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Abstract: A class of Kripke models for intuitionistic propositional logic is ‘axiomatic’
if it is the class of all models of some set of formulas (axioms). This paper discusses
various structural characterisations of axiomatic classes in terms of closure under cer-
tain constructions, including images of bisimulations, disjoint unions, ultrapowers and
‘prime extensions’. The prime extension of a model is a new model whose points are
the prime filters of the lattice of upwardly-closed subsets of the original model. We also
construct and analyse a ‘definable’ extension whose points are prime filters of definable
sets.

A structural explanation is given of why a class that is closed under images of bisimula-
tions and invariant under prime/definable extensions must be invariant under arbitrary
ultrapowers. This uses iterated ultrapowers and saturation.
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1 Introduction

This is a contribution to the model theory of intuitionistic logic, the logic that
underlies a good deal of the mathematical research of Douglas Bridges. The
paper is written in honour of his 60th birthday.

Our interest is in various structural characterisations of classes of Kripke
models for intuitionistic propositional logic (IPC) that are axiomatic, which
means being the class of all models of some set of formulas (axioms). It was
shown in [Rodenburg, 1986, 13.8] that a class of IPC-models is axiomatic if, and
only if, it is

closed under images of total bisimulation relations, inner submodels, dis-
joint unions, ultrapowers and ultraroots

(these notions will be explained later). An analogous theorem for models of
Boolean modal propositional logic was given in [Venema, 1999]: a class of modal
Kripke models is the class of all models of a set of modal formulas if, and only
if, it is

closed under images of bisimulation relations, disjoint unions and ultra-
filter extensions, while its complement is closed under ultrafilter exten-
sions.

1 C. S. Calude, H. Ishihara (eds.). Constructivity, Computability, and Logic. A
Collection of Papers in Honour of the 60th Birthday of Douglas Bridges.

Journal of Universal Computer Science, vol. 11, no. 12 (2005), 1945-1962
submitted: 9/6/05, accepted: 5/10/05, appeared: 28/12/05 © J.UCS



Here the ultrafilter extension of a model M is a new model whose points are all
the ultrafilters on the underlying set of M.

We will show that a characterisation of this second kind is available for IPC-
axiomatic classes if ultrafilter extensions are replaced by prime extensions whose
points are the prime filters in the Heyting algebra of upwardly-closed subsets of
an IPC-model. An equivalent characterisation results if we replace the prime
extensions by a notion of definable extension, restricting the construction to the
Heyting algebra of definable subsets of the model. The main aim of the paper is
to explore the structural relationships between prime/definable extensions and
ultrapowers, showing how they are connected by bisimulations, and how the
various types of characterisation come to be equivalent.

An IPC-model is also a model for a certain first-order language L, and IPC-
formulas translate into L-formulas with a single free variable. In this way the
model theory of IPC can be identified with that of a fragment of the Boolean
logic of L. We take advantage of the fact that L is countable, applying a standard
fact about the saturation of ultrapowers for countable languages, namely that
an ultrapower modulo a countably incomplete ultrafilter is ℵ1-saturated. This
is used in an iterated ultrapower construction to give a structural explanation
of why a class that is closed under images of bisimulations and invariant under
prime/definable extensions must be invariant under ultrapowers.

Here is a summary of the paper. In the next Section we describe the lan-
guage and semantics of IPC. Sections 3 and 4 review the basic theory of truth
preserving model-constructions, including bisimulations, bounded morphisms,
inner submodels and disjoint unions. Section 5 explains why the relation of logi-
cal equivalence is a bisimulation between sufficiently saturated models. Section 6
and 7 define the prime and definable extensions of a model and gives their basic
properties and relationships. Section 8 is about ultraproducts and ultrapowers
and gives the proof that a class of models is invariant under ultrapowers if it is
closed under bisimulation images and invariant under definable extensions. The
final Section 9 gives the main result setting out a number of equivalent structural
characterisations of axiomatic classes.

2 Languages and Models

Formulas of IPC are constructed from an infinite set {pn : n ∈ ω} of propositional
variables and the constant ⊥ by the connectives ∧, ∨ and →. The negation of
formula ϕ can be defined to be the formula ϕ→ ⊥, and ϕ↔ ψ is an abbreviation
for (ϕ→ ψ) ∧ (ψ → ϕ). We denote the set of all IPC-formulas by Φ.

A quasiorder on a non-empty set X is a reflexive and transitive relation
≤. A subset Y of X is up-closed if y ∈ Y whenever x ∈ Y and x ≤ y. If
[x) = {y ∈ X : x ≤ y}, then [x) is the smallest up-closed set containing x. In
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general, Y is up-closed iff [x) ⊆ Y for all x ∈ Y . The set of all up-closed subsets
of (X,≤) will be denoted U(≤). An IPC-model is a structure

M = (X,≤, P0, . . . , Pn, . . . ),

where ≤ is a quasiorder on X and each Pn is a member of U(≤). The satisfaction
relation M, x |= ϕ, expressing “formula ϕ is true/satisfied at x in M”, is defined
by induction on the formation of the formula ϕ ∈ Φ as follows:

M, x |= pn iff x ∈ Pn;
M, x 
|= ⊥;
M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ;
M, x |= ϕ ∨ ψ iff M, x |= ϕ or M, x |= ψ;
M, x |= ϕ→ ψ iff for all y ≥ x, if M, y |= ϕ then M, y |= ψ.

The collection U(≤) of up-closed sets forms a Heyting algebra under the partial
order ⊆, with lattice meet and join being the set-theoretic operations ∩ and ∪,
and with least element ∅, greatest element X , and relative pseudo-complement
operation ⇒ defined by

Y ⇒ Z = {x ∈ X : [x) ∩ Y ⊆ Z}

(see [Rasiowa and Sikorski, 1963] or [Balbes and Dwinger, 1974] for the general
theory of Heyting algebras).

The “truth set” M(ϕ) := {x ∈ X : M, x |= ϕ} of any formula turns out to be
up-closed, and indeed the satisfaction conditions are equivalent to the equations

M(pn) = Pn;
M(⊥) = ∅;
M(ϕ ∧ ψ) = M(ϕ) ∩M(ψ);
M(ϕ ∨ ψ) = M(ϕ) ∪M(ψ);
M(ϕ→ ψ) = M(ϕ) ⇒ M(ψ).

It follows that U(M) = {M(ϕ) : ϕ ∈ Φ} is a sub-Heyting algebra of U(≤).
Formula ϕ is true in the model M, written M |= ϕ, if M, x |= ϕ for all

x ∈ X , i.e. if M(ϕ) = X . In this case we also say that M is a model of ϕ. For a
set Σ ⊆ Φ we put M |= Σ if M |= ϕ for all ϕ ∈ Σ, and write ModΣ for the class
{M : M |= Σ} of all models of Σ. A class C of IPC-models is called axiomatic
if there exists some set Σ of formulas such that C = ModΣ. The formulas that
are true in all IPC-models are precisely those that are theorems of Heyting’s
intuitionistic propositional calculus. This model theory is due to [Kripke, 1965].

An IPC-model can be viewed as a structure for the first-order language L
having a binary relation symbol ≤ interpreted as the quasi-order and unary rela-
tion symbols πn interpreted as the sets Pn. As such, each IPC-model satisfies the
L-sentence σqo expressing that ≤ is a quasiorder. Each ϕ ∈ Φ can be translated
into an L-formula ϕt(v) with a single free variable v, as follows:

pt
n = πn(v); ⊥t = ⊥;
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(ϕ ∧ ψ)t(v) = ϕt(v) ∧ ψt(v); (ϕ ∨ ψ)t(v) = ϕt(v) ∨ ψt(v);
(ϕ→ ψ)t(v) = ∀w(v ≤ w → (ϕt(w/v) → ψt(w/v)), where w 
= v and v is
free for w in ϕt(v).

Then in general,
M, x |= ϕ iff M |= ϕt[x],

where the notation ‘M |= ϕt[x]’ means that ϕt is satisfied in the L-structure M
in the usual Tarskian sense for first-order logic when the variable v is assigned
the value x. In this way IPC can be viewed as a special fragment of first-order
logic. In particular,

M |= ϕ iff M |= ∀vϕt,

so for any Σ ⊆ Φ, an arbitrary L-structure M belongs to ModΣ iff

M |= {σqo} ∪ {∀vϕt : ϕ ∈ Σ}.

Thus any axiomatic class is also an elementary class, i.e. the class of all L-models
of a set of L-sentences. Our aim is to clarify just which elementary classes are
of the form ModΣ.

3 Bisimulations

A bisimulation from IPC-model M to IPC-model M′ = (X ′ ≤′, P ′
n)n∈ω is a

binary relation R ⊆ X ×X ′ such that for all x ∈ X and x′ ∈ X ′, if xRx′ then:

B1: x ∈ Pn iff x′ ∈ P ′
n.

B2: x′ ≤′ y′ implies ∃y(x ≤ y and yRy′).

B3: x ≤ y implies ∃y′(x′ ≤ y′ and yRy′).

When this holds, it follows that for all ϕ ∈ Φ,

xRx′ implies [M, x |= ϕ iff M′, x′ |= ϕ]. (3.1)

This is readily shown by induction on the formation of ϕ, with B1 taking care
of the case that ϕ = pn, and the ‘back-and-forth’ conditions B2 and B3 used for
the inductive case that ϕ has the form ϕ1 → ϕ2.

A bisimulation is surjective if its image {x′ ∈ X ′ : ∃x(xRx′)} is X ′ itself. M′

is a bisimulation image of M if there exists a surjective bisimulation from M to
M′. In that case, it follows from the above that M |= ϕ implies M′ |= ϕ. Thus
an axiomatic class ModΣ is closed under bismulation images : if it contains M
then it contains all bisimulation images of M.

Dually, a bisimulation is total if its domain {x ∈ X : ∃x′(xRx′)} is X . Then
M′ |= ϕ implies M |= ϕ, so an axiomatic class is closed under domains of total
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bisimulations: if it contains M′ then it contains any M having a total bisimu-
lation to M′. Alternatively, this can be seen from the fact that the definition
of a bisimulation is symmetric, in the sense that if R is a bisimulation from M
to M′, then its inverse R−1 is a bisimulation from M′ to M. Moreover, R is
total iff R−1 is surjective (and vice versa). Thus closure of any class C of models
under bisimulation images implies closure under domains of total bisimulations.
Hence it implies invariance under total surjective bisimulations, in the sense
that if there exists a total surjective bisimulation from M to M′, then M ∈ C

iff M′ ∈ C.
A bounded morphism f : M → M′ can be defined as a function f : X → X ′

whose graph {(x, f(x)) : x ∈ X} is a bisimulation, and hence a total bisimulation.
This is equivalent to the more common definition that x ∈ Pn iff f(x) ∈ P ′

n, and

f(x) ≤′ y′ iff ∃y(x ≤ y and f(y) = y′). (3.2)

If f is surjective, then it is called a bounded epimorphism. Thus an axiomatic
class is closed under bounded epimorphic images, and under domains of arbitrary
bounded morphisms. A bijective bounded morphism is precisely an isomorphism
of models in the usual sense.

M is called an inner submodel of M′ if X ⊆ X ′ and the inclusion function
X ↪→ X ′ is a bisimulation from M to M′. Then the inverse of the graph of
the inclusion is a surjective bisimulation from M′ to M, showing that M′ |= ϕ

implies M |= ϕ. Hence axiomatic classes are closed under inner submodels. An
alternative definition of inner submodel is that X ⊆ X ′; Pn = P ′

n ∩ X ; ≤ is
the restriction of ≤′ to X ; and X is up-closed in (X ′,≤′). Thus any X ∈ U(≤′)
becomes an inner submodel of M′ by restricting ≤′ and the P ′

n’s to X . In
particular, if R is a bisimulation from M to M′, then the domain of R is an
inner submodel of M, while the image of R is an inner submodel of M′.

For each point x of a model M we denote by Mx the inner submodel of
M generated by x, which by definition is the submodel based on the up-closed
set [x). Since the inclusion Mx ↪→ M is a bisimulation we get Mx, y |= ϕ iff
M, y |= ϕ for all y ∈ [x). It follows that

M |= ϕ iff for all x in M, Mx |= ϕ. (3.3)

In modal logic, bounded epimorphisms are often called ‘p-morphisms’ (this
terminology comes from [Segerberg, 1970, Segerberg, 1971], while total surjec-
tive bisimulations were first introduced in [van Benthem, 1983] as ‘p-relations’ .
There are many relationships between these concepts. For instance, for any class
C of models the following properties are equivalent:

– C is closed under bisimulation images.

– C is closed under total bisimulation images and inner submodels.
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– C is invariant under bounded epimorphic images and closed under inner
submodels.

– C is closed under domains of bounded morphisms and under bounded epi-
morphic images.

In particular, every axiomatic class ModΣ has these properties.

4 Disjoint and Bounded Unions

Let {Mi : i ∈ I} be a set of IPC-models, with Mi = (X i,≤i, P i
n)n∈ω . The

disjoint union
∐

I Mi is simply the union of a collection of pairwise disjoint
copies of the Mi’s. Formally we take this to be the model based on the set
⋃

I(X i × {i}) whose quasiorder and Pn-relations are the disjoint unions of the
corresponding relations in the Mi’s. For each i ∈ I, the map x �→ (x, i) is an
injective bounded morphism Mi �

∐
I Mi making Mi isomorphic to an inner

submodel of
∐

I Mi (viz. Mi × {i}). Since this map is a bisimulation it shows
that Mi, x |= ϕ iff

∐
I Mi, (x, i) |= ϕ. Since every member of

∐
I Mi is of the

form (x, i), this implies that
∐

IMi |= ϕ iff for all i ∈ I, Mi |= ϕ.

Consequently, every axiomatic class is closed under disjoint unions : if {Mi : i ∈
I} ⊆ ModΣ, then

∐
I Mi ∈ ModΣ.

A model M is the bounded union of a collection {Mi : i ∈ I} if the Mi’s are
all inner submodels of M and their union is M itself. Then the map (x, i) �→ x

defines a bounded epimorphism
∐

I Mi � M from the disjoint union of the
Mi’s onto M. This shows that every axiomatic class is closed under bounded
unions, and also gives an alternative explanation for (3.3). More generally it
implies that if a class is closed under bounded epimorphic images and disjoint
unions, then it is closed under bounded unions.

Notice that any IPC-model M is the bounded union of the collection {Mx :
x in M} of its point-generated inner submodels. Combining this with the last
observation provides the following result that will be needed later:

Lemma 4.1 If a class C of IPC-models is closed under bisimulation images and
disjoint unions, then for any model M,

M ∈ C iff for all x in M, Mx ∈ C.

5 Bisimilarity From Saturation

The union of all bisimulations from M to M′ is itself a bisimulation, known
as the bisimilarity relation. This notion was developed in the theory of process
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algebra as a formalisation of the relation of ‘observational equivalence’ between
states of transition systems. Hennessy and Milner [1985] proposed the idea of
devising a logical system to characterise bisimilarity as the relation of ‘logical
equivalence’ of states. Here we will say that point x of model M is logically
equivalent to point x′ of M′ if for all ϕ ∈ Φ, M, x |= ϕ iff M′, x′ |= ϕ. If this
holds we write M, x ≡ M′, x′, or just x ≡ x′ if the models are understood.

For IPC-models, as for modal logic, the Hennessy-Milner proposal can be
fulfilled in models that are saturated to some degree. In fact this needs only the
weak assumption of ‘2-saturation’, which refers to the addition of one constant
(i.e. fewer than 2). To define this, let Lc be the expansion of the language L
by the addition of a single individual constant c. An Lc-structure has the form
(M, xc) with xc being a member of the L-structure M interpreting c. A set Γ of
Lc-formulas that have at most one free variable v is satisfiable in this structure
if there is some y in M such that (M, xc) |= σ[y] for all σ ∈ Γ . We may write
(M, xc) |= Γ [y] when this happens. Γ is finitely satisfiable in the structure if
each of its finite subsets is satisfiable. An L-structure M is 2-saturated if for each
member xc of M, any set of Lc-formulas that is finitely satisfiable in (M, xc)
must itself be satisfiable in that structure.

For any cardinal ℵ, ℵ-saturation is defined like this but using an expansion
of L by fewer than ℵ constants. In Section 8 we will observe that ultrapowers
can be used to construct models that are ℵ1-saturated, and hence 2-saturated.
The following is a typical use of 2-saturation in Kripke models, a technique first
introduced for modal logic in [Fine, 1975].

Theorem 5.1 If M and M′ are 2-saturated IPC-models, then the logical equiv-
alence relation ≡ is a bisimulation from M to M′.

Proof. Suppose M, x ≡ M′, x′. Then for all n ∈ ω, M, x |= pn iff M′, x′ |= pn,
which shows that bisimulation-condition B1 holds.

For the ’back’ condition B2, suppose that x′ ≤′ y′ in M′. We have to show
there is some y in M with x ≤ y and x ≡ y. Let

Γ = {ϕt(v) : ϕ ∈ Φ and M′, y′ |= ϕ},
∆ = {¬ϕt(v) : ϕ ∈ Φ and M′, y′ 
|= ϕ}

(here ¬ is the Boolean negation symbol of L). We will show that the set of
formulas {c ≤ v} ∪ Γ ∪∆ is finitely satisfiable in the Lc-structure (M, x).

Let M′, y′ |= ϕi for all i ≤ n and M′, y′ 
|= ψj for all j ≤ m. As x′ ≤ y′, the
IPC-semantics of Φ then gives that the formula

ϕ1 ∧ · · · ∧ ϕn → ψ1 ∨ · · · ∨ ψm

is not true at x′ in M′. Since x ≡ x′, this formula is not true at x in M, so
there is some z in M with x ≤ z, M, z |= ϕi for all i ≤ n, and M, z 
|= ψj for
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all j ≤ m. Hence the set

{c ≤ v} ∪ {ϕt
1(v), . . . , ϕt

n(v),¬ψt
1(v), . . . ,¬ψt

m(v)}

is satisfiable in the Lc-model (M, x) by interpreting v as z.
This confirms that {c ≤ v} ∪ Γ ∪ ∆ is finitely satisfiable in (M, x), so by

2-saturation of M it is satisfiable in (M, x) by some y. Then x ≤ y and for all
ϕ ∈ Φ, if M′, y′ |= ϕ then M |= ϕt[y], while if M′, y′ 
|= ϕ then M 
|= ϕt[y], so
x ≡ y as desired.

The proof of B3 is symmetric to this one for B2, using the 2-saturation of
M′. ��

Notice that if R is any bisimulation from M to M′, then by (3.1), xRx′ implies
x ≡ x′. So logical equivalence is indeed the union (largest) of all bisimulation
relations between 2-saturated models.

6 Prime Extensions

The collection U(≤) of up-closed subsets of a quasiordered set (X,≤) is a dis-
tributive lattice. New models can be built from the prime filters of this lattice.
A non-empty subset F of U(≤) is a prime filter iff it has ∅ 
∈ F ; Y ∩ Z ∈ F iff
Y ∈ F and Z ∈ F ; and Y ∪ Z ∈ F iff Y ∈ F or Z ∈ F , for all up-closed Y, Z.
For example, Fx = {Y ∈ U(≤) : x ∈ Y } is a prime filter for each x ∈ X .

For H,K ⊆ U(≤), we say that H is separated from K if for any finite subsets
H ′ of H and K ′ of K we have

⋂
H ′ 
⊆ ⋃

K ′. In this context the classical
Birkhoff-Stone result on the existence of prime filters takes the form of

Lemma 6.1 If H is separated from K, then H is included in a prime filter of
U(≤) that is disjoint from K. ��

We define the prime extension of an IPC-model M = (X,≤, Pn)n∈ω to be the
structure

M∗ = (X∗,⊆, P ∗
0 , . . . , P

∗
n , . . . ),

where X∗ is the set of all prime filters of U(≤), and P ∗
n = {F ∈ X∗ : Pn ∈ F}.

Lemma 6.2 For any formula ϕ ∈ Φ:

(1) For all F ∈ X∗, M∗, F |= ϕ iff M(ϕ) ∈ F .

(2) M |= ϕ iff M∗ |= ϕ.

Proof.
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(1) By induction of the formation of ϕ. The case of ϕ = ⊥ holds because
M(⊥) = ∅ 
∈ F ; and the case of ϕ = pn follows from the definition of
P ∗

n = M∗(pn) because Pn = M(pn). The inductive cases for the connectives
∧ and ∨ are straightforward from the above-listed properties of a prime
filter.

Now suppose ϕ = (ϕ1 → ϕ2) and assume the result for ϕ1 and ϕ2. Let
M(ϕ) ∈ F . Then for all G ∈ X∗, if F ⊆ G and M∗, G |= ϕ1, then M(ϕ1) ∈
G by induction hypothesis on ϕ1, and M(ϕ1 → ϕ2) ∈ G. But M(ϕ1) ∩
M(ϕ1 → ϕ2) ⊆ M(ϕ2) by the semantics of implication, so as G is a filter
M(ϕ2) ∈ G, hence M∗, G |= ϕ2 by hypothesis on ϕ2. This establishes that
M∗, F |= ϕ1 → ϕ2.

Conversely, suppose M∗, F |= ϕ1 → ϕ2. Then if F ∪{M(ϕ1)} was separated
from {M(ϕ2)}, by Lemma 6.1 there would be some G ∈ X∗ with F ⊆
G, M(ϕ1) ∈ G, and M(ϕ2) 
∈ G; hence M∗, G |= ϕ1 and M∗, G 
|= ϕ2

by hypothesis. But this situation contradicts M∗, F |= ϕ1 → ϕ2. Hence
F ∪ {M(ϕ1)} is not separated from {M(ϕ2)}, so as F is closed under finite
intersections there must be some Y ∈ F with Y ∩ M(ϕ1) ⊆ M(ϕ2). This
implies Y ⊆ M(ϕ1 → ϕ2), hence M(ϕ1 → ϕ2) ∈ F as F is a filter.

Thus the result holds in all cases.

(2) If M |= ϕ, then M(ϕ) is X , which belongs to every prime filter, so M∗, F |=
ϕ for all F ∈ X∗ by part (1).

Conversely, if M∗ |= ϕ, then for each x ∈ X , M∗, Fx |= ϕ, hence M(ϕ) ∈ Fx

by (1), which means that M, x |= ϕ. ��

Part (2) of this Lemma implies that axiomatic classes are invariant under prime
extensions : M ∈ ModΣ iff M∗ ∈ ModΣ.

7 Definable Extensions

The collection U(M) = {M(ϕ) : ϕ ∈ Φ} of ‘definable’ up-closed subsets of a
model M is always countable, so may be much smaller than U(≤). But it is a
distributive lattice in its own right – indeed a sub-Heyting-algebra of U(≤) –
and so has its own prime filters. We define

Mδ = (Xδ,⊆, P δ
0 , . . . , P

δ
n , . . . ),

where Xδ is the set of all prime filters of U(M), and P δ
n = {F ∈ Xδ : Pn ∈ F}.

Mδ will be called the definable extension of M.
A version of Lemma 6.2 can be proved for Mδ, implying that axiomatic

classes are invariant under definable extensions. But we can also deduce this
from invariance under prime extensions, by analysing the relationship between
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Mδ and M∗. Note first that Xδ is not a subset of X∗, since a prime filter
of U(M) will be a filter of U(≤) but may not be prime in U(≤). The exact
relationship between the two constructions is given by the map fM : X∗ → Xδ

specified by fM(F ) = F ∩ U(M) for all F ∈ X∗.

Lemma 7.1 fM is a bounded epimorphism M∗ � Mδ.

Proof. This is an instance of a well-established result in the duality theory
of Heyting algebras: fM is the dual map to the inclusion homomomorphism
U(M) ↪→ U(≤). Details can be found for instance in [Goldblatt, 1989, Section
2]. Here is a sketch of the main points.

First, to show fM is surjective, for each H ∈ Xδ, H is separated from
U(M) − H , so by Lemma 6.1 there is a prime filter F ∈ X∗ extending H

and disjoint from U(M) −H , hence F ∩ U(M) = H .
Clearly if F ⊆ G in U(≤), then fM(F ) ⊆ fM(G) in U(M), so the right-

to-left implication of (3.2) holds. For the converse, if F ∈ X∗ and fM(F ) ⊆ H

in U(M), then F ∪ H is separated from U(M) − H , so there exists G ∈ X∗

that extends F ∪ H and is disjoint from U(M) − H , hence has F ⊆ G and
F ∩ U(M) = H . ��

Corollary 7.2 Let C be a class of IPC-models that is closed under images
of total bisimulations. Then for all M, M∗ ∈ C iff Mδ ∈ C. Hence C is
closed/invariant under prime extensions iff it is closed/invariant under defin-
able extensions.

Proof. The graph of fM and its inverse give total surjective bisimulations in
each direction between M∗ and Mδ. ��

Corollary 7.3 For any formula ϕ ∈ Φ:

(1) For all F ∈ Xδ, Mδ, F |= ϕ iff M(ϕ) ∈ F .

(2) M |= ϕ iff Mδ |= ϕ.

Proof.

(1) If F = fM(G), then Mδ, F |= ϕ iff M∗, G |= ϕ by (3.1). But also M(ϕ) ∈ F

iff M(ϕ) ∈ G, so the result follows from Lemma 6.2(1).

(2) From Lemma 6.2(2), as M∗ ∈ Modϕ iff Mδ ∈ Modϕ by Corollary 7.2. ��

Mδ need not be a genuine ‘extension’ of M: it may have lower cardinality. The
natural map x �→ {M(ϕ) : M, x |= ϕ} of X into Xδ identifies any two points
that are logically equivalent. Hence this map will be injective iff x ≡ y implies
x = y in M. The natural map x �→ Fx of X into X∗ is injective iff the quasiorder
≤ is anti-symmetric.
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We now study the relationship between definable extensions and 2-saturated
models.

Theorem 7.4 For any IPC-model M, Mδ is a bounded epimorphic image of
any 2-saturated model N such that for all ϕ ∈ Φ, N |= ϕ iff M |= ϕ.

Proof. Let N = (Y,≤N , . . . ). Define a map η : Y → Xδ by putting, for any
x ∈ Y ,

η(x) = {M(ϕ) : N , x |= ϕ}.
This is well-defined, because if M(ϕ) = M(ψ) then M |= ϕ ↔ ψ, hence N |=
ϕ↔ ψ by hypothesis on N , and so N , x |= ϕ iff N , x |= ψ. It is readily checked
that η(x) is a prime filter of U(M), so belongs to Xδ.

If x ≤N y, then N , x |= ϕ implies N , y |= ϕ, hence η(x) ⊆ η(y); so the
right-to-left implication of (3.2) holds. For the converse, let η(x) ⊆ y′ in Mδ.
We have to show there is some y in N with x ≤N y and η(y) = y′. The proof is
similar to that of Theorem 5.1. Let

Γ = {ϕt(v) : ϕ ∈ Φ and Mδ, y′ |= ϕ},
∆ = {¬ϕt(v) : ϕ ∈ Φ and Mδ, y′ 
|= ϕ}.

It suffices to show that the set {c ≤ v} ∪ Γ ∪∆ is finitely satisfiable in the Lc-
structure (N , x). For then by 2-saturation of N it is satisfiable in (N , x) by some
y. Then x ≤N y and (N , y) ≡ (Mδ, y′). Using Corollary 7.3(1), this implies

M(ϕ) ∈ y′ iff Mδ, y′ |= ϕ iff N , y |= ϕ iff M(ϕ) ∈ η(y),

so y′ = η(y) as desired.
For the proof of finite satisfiability, let Mδ, y′ |= ϕi for all i ≤ n and Mδ, y′ 
|=

ψj for all j ≤ m. Let ϕ be the formula

ϕ1 ∧ · · · ∧ ϕn → ψ1 ∨ · · · ∨ ψm. (7.1)

As η(x) ⊆ y′, ϕ is not true at η(x) in Mδ, hence M(ϕ) 
∈ η(x) by Corollary
7.3(1), so N , x 
|= ϕ. Hence there is some z in Y such that the set

{c ≤ v} ∪ {ϕt
1(v), . . . , ϕt

n(v),¬ψt
1(v), . . . ,¬ψt

m(v)}

is satisfiable in the Lc-model (N , x) by interpreting v as z. This completes the
proof that η is a bounded morphism.

Finally, to show η is surjective, we take any y′ ∈ Xδ and show that the set
Γ ∪∆ as above is finitely satisfiable in (N , x). Hence it is satisfiable by some y
which then has (N , y) ≡ (Mδ, y′) and so y′ = η(y) as before.

So, suppose again that Mδ, y′ |= ϕi for i ≤ n and Mδ, y′ 
|= ψj for j ≤ m.
Then if ϕ is the formula (7.1), we have Mδ, y′ 
|= ϕ. This time we infer Mδ 
|= ϕ,
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hence M 
|= ϕ by Corollary 7.3(2), hence N 
|= ϕ by hypothesis on N . Thus there
is some z in N satisfying {ϕt

1(v), . . . , ϕt
n(v),¬ψt

1(v), . . . ,¬ψt
m(v)} as required.

��
It is also possible to construct bounded epimorphisms from 2-saturated models
onto the prime extension M∗, but only by working with models for a typically
uncountable language extending L by adding monadic predicates defining each
up-closed subset of M. Existence theorems for saturated models for such lan-
guages are demanding: to construct them as ultrapowers requires the theory of
‘good’ ultrafilters [Chang and Keisler, 1973, Section 6.1].

8 Ultraproducts and Ultrapowers

Let {Mi : i ∈ I} be a set of IPC-models, and D an ultrafilter over the index set
I. Recall that this means that D is a filter, i.e. in general Y ∩ Z ∈ D iff Y ∈ D

and Z ∈ D, and that exactly one of Y and I − Y belongs to D for each Y ⊆ I.
We review the definition of the ultraproduct

∏
DMi = (

∏
DX

i,≤D, PD
0 , . . . , P

D
n , . . . ).

An equivalence relation f =D g between functions f, g ∈ ∏
I X

i is defined to
mean that {i ∈ I : f(i) = g(i)} ∈ D. Then

∏
DX

i is the set of equivalence
classes of

∏
IX

i under =D. Writing fD for the equivalence class of f , we have

fD ≤D gD iff {i ∈ I : f(i) ≤i g(i)} ∈ D,

fD ∈ PD
n iff {i ∈ I : f(i) ∈ P i

n} ∈ D.

If all the Mi’s are the same model M, then the ultraproduct is denoted
∏

DM =
(
∏

DX, . . . ) and called an ultrapower of M. There is a natural map x �→ xD from
X into

∏
DX defined by xD = fD

x , where fx is the constant function having
fx(i) = x for all i ∈ I.

The fundamental theorem of �Loś states that for any L-formula σ(v1, . . . , vn),
with free variables amongst those listed, and any f1, . . . , fn ∈ ∏

IX
i,

∏
DMi |= σ[fD

1 , . . . , f
D
n ] iff {i ∈ I : Mi |= σ[f1(i), . . . , fn(i)]} ∈ D.

Hence if σ is a sentence,
∏

DMi |= σ iff {i ∈ I : Mi |= σ} ∈ D.

Taking σ to be the sentence σqo expressing that ≤ is a quasiorder, or the sentence
∀v∀w(v ≤ w ∧ π(v) → π(w)) expressing that Pn is up-closed, then shows that
∏

DM is an IPC-model. Taking the cases that σ is ϕt(v) or ∀vϕt for some ϕ ∈ Φ,
we get in terms of IPC-semantics that

∏
DMi, fD |= ϕ iff {i ∈ I : Mi, f(i) |= ϕ} ∈ D,
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and
∏

DMi |= ϕ iff {i ∈ I : Mi |= ϕ} ∈ D.

For ultrapowers these imply that for all x in M,
∏

DM, xD |= ϕ iff M, x |= ϕ; (8.1)

and that
∏

DM |= ϕ iff M |= ϕ. (8.2)

�Loś’s Theorem entails that an elementary class of L-structures is closed under
ultraproducts, and its complement is closed under ultrapowers. In particular, this
holds for the axiomatic classes ModΣ. For a class like Modϕ that is axiomatized
by a single sentence, the complement is closed under ultraproducts.

We will need to use the following ultraproduct version of the Compactness
Theorem.

Lemma 8.1 Let C be a class of L-structures that is closed under ultraproducts.
If Γ is a set of L formulas having at most one free variable, and each finite
subset of Γ is satisfiable in a model from C, then Γ is satisfiable in a model from
C.

Proof. This is standard [Chang and Keisler, 1973, 4.1.11]. Let I be the set of all
finite subsets of Γ . For each i ∈ I there is some Mi ∈ C and some xi in Mi with
M |= i[xi]. There is an ultrafilter D over I such that for each σ ∈ Γ , D contains
the set Jσ = {i : σ ∈ i} . Put f(i) = xi. Then Jσ ⊆ {i ∈ I : Mi |= σ[f(i)]}, so by
�Loś’s Theorem

∏
DMi |= σ[fD]. Thus Γ is satisfied by fD in

∏
DMi ∈ C. ��

There is a significant relationship between ultraproducts and ultrapowers of
Kripke models that was first identified by the author in the modal context. Here
is takes the following form:

Theorem 8.2 For any set {Mi : i ∈ I} of IPC-models and any ultrafilter D
over I, there is an injective bounded morphism

∏
DMi �� �� ∏

D(
∐

IMi)

making the ultraproduct
∏

DMi isomorphic to an inner submodel of the D-
ultrapower of the disjoint union

∐
IMi of the Mi’s.

Proof. For f ∈ ∏
DX , define f̂(i) = (f(i), i) to get f̂ ∈ ∏

I(
∐

IX
i). Then the

asserted bounded morphism is fD �→ f̂D – see [Goldblatt, 1989, 3.8.3]. ��

Corollary 8.3 If a class C of IPC-models is closed under bisimulation images,
disjoint unions and ultrapowers, then it is closed under ultraproducts.
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Proof. Closure under bisimulation images implies closure under inner submodels
and isomorphism. ��

One advantage of working with Φ and L is that for countable languages
2-saturated ultrapowers are readily available. To explain this, recall that an
ultrafilter D over a set I is countably incomplete if it there is a countable set
E ⊆ D with

⋂
E = ∅. For example, if I is itself countable then any nonprincipal

D over I is countably incomplete, as shown by taking E = {I − {i} : i ∈ I}.
The following result is proven in [Chang and Keisler, 1973, Theorem 6.1.1], and
holds for models for any countable first-order language.

Theorem 8.4 If D is a countably incomplete ultrafilter over a set I, then for
any set {Mi : i ∈ I} of models, the ultraproduct

∏
DMi is ℵ1-saturated. ��

We use this result to show how closure under definable extensions can lead
to closure under ultrapowers, by iterating the ultrapower construction.

Theorem 8.5 If a class C of IPC-models is closed under total bisimulation
images and invariant under definable extensions, then it is invariant under ul-
trapowers.

Proof. Let
∏

DM be any ultrapower of some model M. Take any countably
incomplete ultrafilter E (e.g. any nonprincipal ultrafilter on ω). By Theorem
8.4, the ultrapower

∏
E(

∏
DM) is ℵ1-saturated, and using (8.2) twice we get

∏
E(

∏
DM) |= ϕ iff M |= ϕ. Hence by Theorem 7.4 there is a bounded epimor-

phism f :
∏

E(
∏

DM) � Mδ. The inverse of f is a total bisimulation from Mδ

onto
∏

E(
∏

DM).
Thus if M ∈ C, then Mδ ∈ C and hence

∏
E(

∏
DM) ∈ C by the given

closure conditions. Applying Theorem 7.4 now to
∏

DM, since
∏

E(
∏

DM) |= ϕ

iff
∏

DM |= ϕ, there is a bounded epimorphism
∏

E(
∏

DM) � (
∏

DM)δ, so
(
∏

DM)δ ∈ C, and finally
∏

DM ∈ C by invariance under definable extensions.
This proves that C is closed under ultrapowers. But now if

∏
DM ∈ C then

∏
E(

∏
DM) ∈ C by this closure just proven, hence Mδ ∈ C by closure under

bounded epimorphic images, which finally gives M ∈ C by invariance under
definable extensions. ��

In this proof, if D is principal then
∏

DM ∼= M, while if D is countably incom-
plete then we can apply Theorem 7.4 directly to get a bounded epimorphism
from

∏
DM onto Mδ, hence

∏
DM ∈ C iff Mδ ∈ C iff M ∈ C. So, intriguingly,

the use of the iterated ultrapower is required only to cover the case that D is
a nonprincipal but countably complete ultrafilter, something whose existence is
equivalent to that of a measurable cardinal and cannot be proved in ZFC.
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9 Characterizing Axiomatizability

We are now ready to put together our main result:

Theorem 9.1 For any class C of IPC-models, the following are equivalent.

(1) C is axiomatic, i.e. C = ModΣ for some Σ ⊆ Φ.

(2) C is closed under bisimulation images and disjoint unions, and invariant
under prime extensions.

(3) C is closed under bisimulation images and disjoint unions, and invariant
under definable extensions.

(4) C is closed under bisimulation images and disjoint unions, and invariant
under ultrapowers.

Proof. (1) implies (2): this has been explained in Sections 3, 5 and 6.
(2) implies (3): Corollary 7.2.
(3) implies (4): Theorem 8.5.
(4) implies (1): this is essentially the argument of [Rodenburg, 1986, 13.8].

Suppose (4) holds, and let Σ = {ϕ ∈ Φ : C |= ϕ} be the set of all IPC-formulas
that are true in every member of C. Then C ⊆ ModΣ by definition, and we
prove the converse inclusion.

Let M ∈ ModΣ. To show M ∈ C it suffices, by Lemma 4.1, to show that
each point-generated inner submodel of M belongs to C. But each such submodel
belongs to ModΣ by (3.3), so we may as well assume that M is generated by
one of its points x. Then we prove that x in M is logically equivalent to a point
of some model in C. A variant of this argument has already been used twice: we
set

Γ = {ϕt(v) : ϕ ∈ Φ and M, x |= ϕ}
∆ = {¬ϕt(v) : ϕ ∈ Φ and M, x 
|= ϕ},

and show that Γ ∪∆ is finitely satisfiable in C. If M, x |= ϕi for all i ≤ n and
M, x 
|= ψj for all j ≤ m, then if ϕ is the formula

ϕ1 ∧ · · · ∧ ϕn → ψ1 ∨ · · · ∨ ψm,

we have M, x 
|= ϕ, so ϕ 
∈ Σ as M |= Σ. By definition of Σ, ϕ must then be
false at some point of some member of C: that point realises the set

{ϕt
1(v), . . . , ϕt

n(v),¬ψt
1(v), . . . ,¬ψt

m(v)}.
This shows that Γ ∪∆ is finitely satisfiable in C. But C is closed under ultra-
products by Corollary 8.3, so by Lemma 8.1 there is some model N ∈ C and
some point y of N such that N |= (Γ ∪∆)[y], hence (N , y) ≡ (M, x).
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Now let D be a countably incomplete ultrafilter. The ultrapowers
∏

DN
and

∏
DM are both 2-saturated (Theorem 8.4), and

∏
DN ∈ C by (4). More-

over, by (8.1) we have (
∏

DN , yD) ≡ (N , y) and (M, x) ≡ (
∏

DM, xD), hence
(
∏

DN , yD) ≡ (
∏

DM, xD).
But by Theorem 5.1, the logical equivalence relation ≡ is a bisimulation from

∏
DN to

∏
DM, so if we can show it is surjective, then we will get

∏
DM ∈ C

by closure under bisimulation images, and then M ∈ C by invariance under ul-
trapowers, completing the proof that C = ModΣ and establishing the Theorem.

Now the L-formula ∀w(v ≤ w) is satisfied by x in M, since x generates M,
and so by �Loś’s Theorem this formula is satisfied by xD in

∏
DM. Hence for any

point z′ of
∏

DM we have xD ≤D z′, so as yD ≡ xD the bisimulation condition
B2 gives some z in

∏
DN such that (yD ≤ z and) z ≡ z′. This proves ≡ is

surjective as required. ��

Of course we can obtain further characterizations of axiomatic classes by replac-
ing “closed under bisimulation images” in any of (2)–(4) by any of the equivalent
alternatives listed at the end of Section 3.

Finally, to characterize classes of the form Modϕ for a single formula ϕ,
just replace “invariant under ultrapowers” in Theorem 9.1 by “closed under
ultrapowers, and the complement C = {M : M 
∈ C} is closed under ultra-
products”. The proof of this is standard: if the stronger condition holds for C,
then C has form C = ModΣ, and there must be some finite Σi ⊆ Σ such that
C = ModΣi = Mod (

∧
Σi). For if not, then for each such Σi there would be a

model Mi |= Σi with Mi 
|= Σ, hence Mi ∈ C. But then by the construction
in the proof of Lemma 8.1, we could construct an ultraproduct of these Mi’s
having

∏
DMi |= Σ, contradicting the closure of C under ultraproducts.

10 Related and Further Work

Our Theorem 9.1 shows that a certain logically specified notion, viz. an axiomatic
model class, has a structural characterisation in terms of closure under algebraic
constructions. The first characterisation of this kind was the famous “variety the-
orem” of [Birkhoff, 1935], which showed that the equationally definable classes
of abstract algebras are just those that are closed under homomorphic images,
subalgebras and direct products. There have been many other such theorems
developed subsequently, a notable example being the celebrated Keisler-Shelah
characterisation of elementary (i.e. first-order definable) classes of structures as
those that are closed under isomorphism and ultraproducts and have their com-
plements closed under ultrapowers.

Results of this kind have recently been developed for certain classes of coal-
gebras, adapting ideas from modal logic to coalgebraic theory through the ob-
servation [Rutten, 1995] that Kripke models for propositional modal logic are
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coalgebras for a particular functor T : Set → Set on the category of sets. In
[Goldblatt, 2001, Goldblatt, 2003a] a study is made of so-called polynomial coal-
gebras, in which T is any functor built from the identity functor and/or constant
functors using the polynomial operations of products, coproducts and exponen-
tials with constant exponent. A notion of ultrafilter enlargement of a polynomial
coalgebra is developed, and it is shown that a class of polynomial coalgebras is
the class of all models of a set of Boolean combinations of equations of a certain
type precisely when it is closed under bisimulation images, disjoint unions and
ultrafilter enlargements. In [Goldblatt, 2003b], ultrafilter enlargements are re-
placed in this result by a certain modified ultrapower construction. Section 8 of
that paper gives a discussion of the analogy between such results and Birkhoff’s
theorem, as well as surveying the relevant literature in the theory of coalgebras.

Polynomial functors provide a rather specific class of coalgebras, to be thought
of as deterministic transition systems. To model non-determinism requires use
of the powerset functor, as indeed does the representation of a Kripke model for
modal logic as a coalgebra. So it would be of interest to extend these characteri-
sation theorem to coalgebras of functors whose formation involves powersets, or
indeed to any kind of endofunctor on Set. A notion of ultrafilter extension for
such general functors has been very recently developed in [Kupke et al., 2005],
raising the question of how to develop a logical specification of classes of coal-
gebras closed under the construction. It would also be of interest to adapt this
line of enquiry to coalgebraic abstractions of IPC-models. Here it may be rel-
evant to consider the observations of [Palmigiano, 2004] about duality between
Heyting algebras and coalgebras for a certain Vietoris functor on partially-
ordered Stone spaces, as well as the coalgebraic perspective on Heyting duality
of [Davey and Galati, 2003].
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