0. Apply the induction hypothesis to the value λ
to obtain a constant λ′1 ∈ (0, λ) such that for every z0 ∈ C∞, either case (1) or
case (2) holds for the value n. Now apply Lemma 21 to the function Rn+1 and
the value λ. Let λ′′1 , λ

′′
2 ∈ (0, λ) be the values thereby derived. Let

λ1 = min{λ′1, δ(λ′1/2), λ′′1},

where δ is the modulus of continuity of R on C∞. We wish to prove that this
constant λ1 satisfies the n+1 case of the present lemma. So fix z0 ∈ C∞. By the
choice of λ′1 above (induction hypothesis applied to λ) we obtain that either case
(1) or case (2) of the present lemma holds with regard to z0. If case (2) holds,
then we are done, because the value k will do just as well for n+ 1 as for n. So
we may suppose that case (1) holds. Let (z−n, . . . , z0) be the resulting R-chain.
Thus σ(zi, zj) ≥ λ′1 whenever −n ≤ i < j ≤ 0. By choice of constants λ′′1 and λ′′2 ,
either case (1) or case (2) of lemma 21 holds with regard to z0 (and the function
Rn+1). If case (2) holds, then we are done: let k = n+ 1 and U = Bσ(z0, λ′′2 ) to
get case (2) of the present lemma. So suppose that case (1) of Lemma 21 holds.
The R-predecessors of z−n (of which there are d ≥ 2) form a subsequence of
the Rn+1-predecessors of z0, so we can choose an R-prececessor z−n−1 of z−n

so that σ(z−n−1, z0) ≥ λ′′1 . It remains to prove that σ(zi, zj) ≥ λ1 whenever
−n − 1 ≤ i < j ≤ 0. If i = −n − 1 and j = 0 then result follows from choice
of z−n−1. If i > −n− 1 then result follows from the induction hypothesis (since
λ1 ≤ λ′1). So we may suppose that i = −n− 1 and j < 0. Therefore the induction
hypothesis gives σ(zi+1, zj+1) ≥ λ′1. But then σ(zi, zj) ≥ δ(λ′1/2) ≥ λ1, so our
proof is complete.

Lemma23. Let R be a rational map of degree ≥ 2, and suppose that W is an
open set which meets J(R). Then there exists n ∈ Z+ such that

J(R) ⊂ Rn(W ) ∪Rn+1(W ) ∪Rn+2(W ) (19)

Proof. Suppose that w0 ∈ J(R) ∩W and that Bσ(w0, 2r) ⊂ W . Apply lemma
22 to the rational function R with λ = 1/2 and n = 2. Let λ1 be the constant
so obtained. The set {Rn : n ∈ Z+} is an abnormal family on Bσ(w0, r) and so
there is some z ∈ Bσ(w0, r) and n ∈ Z+ such that (Rn)�(z) > k0(r, λ1), where
k0 is the function constructed in Theorem 11. We prove that this n satisfies
equation (19).

Let z0 ∈ J(R). By choice of λ1, either case (1) or case (2) of Lemma 22
holds. But case (2) is not possible: for suppose there is a neighbourhood U of z0
such that U ⊂ Bσ(z0, 1/2) and Rk(U) ⊂ U for some k ∈ {1, 2}. Then the family
{Rkm : m ∈ Z+} is normal on U by Theorem 9 (since we can choose three
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distinct points lying outside Bσ(z0, 1/2), and since Rkm(U) ⊂ U for all k ∈ Z+),
and therefore z0 ∈ F (Rk) = F (R), contradicting our initial assumption that
z0 ∈ J(R). So we must have case (1): there is an R-chain (z−2, z−1, z0) such that
σ(zi, zj) ≥ λ1 whenever −2 ≤ i < j ≤ 0. By Theorem 11, there is ζ ∈ Bσ(z, r)
such that Rn(ζ) = zi for some i ∈ {−2,−1, 0}. Thus

z0 ∈ Rn−i(Bσ(w0, 2r)) ⊂ Rn−i(W ).

Since z0 was a general element of J(R), we have shown that J(R) ⊂ Rn(W ) ∪
Rn+1(W ) ∪Rn+2(W ), as desired.

Theorem 24. Let R be a rational map of degree ≥ 2. Then every point in J(R)
is a limit point of J(R).

Proof. Fix z0 ∈ J(R). Given any open neighbourhood W of z0, we know from
Lemma 23 that there exists n ∈ Z+ such that J(R) ⊂ Rn(W ) ∪ Rn+1(W ) ∪
Rn+2(W ). Apply lemma 22 to the function R and the constants λ = 1/2 and n =
3. For the point z0, case (2) cannot hold: for suppose that U is a neighbourhood
of z0 such that U ⊂ Bσ(z0, 1/2) and Rk(U) ⊂ U for some k ∈ {1, 2, 3}. Then
clearly Rkm(U) ⊂ U for all m ∈ Z+, and so by Theorem 9 (since we can choose
three distinct points outside U ⊂ Bσ(z0, 1/2), we must have z0 ∈ F (Rk) = F (R),
contradicting our assumption that z0 ∈ J(R).

Therefore we must have case (1) of Lemma 22: there is an R-chain
(z−3, . . . , z0) such that zi �= zj whenever −3 ≤ i < j ≤ 0. These four points
all lie in J(R) by theorem 19 and so by the pigeonhole principle there must be
i, j, k with −3 ≤ i < j ≤ 0 and 0 ≤ k ≤ 2 such that zi, zj ∈ Rn+k(W ). Therefore
there are w1, w2 ∈W such that Rn+k(w1) = zi and Rn+k(w2) = zj. Since Rn+k

is continuous, w1 �= w2. By Theorem 19, w1, w2 ∈ J(R). Either z0 �= w1 or
z0 �= w2. Either way, there is a point in J(R)∩W other than z0. Since W was an
arbitrary neighbourhood of z0, we have shown that z0 is not isolated in J(R).

We need a very small lemma before proving the next theorem.

Lemma25. Let n ∈ Z+ and let Sn = {1, 2, . . . , n}. Suppose that f : Sn → Sn.
Then there is x ∈ Sn and N ∈ Z+ such that fN (x) = x.

Proof. Apply the pigeonhole principle to {1, f(1), . . . , fn(1)}.

Theorem 26. Let R be a rational map of degree ≥ 2 and suppose that W is an
open set which meets J(R). Then there is an n ∈ Z+ such that J(R) ⊂ Rn(W ).

Proof. Suppose that W is an open set meeting J(R) at w. We know from the-
orem 24 that w is a limit point of J(R) and so we can choose three distinct
points w1, w2, w3 ∈ W ∩ J(R). Choose a positive r ≤ σ(w1, w2, w3) such that

1920 Clark J.: Constructive Analysis of Iterated Rational Functions



Bσ(wi, r) ⊂ W . Then the compact sets Ki := Bσ(wi, r/3) � W have chordal
distance ≥ r/3 from one another and so we can apply Theorem 18 to each of
the sets Ki to obtain k(i) ∈ {1, 2, 3} and n(i) ∈ Z

+ such that Kk(i) ⊂ Rn(i)(Ki).
By Lemma 25 there is l ∈ {1, 2, 3} and N ∈ Z+ such that Kl ⊂ RN(Kl). We
can then prove by induction that RmN (Kl) ⊂ R(m+1)N(Kl) for all m ∈ N. Since
wl ∈ J(R) = J(RN ), by the previous theorem there is n ∈ Z+ such that

J(R) = J(RN ) ⊂ RNn(Kl) ∪RN(n+1)(Kl) ∪RN(n+2)(Kl) = RN(n+2)(Kl).

and therefore J(R) ⊂ RN(n+2)(W ).

6 Critical points

Let R be a rational map on C∞. We say that z ∈ C∞ is a critical point of R if
R�(z) = 0. We outline some important facts about critical points which we will
need later when we come to construct repelling cycles.

Theorem 27. Counting multiplicities, there are 2d − 2 critical points of any
rational map R, where d is the degree of R.

Proof. We omit the proof, as it is sufficiently like the classical version: see the
proof of Theorem 2.7.1, [Beardon 1991].

Proposition28. Let f be an analytic function on an open set U ⊂ C∞ and
Bσ(w0, r0) ⊂ f(U). Suppose that z0 ∈ U is such that f(z0) = w0. Suppose also
that for any compact K � Bσ(w0, r0) there exists a compact L � U such that
f−1(K) ⊂ L. Suppose finally that f � is nonzero on U . Then there is a unique
analytic function g : B(w0, r0) → U such that g(w0) = z0 and f ◦g = idBσ(w0,r0).

Proof. The proof is omitted for reasons of space. This proposition is a general-
isation of the local inverse function theorem on C, which is proved much as in
the classical case. See e.g. [Gamelin 2001], p. 234.

Theorem 29. Let R be a rational map on C∞ of degree ≥ 2. Let z0 be an
attracting fixed point of R. Then there is a critical point c of R such that Rn(c) →
z0 as n→ ∞.

Proof. Choose r > 0 and θ ∈ (0, 1) such that

z ∈ Bσ(z0, r) ⇒ σ(R(z), z0) ≤ θ · σ(z, z0).

(This can be done by considering a Taylor expansion of f local to z0, considered
as an analytic C-function.) Let c be a critical point of R. Apply Lemma 22 to
R with λ = r/2 and n = 2 to obtain λ1 ∈ (0, λ). So either there is an R-chain

1921Clark J.: Constructive Analysis of Iterated Rational Functions



(z1, z2, c) such that σ(z1, z2, c) ≥ λ1 or there is a neighbourhood U of c such
that U ⊂ Bσ(c, r/2) and Rk(U) ⊂ U for some k ∈ {1, 2}. In the latter case
choose three distinct points a1, a2, a3 ∈ U and let λ1 = σ(a1, a2, a3). (So we
define the constant λ1 differently according to which of these two cases hold.)
Let k0 be the function given in Theorem 11 and choose n ∈ Z+ such that
R�(z0)n < (1 + k0(r/2, λ1))−1. We shall prove that either

(i) there is an analytic inverse S to Rn definable on Bσ(z0, r/2), or

(ii) there is a critical point c0 of Rn such that Rn(c0) ∈ Bσ(z0, r).

Suppose that (i) holds. Then S�(z0) = (R�(z0))−n > k0(r/2, λ1) by choice of n,
and so by Theorem 11 there is a point z ∈ Bσ(z0, r/2) such that S(z) is one
of the three distinct points z1, z2, c or one of the three distinct points a1, a2, a3,
depending on how λ1 was defined above. In the former case, Rn−j(c) ∈ Bσ(z0, r)
for some j ∈ {0, 1, 2} and so clearly (Rm(c))m∈Z+ converges to z0 by choice of r.
In the latter case, Rn(al) = z. But al ∈ U and R(U) ⊂ U so z ∈ U ⊂ Bσ(c, r/2)
and therefore c ∈ Bσ(z0, r) so that, again, (Rm(c))m∈Z+ converges to z0.

Now suppose that (ii) holds. Let C be an enumeration of the 2d− 2 critical
points of R. Since

0 = (Rn)�(c0) = R�(c0) · R�(R(c0)) · · · · ·R�(Rn−1(c0))

We can see that the distance from c0 to the finite set

C ∪R−1(C) ∪ . . . ∪ (Rn−1)−1(C)

must be zero. (For if it was greater than 0, we would have (Rn)�(c0) > 0.) So
since c0 lies in the open set Bσ(z0, r), there is a point w ∈ R−q(C) ∩ Bσ(z0, r)
for some q < n so that once again we obtain a critical point c = Rq(w) of
R such that (Rm(c))m∈Z+ converges to z0. It remains to prove our claim that
either (i) or (ii) must hold. Let c1, . . . , cN be an enumeration of the critical
points of Rn (where N = 2dn − 2). For each i, either σ(Rn(ci), z0) > r/2 or
σ(Rn(ci), z0) < r. If the latter holds for some i then let c0 = ci and we have
(ii). So we may suppose that the former holds for all i ∈ {1, . . . , N}. Then for
any z ∈ (Rn)−1(Bσ(z0, r/2)) and any ci, we have Rn(z) �= Rn(ci) and so z �= ci.
Thus (Rn)� is nonzero on (Rn)−1(Bσ(z0, r/2)). So we can apply Proposition 28
to obtain the desired inverse to Rn on B(z0, r/2). (Note that the hypothesis
of Proposition 28 concerning compact sets is automatically satisfied because the
domain of Rn is all of C∞.) Thus we have satisfied either (i) or (ii) above, thereby
completing the proof.

Corollary 30. Let R be a rational map on C∞ of degree ≥ 2. Let (z1, . . . , zm)
be an attracting m-cycle of R. Then there is a critical point c of R such that
Rn(c) → {z1, . . . , zm} as n→ ∞.
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Proof. z1 is a fixed point of Rm and so by the above there is a critical point c′

of Rm such that Rmn(c′) → z1 as n→ ∞. We can choose a neighbourhood N of
c so that all points in N similarly converge to z1. Since (Rm)�(c′) = 0 we have
R�(c′) · · ·R�(Rm−1(c′)) = 0 and so there must be a critical point c of R lying
in one of the open sets N, . . . , Rm−1(N). This point will necessarily converge to
the cycle {z1, . . . , zm} as desired.

7 Finding repelling cycles

We are now ready to prove the main result of this paper, that any rational
function R of degree d ≥ 2 always has repelling cycles, which necessarily lie in
J(R). We shall state this formally at the end of this section along with some
other results of the same form. We break down the proof of this theorem into a
series of claims.

Let R be a rational function of degree d ≥ 2. Then R can be expressed in
lowest terms as P/Q where P and Q are polynomials with coefficients in C. Our
aim is to find a repelling cycle of R, and so it does not matter if we commute R
with a Möbius isometry. Therefore we shall assume that R(0) �= 0,∞ and that
R(∞) �= 0,∞. From these assumptions it follows that that P and Q are monic
of degree d.

For any t ∈ C define

Rt(z) =
(1 − t)P (z) + t

(1 − t)Q(z) + tzd
=
Pt(z)
Qt(z)

.

Claim 1 There exists a finite set of points {t1, . . . , tN} ∈ B(0, 2)∼{0, 1} such
that for any t ∈ B(0, 2)∼{t1, . . . , tN}, the zeros of Pt are pairwise distinct from
the zeros of Qt.

Proof. Let z1, . . . , z2d ∈ C be the roots of the polynomial P (z)zd −Q(z). Con-
sider the rational function S defined by

S(z) =
Q(z)

Q(z) − zd

Note that this is a rational function of degree d expressed in lowest terms: Since
Q(0) �= 0, the zeros of the numerator are distinct from the zeros of the denomi-
nator. So we can consider S as a rational function on C∞. Let ti = S(i0(zi)) for
1 ≤ i ≤ 2d. Then ti ∈ C∞. Suppose that t ∈ C and i0(t) �= ti for all 1 ≤ i ≤ 2d.
We wish to prove that for any z ∈ C, either

(1 − t)P (z) + t �= 0 or (1 − t)Q(z) + tzd �= 0.

So fix z ∈ C. For any 1 ≤ i ≤ 2d, either z �= zi or Q(z)/(Q(z) − zd) �= t. We
consider these two cases in turn.
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Suppose that z �= zi for all 1 ≤ i ≤ 2d. Then P (z)zd �= Q(z). Either t �= 1 or
t �= 0. If t �= 1 then (1−t)P (z)zd �= (1−t)Q(z) and so either (1−t)P (z)zd+tzd �=
0 or (1− t)Q(z)+ tzd �= 0. In the former case it follows that (1− t)P (z)+ t �= 0.
If t �= 0 then

tP (z)zd + (1 − t)Q(z)P (z) �= tQ(z) + (1 − t)P (z)Q(z)

so either tP (z)zd + (1 − t)Q(z)P (z) �= 0 or tQ(z) + (1 − t)Q(z)P (z) �= 0. It
then follows that either tzd + (1 − t)Q(z) �= 0 (cancel P in first equation) or
(1 − t)P + t �= 0 (cancel Q in second equation). This deals with the case where
z �= zi for all 1 ≤ i ≤ 2d. So we consider the second case, where

Q(z)
Q(z) − zd

�= t (20)

We know that the polynomials Q(z) and Q(z) − zd have no common zeros so
either Q(z) �= 0 or Q(z)− zd �= 0 for the particular z we have fixed. In the latter
case we can multiply equation 20 by Q(z) − zd to get tzd + (1 − t)Q(z) �= 0. So
suppose that Q(z) �= 0. Either |Q(z) − zd| > 0 (a case we have just dealt with)
or |Q(z)− zd| < (1 + |t|)−1|Q(z)|. In the latter case |t(Q(z)− zd)| < |Q(z)| and
so tzd + (1 − t)Q(z) �= 0.

Now fix i ≤ 2d. We prove that ti �= 0, 1. First we prove that Q(zi) �= 0. P
and Q are in lowest terms so either Q(zi) �= 0 or P (zi) �= 0. But we also know
that either Q(zi) �= 0 or zi �= 0 (because R(0) �= ∞). Since Q(zi) = P (zi)zd

i , we
obtain in any case that Q(zi) �= 0. Now, if Q(zi) �= 0 then ti �= 0. But also zi �= 0
(because P (zi)zd

i = Q(zi) �= 0) and so Q(zi) �= Q(zi) − zd
i , whence ti �= 1.

If we eliminate those ti sufficiently close to ∞ and map the rest back to C

via j0, then we obtain the desired sequence, and the claim is proved.

Now fix a sequence of distinct odd integers p1, . . . , pn. such that (pi, pj) = 1
for all 1 ≤ i < j ≤ n. We shall hereafter additionally demand of R that
Rpi(∞) �= ∞(1 ≤ i ≤ n). Observe that this is a safe assumption to make,
because we can conjugate R by a Möbius isometry which ensures this as well
as our previous assumptions on R. Let p = pi for some fixed but arbitrary
1 ≤ i ≤ n. Consider Rt(z) as a rational function in C[t](z). (That is, consider t
as an indeterminate, construct the polynomial ring C[t] and consider Pt and Qt

as coprime polynomials in C[t][z].) As such, the function Rt can be iterated and
the resulting rational function expressed as a quotient of coprime polynomials:

Rp
t (z) =

Pt,p(z)
Qt,p(z)

.

(Note that the subscript t has now become purely formal, although one can
substitute values of t so long as we then revert to considering rational functions
in C(z).)
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Consider the polynomial Tt,p ∈ C[t][z] given by

Tt,p(z) = Pt,p(z) − zQt,p(z).

When we substitute t = 0 we know (from the assumption that Rp(∞) �= ∞)
that Q0,p has a nonzero leading coefficient in C. So the leading coefficient of Qt,p

must also be nonzero in C[t]. Therefore Tt,p has degree dp +1. We are interested
in the roots of Tt,p because they represent p-cycles. However we are looking for
proper p-cycles (for reasons that will become clear later on), and in order to
make this distinction we need to divide out the fixed points of R. Therefore we
observe the following:

Claim 2 Tt,1 divides Tt,p over the ring C[t][z].

Proof. Straightforward algebra. Left to the reader.

So let Ut,p = Tt,p/Tt,1 ∈ C[t][p]. We wish to consider the roots of Ut,p. The
problem is that the field C[t](z) is not discrete (see [Mines et al. 1988]) as is
needed in order to construct an extension in which Ut,p has roots. Although this
problem can be circumvented by further abstraction (namely, by considering
the coefficients of P and Q as further indeterminates and working over Z, later
replacing the coefficients with values in C once the appropriate field extension
has been obtained), we need not concern ourselves with these details because we
do not need to work with the roots individually, only with symmetric polynomial
expressions over these roots. For the time being, assume that z1, . . . , zN are new
indeterminates intended to stand for the roots of T , where N = dp − d. We can
take the formal derivative of Rt in C[t](z):

R′
t(z) =

P ′
t (z)Qt(z) − Pt(z)Q′

t(z)
(Qt(z))

2

Observe that by the chain law for derivatives:

(Rp
t )′(z) =

p−1∏
i=0

R′
t(R

i(z))

(where R0(z) = z). Define V ∈ C[t](z1, . . . , zN ) by

V (z1, . . . , zN) =
N∏

i=1

(Rp
t )

′(zi).

Suppose that V is written as a quotient of polynomialsA,B ∈ C[t][z1, . . . , zN ].
We do not need to assume that (A,B) = 1 and so we can assume that A and B
are symmetric in the zi (meaning any permutation of {z1, . . . , zN} leaves A,B
unchanged) and can therefore be represented as polynomials over σ1, . . . , σN
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(with coeffs. in C[t]) where σ1 =
∑

i zi, σ2 =
∑

i<j zizj , . . . σN = z1z2 · · · zN , ac-
cording to the fundamental theorem on symmetric polynomials (constructively
presented in [Mines et al. 1988], Ch. II, Theorem 8.1).

By multiplying out T (z) = TN(z − z1) · · · (z − zN) we see that the σi values
can be resolved into elements of C[t], and therefore that A and B can also be
represented as elements of T . We therefore have a rational expression

Λp(t) = A(t)/B(t)

. Where A and B are polynomials in t. Note that neither A nor B will necessarily
be of determinate degree, nor do we necessarily know if (A,B) = 1 as elements
of C[t].

We need to prove that B is nonzero. To this end we compute the value of
B(0) = B(z1, . . . , zN )(0). Since Rp(zi) = zi and Rp(∞) �= ∞ we must have
R(zi) �= ∞ and therefore Q(zi) �= 0. But B(0) is just a product of terms Q(zi)2

and so must be nonzero. We can perform a similar calculation for the rational
function R1 : z �→ z−d. This function also satisfies Rp

1(∞) �= ∞ (because we
have stipulated that p = pi is odd), and so B(1) �= 0 as well.

Since B is nonzero, by Lemma 6, we can determine a finite set {b1, . . . , bm} ⊂
C∞ of zeros of B. We have further shown that 0, 1 �= bi (1 ≤ i ≤ m). If we
combine this finite set of points with the finite set given by Claim 1 we find that
we have proved the following:

Claim 3 There is a finite set {c1, . . . , cM} of points in C∼{0, 1} and an analytic
function Λp on the open set Lp := B(0, 2)∼{c1, . . . , cM} such that for any t ∈
Lp, Rt is a rational function of degree d and |Λp(t)| is equal to the product∏

i(R
p
t )

�(zi) taken over any enumeration of the roots of Ut,p ∈ C[z].

A couple of observations are perhaps necassary to complete the proof of this
claim: first note that wherever B(t) �= 0, it follows that Qt(zi)2 �= 0 for all i and
therefore that Rp

t (∞) �= ∞, so that we can compute the fixed points of Rp
t for

this specific t and find them to be equal to the zeros of the polynomial T with
this value of t substituted in. Secondly, we are able to switch to the spherical
derivative in the above claim because if Rp(z) = z then

R�(z) · · ·R�(Rp−1(z)) = |R′(z)| · · · |R′(Rp−1(z))|.
(Just use equation (2) repeatedly and cancel terms.)

We wish to compute λp(1). The fixed points of Rp
1 are the roots of zdp+1−1 =

0, with the roots of zd+1 − 1 removed. Also

(Rp
1)

′(z) = −dpz−dp−1

so we obtain
λp(1) = (−dp)dp−d = dp(dp−d).
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We can now construct repelling cycles for R. The point z belongs to a repelling
n-cycle if and only if

Rn(z) = z and (Rn)�(z) > 1.

If |λp(0)| > 1 then there is some z belonging to a repelling p-cycle. On the other
hand if |λp(0)| < 1 then we can use Theorem 29 to find a critical point c which
converges to a p-cycle. There are only so many critical points, so we can only
have finitely many attracting p-cycles. We shall nudge the value of t away from
zero so as to ensure that either λp(t) > 0 or λp(t) < 0. But the problem is that
we may be counting a fixed point of R as both a pi-cycle and a pj-cycle for
different values pi and pj . However:

Claim 4 If for some t ∈ Lp and z0 ∈ C we have Ut,p(z0) = 0 and (Rp
t )′(z0) �= 1,

then Rt(i0(z0)) �= i0(z0).

Proof. If Ut,p(z0) = 0 then Pt,p(z0) − z0Qt,p(z0) = 0 and so Qt,p(z0) �= 0.
Therefore Rp

t (z0) = z0. Let G be Rp
t considered as a map on a dense open subset

of C. Choose a suitable small neighbourhoodN of z0. in which f : w �→ G(w)−w
is analytic. Then f(z0) = 0 and f ′(z0) �= 0. In this case we can choose δ > 0 such
that f(z) = (z−z0)g(z−z0) on B(z0, δ) ⊂ N for some analytic g onB(0, δ). Since
0 �= f ′(z0) = g(0), we can further assume, by adjusting δ if necessary, that g is
bounded away from 0 on B(0, δ). If Rt(i0(w0)) = i0(w0) for some w0 ∈ B(z0, δ)
then w0 is a zero of Tt,1. Since z0 is a zero of Ut,p we have that (w0, z0) is a pair
of zeros of Tt,p (in the sense that (z −w0)(z − z0) | Tt,p). Therefore (z0, w0) is a
pair of zeros of f contradicting the separation of f into (z − z0)g(z − z0) above.
Thus the fixed points of Rt map back via j0 to points a positive distance from
z0 (otherwise we can obtain the above contradiction), from which it follows that
Rt(i0(z0)) �= i0(z0).

Lemma31. Let f1, . . . , fn be nonzero analytic functions on B(0, r) with fi(0) =
0 for 1 ≤ i ≤ n. Let M > 0 be a constant. Then there is r1 ∈ (0, r] and integers
m(i) ∈ Z+ (1 ≤ i ≤ n) such that if we represent fi by

fi(z) = ai,1z + · · · ai,m(i)z
m(i) + gi(z)zm(i)+1 (21)

(where gi is analytic on B(0, r)) then for all z ∈ S(0, r1) and 1 ≤ i ≤ n we have
ai,m(i) �= 0 and

|fi(z) − ai,m(i)z
m(i)| ≤M |ai,m(i)z

m(i)|.

Proof. Since fi is nonzero, we can choose m(i), ai,j , gi so that equation 21 is
satisfied, with ai,m(i) �= 0 (1 ≤ i ≤ n). Define Gi = ‖gi‖B(0,r). Let

s = min
{

1
2M |ai,m(i)|(1 +Gi)−1 : 1 ≤ i ≤ n

}
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and let r1 = min{s, r, 1}. Then for all i, M |ai,m(i)| −Gir1 > 0 and so either

max{|ai,1|, . . . , |ai,m(i)−1|} ≤ rn
1 (M |ai,m(i)| −Gir1) (1 ≤ i ≤ n) (22)

(with the left-hand side equal to 0 when m(i) = 1) or there is some 1 ≤ j ≤ n

and m′(j) < m(j) such that aj,m′(j) �= 0. In the latter case we can replace m(j)
with m′(j) and repeat the above procedure. This can happen only a certain
number of times (at most

∑
i(m(i)− 1)) and so in the end we are sure to arrive

at the case given by equation 22. In this case we have for all z ∈ S(0, r1) and
1 ≤ i ≤ n:

m(i)−1∑
j=1

|ai,j | +Gir
n+1
1 ≤M |ai,m(i)|rn

1 .

From which we get

|fi(z) − ai,m(i)z
m(i)| ≤M |ai,m(i)zm(i)| (1 ≤ i ≤ n)

as desired.

We are now in a position to construct a repelling cycle for R. Choose finitely
many pairwise coprime odd positive integers p1, . . . , pn, where n = 10d− 6. For
each 1 ≤ i ≤ n define Λpi as above. For a fixed but general 1 ≤ i ≤ n let p = pi.
We have calculated that |Λp(1)| > 1 so either |Λp(0)| > 1 or Λp is non-constant.
In the former case we can produce a fixed point z of Rp such that (Rp)�(z) > 1,
as desired. Also, either |Λp(0)| > 0 or |Λp(0)| < 1 If the latter case occurs for
2d − 1 of the indices i (say, the set I1 ⊂ {1, . . . , n}) then we can obtain zeros
zi of U0,pi such that Rpi(zi) = zi and (Rpi)�(zi) < 1. By Lemma 31 above,
R(zi) �= zi. Since pi and pj are coprime for distinct i, j, it follows that the cycles
Ci = (zi, . . . , R

pi−1zi) are distinct (in that if a ∈ Ci, b ∈ Cj for i �= j ∈ I1 then
a �= b). But by Corollary 30 there must be a critical point ci which converges
to the pi-cycle of zi under R. Thus the ci must be distinct from one another.
But there are only 2d− 2 critical points of R by Theorem 27 and so we obtain a
contradiction. Thus for at least (10d− 6)− (2d− 2) = 8d− 4 of the indices i, we
must have Λpi(0) �= 0. Let I be the set of such indices and for each i ∈ I define

fi(z) =
Λpi(0)
Λpi(z)

− 1.

Then each fi is a nonconstant analytic function on a neighbourhood of 0 with
fi(0) = 0. Thus we can apply Lemma 31 to produce r1 > 0 andm(i) ∈ Z+ (i ∈ I)
such that for all z ∈ S(0, r1) and i ∈ I,

fi(z) = aiz
m(i) + hi(z)

where ai �= 0 and
|hi(z)| ≤ 1

2 |ai|rm(i)
1 .
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We will also choose r1 small enough so that

B(0, r1) � dom(fi) (i ∈ I).

Now let us define the quadrant Q ⊂ S(0, 1) by

Q = {ζ ∈ S(0, 1) : arg ζ ∈ [−π/4, π/4]}

and for each i ∈ I let

Qi =
{
ζ ∈ S(0, 1) : ai|ai|−1ζm(i) ∈ Q

}

Let χi be the characteristic function of the set Qi considered as an integrable
function on S(0, 1) (equipped with the obvious measure so that μ(S(0, 1)) = 2π).
Then clearly χi is integrable and

∫
χi = π/2. Let ψ be the step function on

S(0, 1) defined by ψ =
∑

i∈I χi. Then clearly
∫
ψ = (8d − 4)π/2 and so there

must be a point ζ0 ∈ S(0, 1) such that ζ0 lies in the domain of each χi and
ψ(ζ0) > (8d − 4)/4 − 1. So there must be a finite subset I0 ⊂ I of cardinality
(8d− 4)/4 = 2d− 1 such that ζ0 ∈ Qi for all i ∈ I0.

Let ζ = ζ0r1. The reader can verify that for all i ∈ I0,

Re fi(ζ) > 0

and therefore that
|Λpi(ζ)| < |Λpi(0)| (i ∈ I0).

Thus we have for each i ∈ I0, either |Λpi(ζ)| < 1 or |Λpi(0)| > 1. If the former
case holds for all i ∈ I0 then the rational function Rζ (which is of degree d)
has 2d − 1 distinct proper cycles which are all attracting, and so by Theorem
30 there is a critical point converging to each cycle: a contradiction, since there
are only 2d− 2 critical points of Rζ by Theorem 27. Thus there must be at least
one i ∈ I0 such that |Λpi(0)| > 1 and from this we immediately obtain a proper
repelling pi-cycle of R. We state what we have proved.

Theorem 32. Let R be a rational function of degree d ≥ 2. Let p1, . . . , pN be
pairwise coprime odd integers, where N = 10d−6. Then there is 1 ≤ i ≤ N such
that there exists a repelling pi-cycle of R.

Note that with a little extra care, we can easily reduce the value of N to 6d− 4.

Lemma33. Let R be a rational map of degree d ≥ 2. Let z ∈ J(R) and let U
be a neighbourhood of z. Then for any n ∈ Z+ there is an m ∈ Z+ and a point
w ∈ U such that Rmn+2(w) = w.

Proof. Let z ∈ J(R), and let U be an open neighbourhood of z. Since J(R)
contains no isolated points, we can assume that z is not one of the finitely many
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critical values of R2 (i.e. the points R2(c) where c is a critical point of R2). Thus
there are at least four distinct points in R−2(z) (since deg(R2) = d2 ≥ 4) and so
we can choose three of them z1, z2, z3 distinct from z. We can also choose r > 0
such that there are analytic local inverses S1, S2, S3 to R on Bσ(z, r) which map
z to z1, z2, z3 respectively, and which map Bσ(z, r) to a compact neighbourhood
Wi of zi. We can also assume that the chordal distance σ(Zi,Wj) is greater than 0
for 1 ≤ i < j ≤ 3, so that there is a constant k > 0 such that for any ζ ∈ Bσ(z, r)
and any 1 ≤ i < j ≤ 3, σ(Si(ζ), Sj(ζ)) ≥ k. We know that z ∈ J(R) = J(Rn)
so that {Rmn : m ∈ Z+} is abnormal at z. Thus by Theorem 13 there is some
w ∈ Bσ(z, r), m ∈ Z+ and i ∈ {1, 2, 3} such that Si(w) = Rmn(w), so that
Rmn+2(w) = w. Since r can be chosen arbitrarily small, we have completed the
proof.

Theorem 34. Let R be a rational function of degree ≥ 2. Then J(R) is con-
tained in the closure of the set of periodic points of R.

Proof. Immediate from Lemma 33.

With a lot more work, we can in fact prove the following, whose proof is omitted
for reasons of space. (One refines the proof technique of Theorem 32 so as to
construct a repelling cycle which meets an arbitrary neighbourhood of a point
in J(R).)

Theorem 35. Let R be a rational function of degree ≥ 2. Then J(R) is equal
to the closure of the set of repelling periodic points of R.

8 Concluding Remarks

An obvious next step in the development of this theory, is to prove that the sets
J(R) are compact. This is hard to do, and there are even reasons (to do with
the high fractal dimension of some Julia sets) to suspect that it is not possible
to prove compactness for general J(R), or at least that such a result would have
substantial implications even for the classical theory. Compactness for a large
class of Julia sets can be proved however, and I hope to make this the subject of
a future paper. Another question worth further consideration is how one would
develop this theory computationally so as to produce feasible algorithms for e.g.
approximating Julia sets. The major obstacle (there are of course many others)
to this is equation (11) which emerges from the constructive proof of Schottky’s
theorem: the constant in this equation is so large that it excludes any of the
above theorems from practical computational use. In light of this it would be
interesting to know if any results which reduce this constant can be obtained.
(For example, one might restrict consideration to Picard functions f on B(0, 1)
which are polynomials of degree n, and find a reasonable polynomial bound in
terms of n on |f(0)|.)
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